linux-next/drivers/scsi/ufs/ufs-qcom.c
Yaniv Gardi cad2e03d86 ufs: add support to allow non standard behaviours (quirks)
Some implementation of UFS host controller HW might have some non-standard
behaviours (quirks) when compared to behaviour specified by UFSHCI
specification. This patch add support to allow specifying all such quirks
to standard UFS host controller driver so standard driver takes them into
account.

In this change a UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS is introduced,
where a minimum delay of 1ms is required before DME commands for
stability purposes.

Signed-off-by: Yaniv Gardi <ygardi@codeaurora.org>
Reviewed-by: Gilad Broner <gbroner@codeaurora.org>
Signed-off-by: James Bottomley <JBottomley@Odin.com>
2015-04-10 08:53:56 -07:00

1017 lines
26 KiB
C

/*
* Copyright (c) 2013-2015, Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/time.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-qcom-ufs.h>
#include "ufshcd.h"
#include "unipro.h"
#include "ufs-qcom.h"
#include "ufshci.h"
static struct ufs_qcom_host *ufs_qcom_hosts[MAX_UFS_QCOM_HOSTS];
static void ufs_qcom_get_speed_mode(struct ufs_pa_layer_attr *p, char *result);
static int ufs_qcom_get_bus_vote(struct ufs_qcom_host *host,
const char *speed_mode);
static int ufs_qcom_set_bus_vote(struct ufs_qcom_host *host, int vote);
static int ufs_qcom_get_connected_tx_lanes(struct ufs_hba *hba, u32 *tx_lanes)
{
int err = 0;
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), tx_lanes);
if (err)
dev_err(hba->dev, "%s: couldn't read PA_CONNECTEDTXDATALANES %d\n",
__func__, err);
return err;
}
static int ufs_qcom_host_clk_get(struct device *dev,
const char *name, struct clk **clk_out)
{
struct clk *clk;
int err = 0;
clk = devm_clk_get(dev, name);
if (IS_ERR(clk)) {
err = PTR_ERR(clk);
dev_err(dev, "%s: failed to get %s err %d",
__func__, name, err);
} else {
*clk_out = clk;
}
return err;
}
static int ufs_qcom_host_clk_enable(struct device *dev,
const char *name, struct clk *clk)
{
int err = 0;
err = clk_prepare_enable(clk);
if (err)
dev_err(dev, "%s: %s enable failed %d\n", __func__, name, err);
return err;
}
static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host)
{
if (!host->is_lane_clks_enabled)
return;
clk_disable_unprepare(host->tx_l1_sync_clk);
clk_disable_unprepare(host->tx_l0_sync_clk);
clk_disable_unprepare(host->rx_l1_sync_clk);
clk_disable_unprepare(host->rx_l0_sync_clk);
host->is_lane_clks_enabled = false;
}
static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
if (host->is_lane_clks_enabled)
return 0;
err = ufs_qcom_host_clk_enable(dev, "rx_lane0_sync_clk",
host->rx_l0_sync_clk);
if (err)
goto out;
err = ufs_qcom_host_clk_enable(dev, "tx_lane0_sync_clk",
host->tx_l0_sync_clk);
if (err)
goto disable_rx_l0;
err = ufs_qcom_host_clk_enable(dev, "rx_lane1_sync_clk",
host->rx_l1_sync_clk);
if (err)
goto disable_tx_l0;
err = ufs_qcom_host_clk_enable(dev, "tx_lane1_sync_clk",
host->tx_l1_sync_clk);
if (err)
goto disable_rx_l1;
host->is_lane_clks_enabled = true;
goto out;
disable_rx_l1:
clk_disable_unprepare(host->rx_l1_sync_clk);
disable_tx_l0:
clk_disable_unprepare(host->tx_l0_sync_clk);
disable_rx_l0:
clk_disable_unprepare(host->rx_l0_sync_clk);
out:
return err;
}
static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host)
{
int err = 0;
struct device *dev = host->hba->dev;
err = ufs_qcom_host_clk_get(dev,
"rx_lane0_sync_clk", &host->rx_l0_sync_clk);
if (err)
goto out;
err = ufs_qcom_host_clk_get(dev,
