mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-01 10:42:11 +00:00
b4f239c91f
Change the way netfslib collects read results to do all the collection for a particular read request using a single work item that walks along the subrequest queue as subrequests make progress or complete, unlocking folios progressively rather than doing the unlock in parallel as parallel requests come in. The code is remodelled to be more like the write-side code, though only using a single stream. This makes it more directly comparable and thus easier to duplicate fixes between the two sides. This has a number of advantages: (1) It's simpler. There doesn't need to be a complex donation mechanism to handle mismatches between the size and alignment of subrequests and folios. The collector unlocks folios as the subrequests covering each complete. (2) It should cause less scheduler overhead as there's a single work item in play unlocking pages in parallel when a read gets split up into a lot of subrequests instead of one per subrequest. Whilst the parallellism is nice in theory, in practice, the vast majority of loads are sequential reads of the whole file, so committing a bunch of threads to unlocking folios out of order doesn't help in those cases. (3) It should make it easier to implement content decryption. A folio cannot be decrypted until all the requests that contribute to it have completed - and, again, most loads are sequential and so, most of the time, we want to begin decryption sequentially (though it's great if the decryption can happen in parallel). There is a disadvantage in that we're losing the ability to decrypt and unlock things on an as-things-arrive basis which may affect some applications. Signed-off-by: David Howells <dhowells@redhat.com> Link: https://lore.kernel.org/r/20241108173236.1382366-29-dhowells@redhat.com cc: Jeff Layton <jlayton@kernel.org> cc: netfs@lists.linux.dev cc: linux-fsdevel@vger.kernel.org Signed-off-by: Christian Brauner <brauner@kernel.org>
272 lines
7.1 KiB
C
272 lines
7.1 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Direct I/O support.
|
|
*
|
|
* Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/netfs.h>
|
|
#include "internal.h"
|
|
|
|
static void netfs_prepare_dio_read_iterator(struct netfs_io_subrequest *subreq)
|
|
{
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
size_t rsize;
|
|
|
|
rsize = umin(subreq->len, rreq->io_streams[0].sreq_max_len);
|
|
subreq->len = rsize;
|
|
|
|
if (unlikely(rreq->io_streams[0].sreq_max_segs)) {
|
|
size_t limit = netfs_limit_iter(&rreq->buffer.iter, 0, rsize,
|
|
rreq->io_streams[0].sreq_max_segs);
|
|
|
|
if (limit < rsize) {
|
|
subreq->len = limit;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_limited);
|
|
}
|
|
}
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
|
|
|
subreq->io_iter = rreq->buffer.iter;
|
|
iov_iter_truncate(&subreq->io_iter, subreq->len);
|
|
iov_iter_advance(&rreq->buffer.iter, subreq->len);
|
|
}
|
|
|
|
/*
|
|
* Perform a read to a buffer from the server, slicing up the region to be read
|
|
* according to the network rsize.
|
|
*/
|
|
static int netfs_dispatch_unbuffered_reads(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_stream *stream = &rreq->io_streams[0];
|
|
unsigned long long start = rreq->start;
|
|
ssize_t size = rreq->len;
|
|
int ret = 0;
|
|
|
|
do {
|
|
struct netfs_io_subrequest *subreq;
|
|
ssize_t slice;
|
|
|
|
subreq = netfs_alloc_subrequest(rreq);
|
|
if (!subreq) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
|
|
subreq->start = start;
|
|
subreq->len = size;
|
|
|
|
__set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
|
|
|
|
spin_lock(&rreq->lock);
|
|
list_add_tail(&subreq->rreq_link, &stream->subrequests);
|
|
if (list_is_first(&subreq->rreq_link, &stream->subrequests)) {
|
|
stream->front = subreq;
|
|
if (!stream->active) {
|
|
stream->collected_to = stream->front->start;
|
|
/* Store list pointers before active flag */
|
|
smp_store_release(&stream->active, true);
|
|
}
|
|
}
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_added);
|
|
spin_unlock(&rreq->lock);
|
|
|
|
netfs_stat(&netfs_n_rh_download);
|
|
if (rreq->netfs_ops->prepare_read) {
|
|
ret = rreq->netfs_ops->prepare_read(subreq);
|
|
if (ret < 0) {
|
|
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_cancel);
|
|
break;
|
|
}
|
|
}
|
|
|
|
netfs_prepare_dio_read_iterator(subreq);
|
|
slice = subreq->len;
|
|
size -= slice;
|
|
start += slice;
|
|
rreq->submitted += slice;
|
|
if (size <= 0) {
|
|
smp_wmb(); /* Write lists before ALL_QUEUED. */
|
|
set_bit(NETFS_RREQ_ALL_QUEUED, &rreq->flags);
|
|
}
|
|
|
|
rreq->netfs_ops->issue_read(subreq);
|
|
|
|
if (test_bit(NETFS_RREQ_PAUSE, &rreq->flags)) {
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_wait_pause);
|
|
wait_on_bit(&rreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE);
|
|
}
|
|
if (test_bit(NETFS_RREQ_FAILED, &rreq->flags))
|
|
break;
|
|
if (test_bit(NETFS_RREQ_BLOCKED, &rreq->flags) &&
|
|
test_bit(NETFS_RREQ_NONBLOCK, &rreq->flags))
|
|
break;
|
|
cond_resched();
|
|
} while (size > 0);
|
|
|
|
if (unlikely(size > 0)) {
|
|
smp_wmb(); /* Write lists before ALL_QUEUED. */
|
|
set_bit(NETFS_RREQ_ALL_QUEUED, &rreq->flags);
|
|
netfs_wake_read_collector(rreq);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Perform a read to an application buffer, bypassing the pagecache and the
|
|
* local disk cache.
