linux-next/kernel/watchdog.c
Linus Torvalds 91b6163be4 sysctl changes for v6.10-rc1
Summary
 * Removed sentinel elements from ctl_table structs in kernel/*
 
   Removing sentinels in ctl_table arrays reduces the build time size and
   runtime memory consumed by ~64 bytes per array. Removals for net/, io_uring/,
   mm/, ipc/ and security/ are set to go into mainline through their respective
   subsystems making the next release the most likely place where the final
   series that removes the check for proc_name == NULL will land. This PR adds
   to removals already in arch/, drivers/ and fs/.
 
 * Adjusted ctl_table definitions and references to allow constification
 
   Adjustments:
     - Removing unused ctl_table function arguments
     - Moving non-const elements from ctl_table to ctl_table_header
     - Making ctl_table pointers const in ctl_table_root structure
 
   Making the static ctl_table structs const will increase safety by keeping the
   pointers to proc_handler functions in .rodata. Though no ctl_tables where
   made const in this PR, the ground work for making that possible has started
   with these changes sent by Thomas Weißschuh.
 
 Testing
 * These changes went into linux-next after v6.9-rc4; giving it a good month of
   testing.
 -----BEGIN PGP SIGNATURE-----
 
 iQGzBAABCgAdFiEErkcJVyXmMSXOyyeQupfNUreWQU8FAmZFvBMACgkQupfNUreW
 QU/eGAv9EWeiXKxr3EVSMAsb9MWbJq7C99I/pd5hMf+qH4PgJpKDH7w/sb2e8h8+
 unGiW83ikgrtph7OS4/xM3Y9r3Nvzd6C/OztqgMnNKeRFdMgP7wu9HaSNs05ordb
 CqJdhvL93quc5HxrGTS9sdLK/wLJWOHwuWMXhX4qS44JNxTdPV2q10Rb7DZyHZ6O
 C9qp61L2Q2CrnOBKIx8MoeCh20ynJQAo3b0pTN63ZYF4D0vqCcnYNNTPkge4ID8/
 ULJoP5hAQY0vJ4g4fC4Gmooa5GECpm8MfZUf3SdgPyauqM/sm3dVdsLXAWD4Phcp
 TsG2a/5KMYwnLHrUGwDW7bFfEemRU88h0Iam56+SKMl1kMlEpWaLL9ApQXoHFayG
 e10izS+i/nlQiqYIHtuczCoTimT4/LGnonCLcdA//C3XzBT5MnOd7xsjuaQSpFWl
 /CV9SZa4ABwzX7u2jty8ik90iihLCFQyKj1d9m1mDVbgb6r3iUOxVuHBgMtY7MF7
 eyaEmV7l
 =/rQW
 -----END PGP SIGNATURE-----

Merge tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl

Pull sysctl updates from Joel Granados:

 - Remove sentinel elements from ctl_table structs in kernel/*

   Removing sentinels in ctl_table arrays reduces the build time size
   and runtime memory consumed by ~64 bytes per array. Removals for
   net/, io_uring/, mm/, ipc/ and security/ are set to go into mainline
   through their respective subsystems making the next release the most
   likely place where the final series that removes the check for
   proc_name == NULL will land.

   This adds to removals already in arch/, drivers/ and fs/.

 - Adjust ctl_table definitions and references to allow constification
     - Remove unused ctl_table function arguments
     - Move non-const elements from ctl_table to ctl_table_header
     - Make ctl_table pointers const in ctl_table_root structure

   Making the static ctl_table structs const will increase safety by
   keeping the pointers to proc_handler functions in .rodata. Though no
   ctl_tables where made const in this PR, the ground work for making
   that possible has started with these changes sent by Thomas
   Weißschuh.

* tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl:
  sysctl: drop now unnecessary out-of-bounds check
  sysctl: move sysctl type to ctl_table_header
  sysctl: drop sysctl_is_perm_empty_ctl_table
  sysctl: treewide: constify argument ctl_table_root::permissions(table)
  sysctl: treewide: drop unused argument ctl_table_root::set_ownership(table)
  bpf: Remove the now superfluous sentinel elements from ctl_table array
  delayacct: Remove the now superfluous sentinel elements from ctl_table array
  kprobes: Remove the now superfluous sentinel elements from ctl_table array
  printk: Remove the now superfluous sentinel elements from ctl_table array
  scheduler: Remove the now superfluous sentinel elements from ctl_table array
  seccomp: Remove the now superfluous sentinel elements from ctl_table array
  timekeeping: Remove the now superfluous sentinel elements from ctl_table array
  ftrace: Remove the now superfluous sentinel elements from ctl_table array
  umh: Remove the now superfluous sentinel elements from ctl_table array
  kernel misc: Remove the now superfluous sentinel elements from ctl_table array
2024-05-17 17:31:24 -07:00