"tx_lane0_sync_clk", &host->tx_l0_sync_clk);
if (err)
goto out;
err = ufs_qcom_host_clk_get(dev, "rx_lane1_sync_clk",
&host->rx_l1_sync_clk);
if (err)
goto out;
err = ufs_qcom_host_clk_get(dev, "tx_lane1_sync_clk",
&host->tx_l1_sync_clk);
out:
return err;
}
static int ufs_qcom_link_startup_post_change(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = hba->priv;
struct phy *phy = host->generic_phy;
u32 tx_lanes;
int err = 0;
err = ufs_qcom_get_connected_tx_lanes(hba, &tx_lanes);
if (err)
goto out;
err = ufs_qcom_phy_set_tx_lane_enable(phy, tx_lanes);
if (err)
dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable failed\n",
__func__);
out:
return err;
}
static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
{
int err;
u32 tx_fsm_val = 0;
unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS);
do {
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(MPHY_TX_FSM_STATE), &tx_fsm_val);
if (err || tx_fsm_val == TX_FSM_HIBERN8)
break;
/* sleep for max. 200us */
usleep_range(100, 200);
} while (time_before(jiffies, timeout));
/*
* we might have scheduled out for long during polling so
* check the state again.
*/
if (time_after(jiffies, timeout))
err = ufshcd_dme_get(hba,
UIC_ARG_MIB(MPHY_TX_FSM_STATE), &tx_fsm_val);
if (err) {
dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
__func__, err);
} else if (tx_fsm_val != TX_FSM_HIBERN8) {
err = tx_fsm_val;
dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
__func__, err);
}
return err;
}
static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = hba->priv;
struct phy *phy = host->generic_phy;
int ret = 0;
bool is_rate_B = (UFS_QCOM_LIMIT_HS_RATE == PA_HS_MODE_B)
? true : false;
/* Assert PHY reset and apply PHY calibration values */
ufs_qcom_assert_reset(hba);
/* provide 1ms delay to let the reset pulse propagate */
usleep_range(1000, 1100);
ret = ufs_qcom_phy_calibrate_phy(phy, is_rate_B);
if (ret) {
dev_err(hba->dev, "%s: ufs_qcom_phy_calibrate_phy() failed, ret = %d\n",
__func__, ret);
goto out;
}
/* De-assert PHY reset and start serdes */
ufs_qcom_deassert_reset(hba);
/*
* after reset deassertion, phy will need all ref clocks,
* voltage, current to settle down before starting serdes.
*/
usleep_range(1000, 1100);
ret = ufs_qcom_phy_start_serdes(phy);
if (ret) {
dev_err(hba->dev, "%s: ufs_qcom_phy_start_serdes() failed, ret = %d\n",
__func__, ret);
goto out;
}
ret = ufs_qcom_phy_is_pcs_ready(phy);
if (ret)
dev_err(hba->dev, "%s: is_physical_coding_sublayer_ready() failed, ret = %d\n",
__func__, ret);
out:
return ret;
}
/*
* The UTP controller has a number of internal clock gating cells (CGCs).
* Internal hardware sub-modules within the UTP controller control the CGCs.
* Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
* in a specific operation, UTP controller CGCs are by default disabled and
* this function enables them (after every UFS link startup) to save some power
* leakage.
*/
static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
{
ufshcd_writel(hba,
ufshcd_readl(hba, REG_UFS_CFG2) | REG_UFS_CFG2_CGC_EN_ALL,
REG_UFS_CFG2);
/* Ensure that HW clock gating is enabled before next operations */
mb();
}
static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba, bool status)
{
struct ufs_qcom_host *host = hba->priv;
int err = 0;
switch (status) {
case PRE_CHANGE:
ufs_qcom_power_up_sequence(hba);
/*
* The PHY PLL output is the source of tx/rx lane symbol
* clocks, hence, enable the lane clocks only after PHY
* is initialized.