|
|
*/
|
|
static int netfs_unbuffered_read(struct netfs_io_request *rreq, bool sync)
|
|
{
|
|
int ret;
|
|
|
|
_enter("R=%x %llx-%llx",
|
|
rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);
|
|
|
|
if (rreq->len == 0) {
|
|
pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
|
|
return -EIO;
|
|
}
|
|
|
|
// TODO: Use bounce buffer if requested
|
|
|
|
inode_dio_begin(rreq->inode);
|
|
|
|
ret = netfs_dispatch_unbuffered_reads(rreq);
|
|
|
|
if (!rreq->submitted) {
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_no_submit);
|
|
inode_dio_end(rreq->inode);
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (sync)
|
|
ret = netfs_wait_for_read(rreq);
|
|
else
|
|
ret = -EIOCBQUEUED;
|
|
out:
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* netfs_unbuffered_read_iter_locked - Perform an unbuffered or direct I/O read
|
|
* @iocb: The I/O control descriptor describing the read
|
|
* @iter: The output buffer (also specifies read length)
|
|
*
|
|
* Perform an unbuffered I/O or direct I/O from the file in @iocb to the
|
|
* output buffer. No use is made of the pagecache.
|
|
*
|
|
* The caller must hold any appropriate locks.
|
|
*/
|
|
ssize_t netfs_unbuffered_read_iter_locked(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct netfs_io_request *rreq;
|
|
ssize_t ret;
|
|
size_t orig_count = iov_iter_count(iter);
|
|
bool sync = is_sync_kiocb(iocb);
|
|
|
|
_enter("");
|
|
|
|
if (!orig_count)
|
|
return 0; /* Don't update atime */
|
|
|
|
ret = kiocb_write_and_wait(iocb, orig_count);
|
|
if (ret < 0)
|
|
return ret;
|
|
file_accessed(iocb->ki_filp);
|
|
|
|
rreq = netfs_alloc_request(iocb->ki_filp->f_mapping, iocb->ki_filp,
|
|
iocb->ki_pos, orig_count,
|
|
NETFS_DIO_READ);
|
|
if (IS_ERR(rreq))
|
|
return PTR_ERR(rreq);
|
|
|
|
netfs_stat(&netfs_n_rh_dio_read);
|
|
trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_dio_read);
|
|
|
|
/* If this is an async op, we have to keep track of the destination
|
|
* buffer for ourselves as the caller's iterator will be trashed when
|
|
* we return.
|
|
*
|
|
* In such a case, extract an iterator to represent as much of the the
|
|
* output buffer as we can manage. Note that the extraction might not
|
|
* be able to allocate a sufficiently large bvec array and may shorten
|
|
* the request.
|
|
*/
|
|
if (user_backed_iter(iter)) {
|
|
ret = netfs_extract_user_iter(iter, rreq->len, &rreq->buffer.iter, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
rreq->direct_bv = (struct bio_vec *)rreq->buffer.iter.bvec;
|
|
rreq->direct_bv_count = ret;
|
|
rreq->direct_bv_unpin = iov_iter_extract_will_pin(iter);
|
|
rreq->len = iov_iter_count(&rreq->buffer.iter);
|
|
} else {
|
|
rreq->buffer.iter = *iter;
|
|
rreq->len = orig_count;
|
|
rreq->direct_bv_unpin = false;
|
|
iov_iter_advance(iter, orig_count);
|
|
}
|
|
|
|
// TODO: Set up bounce buffer if needed
|
|
|
|
if (!sync) {
|
|
rreq->iocb = iocb;
|
|
__set_bit(NETFS_RREQ_OFFLOAD_COLLECTION, &rreq->flags);
|
|
}
|
|
|
|
ret = netfs_unbuffered_read(rreq, sync);
|
|
if (ret < 0)
|
|
goto out; /* May be -EIOCBQUEUED */
|
|
if (sync) {
|
|
// TODO: Copy from bounce buffer
|
|
iocb->ki_pos += rreq->transferred;
|
|
ret = rreq->transferred;
|
|
}
|
|
|
|
out:
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_return);
|
|
if (ret > 0)
|
|
orig_count -= ret;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_unbuffered_read_iter_locked);
|
|
|
|
/**
|
|
* netfs_unbuffered_read_iter - Perform an unbuffered or direct I/O read
|
|
* @iocb: The I/O control descriptor describing the read
|
|
* @iter: The output buffer (also specifies read length)
|
|
*
|
|
* Perform an unbuffered I/O or direct I/O from the file in @iocb to the
|
|
* output buffer. No use is made of the pagecache.
|
|
*/
|
|
ssize_t netfs_unbuffered_read_iter(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
ssize_t ret;
|
|
|
|
if (!iter->count)
|
|
return 0; /* Don't update atime */
|
|
|
|
ret = netfs_start_io_direct(inode);
|
|
if (ret == 0) {
|
|
ret = netfs_unbuffered_read_iter_locked(iocb, iter);
|
|
netfs_end_io_direct(inode);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_unbuffered_read_iter);
|