1258 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Detect hard and soft lockups on a system
*
* started by Don Zickus, Copyright (C) 2010 Red Hat, Inc.
*
* Note: Most of this code is borrowed heavily from the original softlockup
* detector, so thanks to Ingo for the initial implementation.
* Some chunks also taken from the old x86-specific nmi watchdog code, thanks
* to those contributors as well.
*/
#define pr_fmt(fmt) "watchdog: " fmt
#include <linux/cpu.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/irqdesc.h>
#include <linux/kernel_stat.h>
#include <linux/kvm_para.h>
#include <linux/math64.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/stop_machine.h>
#include <linux/sysctl.h>
#include <linux/tick.h>
#include <linux/sched/clock.h>
#include <linux/sched/debug.h>
#include <linux/sched/isolation.h>
#include <asm/irq_regs.h>
static DEFINE_MUTEX(watchdog_mutex);
#if defined(CONFIG_HARDLOCKUP_DETECTOR) || defined(CONFIG_HARDLOCKUP_DETECTOR_SPARC64)
# define WATCHDOG_HARDLOCKUP_DEFAULT 1
#else
# define WATCHDOG_HARDLOCKUP_DEFAULT 0
#endif
#define NUM_SAMPLE_PERIODS 5
unsigned long __read_mostly watchdog_enabled;
int __read_mostly watchdog_user_enabled = 1;
static int __read_mostly watchdog_hardlockup_user_enabled = WATCHDOG_HARDLOCKUP_DEFAULT;
static int __read_mostly watchdog_softlockup_user_enabled = 1;
int __read_mostly watchdog_thresh = 10;
static int __read_mostly watchdog_hardlockup_available;
struct cpumask watchdog_cpumask __read_mostly;
unsigned long *watchdog_cpumask_bits = cpumask_bits(&watchdog_cpumask);
#ifdef CONFIG_HARDLOCKUP_DETECTOR
# ifdef CONFIG_SMP
int __read_mostly sysctl_hardlockup_all_cpu_backtrace;
# endif /* CONFIG_SMP */
/*
* Should we panic when a soft-lockup or hard-lockup occurs:
*/
unsigned int __read_mostly hardlockup_panic =
IS_ENABLED(CONFIG_BOOTPARAM_HARDLOCKUP_PANIC);
/*
* We may not want to enable hard lockup detection by default in all cases,
* for example when running the kernel as a guest on a hypervisor. In these
* cases this function can be called to disable hard lockup detection. This
* function should only be executed once by the boot processor before the
* kernel command line parameters are parsed, because otherwise it is not
* possible to override this in hardlockup_panic_setup().
*/
void __init hardlockup_detector_disable(void)
{
watchdog_hardlockup_user_enabled = 0;
}
static int __init hardlockup_panic_setup(char *str)
{
if (!strncmp(str, "panic", 5))
hardlockup_panic = 1;
else if (!strncmp(str, "nopanic", 7))
hardlockup_panic = 0;
else if (!strncmp(str, "0", 1))
watchdog_hardlockup_user_enabled = 0;
else if (!strncmp(str, "1", 1))
watchdog_hardlockup_user_enabled = 1;
return 1;
}
__setup("nmi_watchdog=", hardlockup_panic_setup);
#endif /* CONFIG_HARDLOCKUP_DETECTOR */
#if defined(CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER)
static DEFINE_PER_CPU(atomic_t, hrtimer_interrupts);
static DEFINE_PER_CPU(int, hrtimer_interrupts_saved);
static DEFINE_PER_CPU(bool, watchdog_hardlockup_warned);
static DEFINE_PER_CPU(bool, watchdog_hardlockup_touched);
static unsigned long hard_lockup_nmi_warn;
notrace void arch_touch_nmi_watchdog(void)
{
/*
* Using __raw here because some code paths have
* preemption enabled. If preemption is enabled
* then interrupts should be enabled too, in which
* case we shouldn't have to worry about the watchdog
* going off.
*/
raw_cpu_write(watchdog_hardlockup_touched, true);
}
EXPORT_SYMBOL(arch_touch_nmi_watchdog);
void watchdog_hardlockup_touch_cpu(unsigned int cpu)
{
per_cpu(watchdog_hardlockup_touched, cpu) = true;
}
static bool is_hardlockup(unsigned int cpu)
{