*/
err = ufs_qcom_enable_lane_clks(host);
break;
case POST_CHANGE:
/* check if UFS PHY moved from DISABLED to HIBERN8 */
err = ufs_qcom_check_hibern8(hba);
ufs_qcom_enable_hw_clk_gating(hba);
break;
default:
dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
err = -EINVAL;
break;
}
return err;
}
/**
* Returns non-zero for success (which rate of core_clk) and 0
* in case of a failure
*/
static unsigned long
ufs_qcom_cfg_timers(struct ufs_hba *hba, u32 gear, u32 hs, u32 rate)
{
struct ufs_clk_info *clki;
u32 core_clk_period_in_ns;
u32 tx_clk_cycles_per_us = 0;
unsigned long core_clk_rate = 0;
u32 core_clk_cycles_per_us = 0;
static u32 pwm_fr_table[][2] = {
{UFS_PWM_G1, 0x1},
{UFS_PWM_G2, 0x1},
{UFS_PWM_G3, 0x1},
{UFS_PWM_G4, 0x1},
};
static u32 hs_fr_table_rA[][2] = {
{UFS_HS_G1, 0x1F},
{UFS_HS_G2, 0x3e},
};
static u32 hs_fr_table_rB[][2] = {
{UFS_HS_G1, 0x24},
{UFS_HS_G2, 0x49},
};
if (gear == 0) {
dev_err(hba->dev, "%s: invalid gear = %d\n", __func__, gear);
goto out_error;
}
list_for_each_entry(clki, &hba->clk_list_head, list) {
if (!strcmp(clki->name, "core_clk"))
core_clk_rate = clk_get_rate(clki->clk);
}
/* If frequency is smaller than 1MHz, set to 1MHz */
if (core_clk_rate < DEFAULT_CLK_RATE_HZ)
core_clk_rate = DEFAULT_CLK_RATE_HZ;
core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC;
ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
core_clk_period_in_ns = NSEC_PER_SEC / core_clk_rate;
core_clk_period_in_ns <<= OFFSET_CLK_NS_REG;
core_clk_period_in_ns &= MASK_CLK_NS_REG;
switch (hs) {
case FASTAUTO_MODE:
case FAST_MODE:
if (rate == PA_HS_MODE_A) {
if (gear > ARRAY_SIZE(hs_fr_table_rA)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rA));
goto out_error;
}
tx_clk_cycles_per_us = hs_fr_table_rA[gear-1][1];
} else if (rate == PA_HS_MODE_B) {
if (gear > ARRAY_SIZE(hs_fr_table_rB)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(hs_fr_table_rB));
goto out_error;
}
tx_clk_cycles_per_us = hs_fr_table_rB[gear-1][1];
} else {
dev_err(hba->dev, "%s: invalid rate = %d\n",
__func__, rate);
goto out_error;
}
break;
case SLOWAUTO_MODE:
case SLOW_MODE:
if (gear > ARRAY_SIZE(pwm_fr_table)) {
dev_err(hba->dev,
"%s: index %d exceeds table size %zu\n",
__func__, gear,
ARRAY_SIZE(pwm_fr_table));
goto out_error;
}
tx_clk_cycles_per_us = pwm_fr_table[gear-1][1];
break;
case UNCHANGED:
default:
dev_err(hba->dev, "%s: invalid mode = %d\n", __func__, hs);
goto out_error;
}
/* this register 2 fields shall be written at once */
ufshcd_writel(hba, core_clk_period_in_ns | tx_clk_cycles_per_us,
REG_UFS_TX_SYMBOL_CLK_NS_US);
goto out;
out_error:
core_clk_rate = 0;
out:
return core_clk_rate;
}
static int ufs_qcom_link_startup_notify(struct ufs_hba *hba, bool status)
{
unsigned long core_clk_rate = 0;
u32 core_clk_cycles_per_100ms;
switch (status) {
case PRE_CHANGE:
core_clk_rate = ufs_qcom_cfg_timers(hba, UFS_PWM_G1,
SLOWAUTO_MODE, 0);
if (!core_clk_rate) {
dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
__func__);
return -EINVAL;
}
core_clk_cycles_per_100ms =
(core_clk_rate / MSEC_PER_SEC) * 100;
ufshcd_writel(hba, core_clk_cycles_per_100ms,
REG_UFS_PA_LINK_STARTUP_TIMER);
break;
case POST_CHANGE:
ufs_qcom_link_startup_post_change(hba);
break;
default:
break;
}
return 0;
}
static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct ufs_qcom_host *host = hba->priv;
struct phy *phy = host->generic_phy;
int ret = 0;
if (ufs_qcom_is_link_off(hba)) {
/*
* Disable the tx/rx lane symbol clocks before PHY is
* powered down as the PLL source should be disabled
* after downstream clocks are disabled.
