mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-09 23:39:18 +00:00
b3b8e1eb27
Implement fused multiply-add with correct accuracy. Fused multiply-add operation has better accuracy than respective sequential execution of multiply and add operations applied on the same inputs. This is because accuracy errors accumulate in latter case. This patch implements fused multiply-add with the same accuracy as it is implemented in hardware, using 64-bit intermediate calculations. One test case example (raw bits) that this patch fixes: MADDF.S fd,fs,ft: fd = 0x22575225 fs = ft = 0x3727c5ac Fixes: e24c3bec3e8e ("MIPS: math-emu: Add support for the MIPS R6 MADDF FPU instruction") Fixes: 83d43305a1df ("MIPS: math-emu: Add support for the MIPS R6 MSUBF FPU instruction") Signed-off-by: Douglas Leung <douglas.leung@imgtec.com> Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com> Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com> Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com> Cc: Douglas Leung <douglas.leung@imgtec.com> Cc: Bo Hu <bohu@google.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Jin Qian <jinqian@google.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Petar Jovanovic <petar.jovanovic@imgtec.com> Cc: Raghu Gandham <raghu.gandham@imgtec.com> Cc: <stable@vger.kernel.org> # 4.7+ Cc: linux-mips@linux-mips.org Cc: linux-kernel@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/16890/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
265 lines
6.4 KiB
C
265 lines
6.4 KiB
C
/*
|
|
* IEEE754 floating point arithmetic
|
|
* single precision: MADDF.f (Fused Multiply Add)
|
|
* MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
|
|
*
|
|
* MIPS floating point support
|
|
* Copyright (C) 2015 Imagination Technologies, Ltd.
|
|
* Author: Markos Chandras <markos.chandras@imgtec.com>
|
|
*
|
|
* This program is free software; you can distribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; version 2 of the License.
|
|
*/
|
|
|
|
#include "ieee754sp.h"
|
|
|
|
|
|
static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x,
|
|
union ieee754sp y, enum maddf_flags flags)
|
|
{
|
|
int re;
|
|
int rs;
|
|
unsigned rm;
|
|
uint64_t rm64;
|
|
uint64_t zm64;
|
|
int s;
|
|
|
|
COMPXSP;
|
|
COMPYSP;
|
|
COMPZSP;
|
|
|
|
EXPLODEXSP;
|
|
EXPLODEYSP;
|
|
EXPLODEZSP;
|
|
|
|
FLUSHXSP;
|
|
FLUSHYSP;
|
|
FLUSHZSP;
|
|
|
|
ieee754_clearcx();
|
|
|
|
/*
|
|
* Handle the cases when at least one of x, y or z is a NaN.
|
|
* Order of precedence is sNaN, qNaN and z, x, y.
|
|
*/
|
|
if (zc == IEEE754_CLASS_SNAN)
|
|
return ieee754sp_nanxcpt(z);
|
|
if (xc == IEEE754_CLASS_SNAN)
|
|
return ieee754sp_nanxcpt(x);
|
|
if (yc == IEEE754_CLASS_SNAN)
|
|
return ieee754sp_nanxcpt(y);
|
|
if (zc == IEEE754_CLASS_QNAN)
|
|
return z;
|
|
if (xc == IEEE754_CLASS_QNAN)
|
|
return x;
|
|
if (yc == IEEE754_CLASS_QNAN)
|
|
return y;
|
|
|
|
if (zc == IEEE754_CLASS_DNORM)
|
|
SPDNORMZ;
|
|
/* ZERO z cases are handled separately below */
|
|
|
|
switch (CLPAIR(xc, yc)) {
|
|
|
|
|
|
/*
|
|
* Infinity handling
|
|
*/
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
|
|
ieee754_setcx(IEEE754_INVALID_OPERATION);
|
|
return ieee754sp_indef();
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
|
|
if ((zc == IEEE754_CLASS_INF) &&
|
|
((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) ||
|
|
((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) {
|
|
/*
|
|
* Cases of addition of infinities with opposite signs
|
|
* or subtraction of infinities with same signs.
|
|
*/
|
|
ieee754_setcx(IEEE754_INVALID_OPERATION);
|
|
return ieee754sp_indef();
|
|
}
|
|
/*
|
|
* z is here either not an infinity, or an infinity having the
|
|
* same sign as product (x*y) (in case of MADDF.D instruction)
|
|
* or product -(x*y) (in MSUBF.D case). The result must be an
|
|
* infinity, and its sign is determined only by the value of
|
|
* (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y.
|
|
*/
|
|
if (flags & MADDF_NEGATE_PRODUCT)
|
|
return ieee754sp_inf(1 ^ (xs ^ ys));
|
|
else
|
|
return ieee754sp_inf(xs ^ ys);
|
|
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
|
|
if (zc == IEEE754_CLASS_INF)
|
|
return ieee754sp_inf(zs);
|
|
if (zc == IEEE754_CLASS_ZERO) {
|
|
/* Handle cases +0 + (-0) and similar ones. */
|
|
if ((!(flags & MADDF_NEGATE_PRODUCT)
|
|
&& (zs == (xs ^ ys))) ||
|
|
((flags & MADDF_NEGATE_PRODUCT)
|
|
&& (zs != (xs ^ ys))))
|
|
/*
|
|
* Cases of addition of zeros of equal signs
|
|
* or subtraction of zeroes of opposite signs.