int hrint = atomic_read(&per_cpu(hrtimer_interrupts, cpu));
if (per_cpu(hrtimer_interrupts_saved, cpu) == hrint)
return true;
/*
* NOTE: we don't need any fancy atomic_t or READ_ONCE/WRITE_ONCE
* for hrtimer_interrupts_saved. hrtimer_interrupts_saved is
* written/read by a single CPU.
*/
per_cpu(hrtimer_interrupts_saved, cpu) = hrint;
return false;
}
static void watchdog_hardlockup_kick(void)
{
int new_interrupts;
new_interrupts = atomic_inc_return(this_cpu_ptr(&hrtimer_interrupts));
watchdog_buddy_check_hardlockup(new_interrupts);
}
void watchdog_hardlockup_check(unsigned int cpu, struct pt_regs *regs)
{
if (per_cpu(watchdog_hardlockup_touched, cpu)) {
per_cpu(watchdog_hardlockup_touched, cpu) = false;
return;
}
/*
* Check for a hardlockup by making sure the CPU's timer
* interrupt is incrementing. The timer interrupt should have
* fired multiple times before we overflow'd. If it hasn't
* then this is a good indication the cpu is stuck
*/
if (is_hardlockup(cpu)) {
unsigned int this_cpu = smp_processor_id();
unsigned long flags;
/* Only print hardlockups once. */
if (per_cpu(watchdog_hardlockup_warned, cpu))
return;
/*
* Prevent multiple hard-lockup reports if one cpu is already
* engaged in dumping all cpu back traces.
*/
if (sysctl_hardlockup_all_cpu_backtrace) {
if (test_and_set_bit_lock(0, &hard_lockup_nmi_warn))
return;
}
/*
* NOTE: we call printk_cpu_sync_get_irqsave() after printing
* the lockup message. While it would be nice to serialize
* that printout, we really want to make sure that if some
* other CPU somehow locked up while holding the lock associated
* with printk_cpu_sync_get_irqsave() that we can still at least
* get the message about the lockup out.
*/
pr_emerg("Watchdog detected hard LOCKUP on cpu %d\n", cpu);
printk_cpu_sync_get_irqsave(flags);
print_modules();
print_irqtrace_events(current);
if (cpu == this_cpu) {
if (regs)
show_regs(regs);
else
dump_stack();
printk_cpu_sync_put_irqrestore(flags);
} else {
printk_cpu_sync_put_irqrestore(flags);
trigger_single_cpu_backtrace(cpu);
}
if (sysctl_hardlockup_all_cpu_backtrace) {
trigger_allbutcpu_cpu_backtrace(cpu);
if (!hardlockup_panic)
clear_bit_unlock(0, &hard_lockup_nmi_warn);
}
if (hardlockup_panic)
nmi_panic(regs, "Hard LOCKUP");
per_cpu(watchdog_hardlockup_warned, cpu) = true;
} else {
per_cpu(watchdog_hardlockup_warned, cpu) = false;
}
}
#else /* CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER */
static inline void watchdog_hardlockup_kick(void) { }
#endif /* !CONFIG_HARDLOCKUP_DETECTOR_COUNTS_HRTIMER */
/*
* These functions can be overridden based on the configured hardlockdup detector.
*
* watchdog_hardlockup_enable/disable can be implemented to start and stop when
* softlockup watchdog start and stop. The detector must select the
* SOFTLOCKUP_DETECTOR Kconfig.
*/
void __weak watchdog_hardlockup_enable(unsigned int cpu) { }
void __weak watchdog_hardlockup_disable(unsigned int cpu) { }
/*
* Watchdog-detector specific API.
*
* Return 0 when hardlockup watchdog is available, negative value otherwise.
* Note that the negative value means that a delayed probe might
* succeed later.
*/
int __weak __init watchdog_hardlockup_probe(void)
{
return -ENODEV;
}
/**
* watchdog_hardlockup_stop - Stop the watchdog for reconfiguration
*
* The reconfiguration steps are:
* watchdog_hardlockup_stop();
* update_variables();
* watchdog_hardlockup_start();
*/
void __weak watchdog_hardlockup_stop(void) { }
/**
* watchdog_hardlockup_start - Start the watchdog after reconfiguration
*
* Counterpart to watchdog_hardlockup_stop().
*
* The following variables have been updated in update_variables() and