*/
ufs_qcom_disable_lane_clks(host);
phy_power_off(phy);
/* Assert PHY soft reset */
ufs_qcom_assert_reset(hba);
goto out;
}
/*
* If UniPro link is not active, PHY ref_clk, main PHY analog power
* rail and low noise analog power rail for PLL can be switched off.
*/
if (!ufs_qcom_is_link_active(hba))
phy_power_off(phy);
out:
return ret;
}
static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
{
struct ufs_qcom_host *host = hba->priv;
struct phy *phy = host->generic_phy;
int err;
err = phy_power_on(phy);
if (err) {
dev_err(hba->dev, "%s: failed enabling regs, err = %d\n",
__func__, err);
goto out;
}
hba->is_sys_suspended = false;
out:
return err;
}
struct ufs_qcom_dev_params {
u32 pwm_rx_gear; /* pwm rx gear to work in */
u32 pwm_tx_gear; /* pwm tx gear to work in */
u32 hs_rx_gear; /* hs rx gear to work in */
u32 hs_tx_gear; /* hs tx gear to work in */
u32 rx_lanes; /* number of rx lanes */
u32 tx_lanes; /* number of tx lanes */
u32 rx_pwr_pwm; /* rx pwm working pwr */
u32 tx_pwr_pwm; /* tx pwm working pwr */
u32 rx_pwr_hs; /* rx hs working pwr */
u32 tx_pwr_hs; /* tx hs working pwr */
u32 hs_rate; /* rate A/B to work in HS */
u32 desired_working_mode;
};
static int ufs_qcom_get_pwr_dev_param(struct ufs_qcom_dev_params *qcom_param,
struct ufs_pa_layer_attr *dev_max,
struct ufs_pa_layer_attr *agreed_pwr)
{
int min_qcom_gear;
int min_dev_gear;
bool is_dev_sup_hs = false;
bool is_qcom_max_hs = false;
if (dev_max->pwr_rx == FAST_MODE)
is_dev_sup_hs = true;
if (qcom_param->desired_working_mode == FAST) {
is_qcom_max_hs = true;
min_qcom_gear = min_t(u32, qcom_param->hs_rx_gear,
qcom_param->hs_tx_gear);
} else {
min_qcom_gear = min_t(u32, qcom_param->pwm_rx_gear,
qcom_param->pwm_tx_gear);
}
/*
* device doesn't support HS but qcom_param->desired_working_mode is
* HS, thus device and qcom_param don't agree
*/
if (!is_dev_sup_hs && is_qcom_max_hs) {
pr_err("%s: failed to agree on power mode (device doesn't support HS but requested power is HS)\n",
__func__);
return -ENOTSUPP;
} else if (is_dev_sup_hs && is_qcom_max_hs) {
/*
* since device supports HS, it supports FAST_MODE.