|
|
* The sign of the resulting zero is in any
|
|
* such case determined only by the sign of z.
|
|
*/
|
|
return z;
|
|
|
|
return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
|
|
}
|
|
/* x*y is here 0, and z is not 0, so just return z */
|
|
return z;
|
|
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
|
|
SPDNORMX;
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
|
|
if (zc == IEEE754_CLASS_INF)
|
|
return ieee754sp_inf(zs);
|
|
SPDNORMY;
|
|
break;
|
|
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
|
|
if (zc == IEEE754_CLASS_INF)
|
|
return ieee754sp_inf(zs);
|
|
SPDNORMX;
|
|
break;
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
|
|
if (zc == IEEE754_CLASS_INF)
|
|
return ieee754sp_inf(zs);
|
|
/* fall through to real computations */
|
|
}
|
|
|
|
/* Finally get to do some computation */
|
|
|
|
/*
|
|
* Do the multiplication bit first
|
|
*
|
|
* rm = xm * ym, re = xe + ye basically
|
|
*
|
|
* At this point xm and ym should have been normalized.
|
|
*/
|
|
|
|
/* rm = xm * ym, re = xe+ye basically */
|
|
assert(xm & SP_HIDDEN_BIT);
|
|
assert(ym & SP_HIDDEN_BIT);
|
|
|
|
re = xe + ye;
|
|
rs = xs ^ ys;
|
|
if (flags & MADDF_NEGATE_PRODUCT)
|
|
rs ^= 1;
|
|
|
|
/* Multiple 24 bit xm and ym to give 48 bit results */
|
|
rm64 = (uint64_t)xm * ym;
|
|
|
|
/* Shunt to top of word */
|
|
rm64 = rm64 << 16;
|
|
|
|
/* Put explicit bit at bit 62 if necessary */
|
|
if ((int64_t) rm64 < 0) {
|
|
rm64 = rm64 >> 1;
|
|
re++;
|
|
}
|
|
|
|
assert(rm64 & (1 << 62));
|
|
|
|
if (zc == IEEE754_CLASS_ZERO) {
|
|
/*
|
|
* Move explicit bit from bit 62 to bit 26 since the
|
|
* ieee754sp_format code expects the mantissa to be
|
|
* 27 bits wide (24 + 3 rounding bits).
|
|
*/
|
|
rm = XSPSRS64(rm64, (62 - 26));
|
|
return ieee754sp_format(rs, re, rm);
|
|
}
|
|
|
|
/* Move explicit bit from bit 23 to bit 62 */
|
|
zm64 = (uint64_t)zm << (62 - 23);
|
|
assert(zm64 & (1 << 62));
|
|
|
|
/* Make the exponents the same */
|
|
if (ze > re) {
|
|
/*
|
|
* Have to shift r fraction right to align.
|
|
*/
|
|
s = ze - re;
|
|
rm64 = XSPSRS64(rm64, s);
|
|
re += s;
|
|
} else if (re > ze) {
|
|
/*
|
|
* Have to shift z fraction right to align.
|
|
*/
|
|
s = re - ze;
|
|
zm64 = XSPSRS64(zm64, s);
|
|
ze += s;
|
|
}
|
|
assert(ze == re);
|
|
assert(ze <= SP_EMAX);
|
|
|
|
/* Do the addition */
|
|
if (zs == rs) {
|
|
/*
|
|
* Generate 64 bit result by adding two 63 bit numbers
|
|
* leaving result in zm64, zs and ze.
|
|
*/
|
|
zm64 = zm64 + rm64;
|
|
if ((int64_t)zm64 < 0) { /* carry out */
|
|
zm64 = XSPSRS1(zm64);
|
|
ze++;
|
|
}
|
|
} else {
|
|
if (zm64 >= rm64) {
|
|
zm64 = zm64 - rm64;
|
|
} else {
|
|
zm64 = rm64 - zm64;
|
|
zs = rs;
|
|
}
|
|
if (zm64 == 0)
|
|
return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
|
|
|
|
/*
|
|
* Put explicit bit at bit 62 if necessary.
|
|
*/
|
|
while ((zm64 >> 62) == 0) {
|
|
zm64 <<= 1;
|
|
ze--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move explicit bit from bit 62 to bit 26 since the
|
|
* ieee754sp_format code expects the mantissa to be
|
|
* 27 bits wide (24 + 3 rounding bits).
|
|
*/
|
|
zm = XSPSRS64(zm64, (62 - 26));
|
|
|
|
return ieee754sp_format(zs, ze, zm);
|
|
}
|
|
|
|
union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
|
|
union ieee754sp y)
|
|
{
|
|
return _sp_maddf(z, x, y, 0);
|
|
}
|
|
|
|
union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x,
|
|
union ieee754sp y)
|
|
{
|
|
return _sp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);
|
|
}
|