* since qcom_param->desired_working_mode is also HS
* then final decision (FAST/FASTAUTO) is done according
* to qcom_params as it is the restricting factor
*/
agreed_pwr->pwr_rx = agreed_pwr->pwr_tx =
qcom_param->rx_pwr_hs;
} else {
/*
* here qcom_param->desired_working_mode is PWM.
* it doesn't matter whether device supports HS or PWM,
* in both cases qcom_param->desired_working_mode will
* determine the mode
*/
agreed_pwr->pwr_rx = agreed_pwr->pwr_tx =
qcom_param->rx_pwr_pwm;
}
/*
* we would like tx to work in the minimum number of lanes
* between device capability and vendor preferences.
* the same decision will be made for rx
*/
agreed_pwr->lane_tx = min_t(u32, dev_max->lane_tx,
qcom_param->tx_lanes);
agreed_pwr->lane_rx = min_t(u32, dev_max->lane_rx,
qcom_param->rx_lanes);
/* device maximum gear is the minimum between device rx and tx gears */
min_dev_gear = min_t(u32, dev_max->gear_rx, dev_max->gear_tx);
/*
* if both device capabilities and vendor pre-defined preferences are
* both HS or both PWM then set the minimum gear to be the chosen
* working gear.
* if one is PWM and one is HS then the one that is PWM get to decide
* what is the gear, as it is the one that also decided previously what
* pwr the device will be configured to.
*/
if ((is_dev_sup_hs && is_qcom_max_hs) ||
(!is_dev_sup_hs && !is_qcom_max_hs))
agreed_pwr->gear_rx = agreed_pwr->gear_tx =
min_t(u32, min_dev_gear, min_qcom_gear);
else if (!is_dev_sup_hs)
agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_dev_gear;
else
agreed_pwr->gear_rx = agreed_pwr->gear_tx = min_qcom_gear;
agreed_pwr->hs_rate = qcom_param->hs_rate;
return 0;
}
static int ufs_qcom_update_bus_bw_vote(struct ufs_qcom_host *host)
{
int vote;
int err = 0;
char mode[BUS_VECTOR_NAME_LEN];
ufs_qcom_get_speed_mode(&host->dev_req_params, mode);
vote = ufs_qcom_get_bus_vote(host, mode);
if (vote >= 0)
err = ufs_qcom_set_bus_vote(host, vote);
else
err = vote;
if (err)
dev_err(host->hba->dev, "%s: failed %d\n", __func__, err);
else
host->bus_vote.saved_vote = vote;
return err;
}
static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba,
bool status,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
u32 val;
struct ufs_qcom_host *host = hba->priv;
struct phy *phy = host->generic_phy;
struct ufs_qcom_dev_params ufs_qcom_cap;
int ret = 0;
int res = 0;
if (!dev_req_params) {
pr_err("%s: incoming dev_req_params is NULL\n", __func__);
ret = -EINVAL;
goto out;
}
switch (status) {
case PRE_CHANGE:
ufs_qcom_cap.tx_lanes = UFS_QCOM_LIMIT_NUM_LANES_TX;
ufs_qcom_cap.rx_lanes = UFS_QCOM_LIMIT_NUM_LANES_RX;
ufs_qcom_cap.hs_rx_gear = UFS_QCOM_LIMIT_HSGEAR_RX;
ufs_qcom_cap.hs_tx_gear = UFS_QCOM_LIMIT_HSGEAR_TX;
ufs_qcom_cap.pwm_rx_gear = UFS_QCOM_LIMIT_PWMGEAR_RX;
ufs_qcom_cap.pwm_tx_gear = UFS_QCOM_LIMIT_PWMGEAR_TX;
ufs_qcom_cap.rx_pwr_pwm = UFS_QCOM_LIMIT_RX_PWR_PWM;
ufs_qcom_cap.tx_pwr_pwm = UFS_QCOM_LIMIT_TX_PWR_PWM;
ufs_qcom_cap.rx_pwr_hs = UFS_QCOM_LIMIT_RX_PWR_HS;
ufs_qcom_cap.tx_pwr_hs = UFS_QCOM_LIMIT_TX_PWR_HS;
ufs_qcom_cap.hs_rate = UFS_QCOM_LIMIT_HS_RATE;
ufs_qcom_cap.desired_working_mode =
UFS_QCOM_LIMIT_DESIRED_MODE;
ret = ufs_qcom_get_pwr_dev_param(&ufs_qcom_cap,
dev_max_params,
dev_req_params);
if (ret) {
pr_err("%s: failed to determine capabilities\n",
__func__);
goto out;
}
break;
case POST_CHANGE:
if (!ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx,
dev_req_params->pwr_rx,
dev_req_params->hs_rate)) {
dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
__func__);
/*
* we return error code at the end of the routine,
* but continue to configure UFS_PHY_TX_LANE_ENABLE
* and bus voting as usual
*/
ret = -EINVAL;
}
val = ~(MAX_U32 << dev_req_params->lane_tx);
res = ufs_qcom_phy_set_tx_lane_enable(phy, val);
if (res) {
dev_err(hba->dev, "%s: ufs_qcom_phy_set_tx_lane_enable() failed res = %d\n",
__func__, res);
ret = res;
}
/* cache the power mode parameters to use internally */
memcpy(&host->dev_req_params,
dev_req_params, sizeof(*dev_req_params));
ufs_qcom_update_bus_bw_vote(host);
break;
default:
ret = -EINVAL;
break;
}
out:
return ret;
}
/**
* ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
* @hba: host controller instance
*
* QCOM UFS host controller might have some non standard behaviours (quirks)
* than what is specified by UFSHCI specification. Advertise all such
* quirks to standard UFS host controller driver so standard takes them into
* account.
*/
static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = hba->priv;
if (host->hw_ver.major == 0x1)
hba->quirks |= UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS;
if (host->hw_ver.major >= 0x2) {
if (!ufs_qcom_cap_qunipro(host))
/* Legacy UniPro mode still need following quirks */
hba->quirks |= UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS;
}
}
static void ufs_qcom_set_caps(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = hba->priv;
if (host->hw_ver.major >= 0x2)
host->caps = UFS_QCOM_CAP_QUNIPRO;
}
static int ufs_qcom_get_bus_vote(struct ufs_qcom_host *host,
const char *speed_mode)
{
struct device *dev = host->hba->dev;
struct device_node *np = dev->of_node;
int err;
const char *key = "qcom,bus-vector-names";
if (!speed_mode) {
err = -EINVAL;
goto out;
}
if (host->bus_vote.is_max_bw_needed && !!strcmp(speed_mode, "MIN"))
err = of_property_match_string(np, key, "MAX");
else
err = of_property_match_string(np, key, speed_mode);
out:
if (err < 0)
dev_err(dev, "%s: Invalid %s mode %d\n",
__func__, speed_mode, err);
return err;
}
static int ufs_qcom_set_bus_vote(struct ufs_qcom_host *host, int vote)
{
int err = 0;
if (vote != host->bus_vote.curr_vote)
host->bus_vote.curr_vote = vote;
return err;
}
static void ufs_qcom_get_speed_mode(struct ufs_pa_layer_attr *p, char *result)
{
int gear = max_t(u32, p->gear_rx, p->gear_tx);
int lanes = max_t(u32, p->lane_rx, p->lane_tx);
int pwr;
/* default to PWM Gear 1, Lane 1 if power mode is not initialized */
if (!gear)
gear = 1;
if (!lanes)
lanes = 1;
if (!p->pwr_rx && !p->pwr_tx) {
pwr = SLOWAUTO_MODE;
snprintf(result, BUS_VECTOR_NAME_LEN, "MIN");
} else if (p->pwr_rx == FAST_MODE || p->pwr_rx == FASTAUTO_MODE ||
p->pwr_tx == FAST_MODE || p->pwr_tx == FASTAUTO_MODE) {
pwr = FAST_MODE;
snprintf(result, BUS_VECTOR_NAME_LEN, "%s_R%s_G%d_L%d", "HS",
p->hs_rate == PA_HS_MODE_B ? "B" : "A", gear, lanes);
} else {
pwr = SLOW_MODE;
snprintf(result, BUS_VECTOR_NAME_LEN, "%s_G%d_L%d",
"PWM", gear, lanes);
}
}
static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on)
{
struct ufs_qcom_host *host = hba->priv;
int err = 0;
int vote = 0;
/*
* In case ufs_qcom_init() is not yet done, simply ignore.
* This ufs_qcom_setup_clocks() shall be called from
* ufs_qcom_init() after init is done.
*/
if (!host)
return 0;
if (on) {
err = ufs_qcom_phy_enable_iface_clk(host->generic_phy);
if (err)
goto out;
err = ufs_qcom_phy_enable_ref_clk(host->generic_phy);
if (err) {
dev_err(hba->dev, "%s enable phy ref clock failed, err=%d\n",
__func__, err);
ufs_qcom_phy_disable_iface_clk(host->generic_phy);
goto out;
}
/* enable the device ref clock */
ufs_qcom_phy_enable_dev_ref_clk(host->generic_phy);
vote = host->bus_vote.saved_vote;
if (vote == host->bus_vote.min_bw_vote)
ufs_qcom_update_bus_bw_vote(host);
} else {
/* M-PHY RMMI interface clocks can be turned off */
ufs_qcom_phy_disable_iface_clk(host->generic_phy);
if (!ufs_qcom_is_link_active(hba)) {
/* turn off UFS local PHY ref_clk */
ufs_qcom_phy_disable_ref_clk(host->generic_phy);
/* disable device ref_clk */
ufs_qcom_phy_disable_dev_ref_clk(host->generic_phy);
}
vote = host->bus_vote.min_bw_vote;
}
err = ufs_qcom_set_bus_vote(host, vote);
if (err)
dev_err(hba->dev, "%s: set bus vote failed %d\n",
__func__, err);
out:
return err;
}
static ssize_t
show_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_qcom_host *host = hba->priv;
return snprintf(buf, PAGE_SIZE, "%u\n",
host->bus_vote.is_max_bw_needed);
}
static ssize_t
store_ufs_to_mem_max_bus_bw(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ufs_hba *hba = dev_get_drvdata(dev);
struct ufs_qcom_host *host = hba->priv;
uint32_t value;
if (!kstrtou32(buf, 0, &value)) {
host->bus_vote.is_max_bw_needed = !!value;
ufs_qcom_update_bus_bw_vote(host);
}
return count;
}
static int ufs_qcom_bus_register(struct ufs_qcom_host *host)
{
int err;
struct device *dev = host->hba->dev;
struct device_node *np = dev->of_node;
err = of_property_count_strings(np, "qcom,bus-vector-names");
if (err < 0 ) {
dev_err(dev, "%s: qcom,bus-vector-names not specified correctly %d\n",
__func__, err);
goto out;
}
/* cache the vote index for minimum and maximum bandwidth */
host->bus_vote.min_bw_vote = ufs_qcom_get_bus_vote(host, "MIN");
host->bus_vote.max_bw_vote = ufs_qcom_get_bus_vote(host, "MAX");
host->bus_vote.max_bus_bw.show = show_ufs_to_mem_max_bus_bw;
host->bus_vote.max_bus_bw.store = store_ufs_to_mem_max_bus_bw;
sysfs_attr_init(&host->bus_vote.max_bus_bw.attr);
host->bus_vote.max_bus_bw.attr.name = "max_bus_bw";
host->bus_vote.max_bus_bw.attr.mode = S_IRUGO | S_IWUSR;
err = device_create_file(dev, &host->bus_vote.max_bus_bw);
out:
return err;
}
#define ANDROID_BOOT_DEV_MAX 30
static char android_boot_dev[ANDROID_BOOT_DEV_MAX];
static int get_android_boot_dev(char *str)
{
strlcpy(android_boot_dev, str, ANDROID_BOOT_DEV_MAX);
return 1;
}
__setup("androidboot.bootdevice=", get_android_boot_dev);
/**
* ufs_qcom_init - bind phy with controller
* @hba: host controller instance
*
* Binds PHY with controller and powers up PHY enabling clocks
* and regulators.
*
* Returns -EPROBE_DEFER if binding fails, returns negative error
* on phy power up failure and returns zero on success.
*/
static int ufs_qcom_init(struct ufs_hba *hba)
{
int err;
struct device *dev = hba->dev;
struct ufs_qcom_host *host;
if (strlen(android_boot_dev) && strcmp(android_boot_dev, dev_name(dev)))
return -ENODEV;
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host) {
err = -ENOMEM;
dev_err(dev, "%s: no memory for qcom ufs host\n", __func__);
goto out;
}
host->hba = hba;
hba->priv = (void *)host;
host->generic_phy = devm_phy_get(dev, "ufsphy");
if (IS_ERR(host->generic_phy)) {
err = PTR_ERR(host->generic_phy);
dev_err(dev, "%s: PHY get failed %d\n", __func__, err);
goto out;
}
err = ufs_qcom_bus_register(host);
if (err)
goto out_host_free;
ufs_qcom_get_controller_revision(hba, &host->hw_ver.major,
&host->hw_ver.minor, &host->hw_ver.step);
/* update phy revision information before calling phy_init() */
ufs_qcom_phy_save_controller_version(host->generic_phy,
host->hw_ver.major, host->hw_ver.minor, host->hw_ver.step);
phy_init(host->generic_phy);
err = phy_power_on(host->generic_phy);
if (err)
goto out_unregister_bus;
err = ufs_qcom_init_lane_clks(host);
if (err)
goto out_disable_phy;
ufs_qcom_set_caps(hba);
ufs_qcom_advertise_quirks(hba);
hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_CLK_SCALING;
hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
ufs_qcom_setup_clocks(hba, true);
if (hba->dev->id < MAX_UFS_QCOM_HOSTS)
ufs_qcom_hosts[hba->dev->id] = host;
goto out;
out_disable_phy:
phy_power_off(host->generic_phy);
out_unregister_bus:
phy_exit(host->generic_phy);
out_host_free:
devm_kfree(dev, host);
hba->priv = NULL;
out:
return err;
}
static void ufs_qcom_exit(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = hba->priv;
ufs_qcom_disable_lane_clks(host);
phy_power_off(host->generic_phy);
}
static
void ufs_qcom_clk_scale_notify(struct ufs_hba *hba)
{
struct ufs_qcom_host *host = hba->priv;
struct ufs_pa_layer_attr *dev_req_params = &host->dev_req_params;
if (!dev_req_params)
return;
ufs_qcom_cfg_timers(hba, dev_req_params->gear_rx,
dev_req_params->pwr_rx,
dev_req_params->hs_rate);
}
/**
* struct ufs_hba_qcom_vops - UFS QCOM specific variant operations
*
* The variant operations configure the necessary controller and PHY
* handshake during initialization.
*/
static const struct ufs_hba_variant_ops ufs_hba_qcom_vops = {
.name = "qcom",
.init = ufs_qcom_init,
.exit = ufs_qcom_exit,
.clk_scale_notify = ufs_qcom_clk_scale_notify,
.setup_clocks = ufs_qcom_setup_clocks,
.hce_enable_notify = ufs_qcom_hce_enable_notify,
.link_startup_notify = ufs_qcom_link_startup_notify,
.pwr_change_notify = ufs_qcom_pwr_change_notify,
.suspend = ufs_qcom_suspend,
.resume = ufs_qcom_resume,
};
EXPORT_SYMBOL(ufs_hba_qcom_vops);