* contain the currently valid configuration:
* - watchdog_enabled
* - watchdog_thresh
* - watchdog_cpumask
*/
void __weak watchdog_hardlockup_start(void) { }
/**
* lockup_detector_update_enable - Update the sysctl enable bit
*
* Caller needs to make sure that the hard watchdogs are off, so this
* can't race with watchdog_hardlockup_disable().
*/
static void lockup_detector_update_enable(void)
{
watchdog_enabled = 0;
if (!watchdog_user_enabled)
return;
if (watchdog_hardlockup_available && watchdog_hardlockup_user_enabled)
watchdog_enabled |= WATCHDOG_HARDLOCKUP_ENABLED;
if (watchdog_softlockup_user_enabled)
watchdog_enabled |= WATCHDOG_SOFTOCKUP_ENABLED;
}
#ifdef CONFIG_SOFTLOCKUP_DETECTOR
/*
* Delay the soflockup report when running a known slow code.
* It does _not_ affect the timestamp of the last successdul reschedule.
*/
#define SOFTLOCKUP_DELAY_REPORT ULONG_MAX
#ifdef CONFIG_SMP
int __read_mostly sysctl_softlockup_all_cpu_backtrace;
#endif
static struct cpumask watchdog_allowed_mask __read_mostly;
/* Global variables, exported for sysctl */
unsigned int __read_mostly softlockup_panic =
IS_ENABLED(CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC);
static bool softlockup_initialized __read_mostly;
static u64 __read_mostly sample_period;
/* Timestamp taken after the last successful reschedule. */
static DEFINE_PER_CPU(unsigned long, watchdog_touch_ts);
/* Timestamp of the last softlockup report. */
static DEFINE_PER_CPU(unsigned long, watchdog_report_ts);
static DEFINE_PER_CPU(struct hrtimer, watchdog_hrtimer);
static DEFINE_PER_CPU(bool, softlockup_touch_sync);
static unsigned long soft_lockup_nmi_warn;
static int __init softlockup_panic_setup(char *str)
{
softlockup_panic = simple_strtoul(str, NULL, 0);
return 1;
}
__setup("softlockup_panic=", softlockup_panic_setup);
static int __init nowatchdog_setup(char *str)
{
watchdog_user_enabled = 0;
return 1;
}
__setup("nowatchdog", nowatchdog_setup);
static int __init nosoftlockup_setup(char *str)
{
watchdog_softlockup_user_enabled = 0;
return 1;
}
__setup("nosoftlockup", nosoftlockup_setup);
static int __init watchdog_thresh_setup(char *str)
{
get_option(&str, &watchdog_thresh);
return 1;
}
__setup("watchdog_thresh=", watchdog_thresh_setup);
static void __lockup_detector_cleanup(void);
#ifdef CONFIG_SOFTLOCKUP_DETECTOR_INTR_STORM
enum stats_per_group {
STATS_SYSTEM,
STATS_SOFTIRQ,
STATS_HARDIRQ,
STATS_IDLE,
NUM_STATS_PER_GROUP,
};
static const enum cpu_usage_stat tracked_stats[NUM_STATS_PER_GROUP] = {
CPUTIME_SYSTEM,
CPUTIME_SOFTIRQ,
CPUTIME_IRQ,
CPUTIME_IDLE,
};
static DEFINE_PER_CPU(u16, cpustat_old[NUM_STATS_PER_GROUP]);
static DEFINE_PER_CPU(u8, cpustat_util[NUM_SAMPLE_PERIODS][NUM_STATS_PER_GROUP]);
static DEFINE_PER_CPU(u8, cpustat_tail);
/*
* We don't need nanosecond resolution. A granularity of 16ms is
* sufficient for our precision, allowing us to use u16 to store
* cpustats, which will roll over roughly every ~1000 seconds.
* 2^24 ~= 16 * 10^6
*/
static u16 get_16bit_precision(u64 data_ns)
{
return data_ns >> 24LL; /* 2^24ns ~= 16.8ms */
}
static void update_cpustat(void)
{
int i;
u8 util;
u16 old_stat, new_stat;
struct kernel_cpustat kcpustat;
u64 *cpustat = kcpustat.cpustat;
u8 tail = __this_cpu_read(cpustat_tail);
u16 sample_period_16 = get_16bit_precision(sample_period);
kcpustat_cpu_fetch(&kcpustat, smp_processor_id());
for (i = 0; i < NUM_STATS_PER_GROUP; i++) {
old_stat = __this_cpu_read(cpustat_old[i]);
new_stat = get_16bit_precision(cpustat[tracked_stats[i]]);
util = DIV_ROUND_UP(100 * (new_stat - old_stat), sample_period_16);
__this_cpu_write(cpustat_util[tail][i], util);
__this_cpu_write(cpustat_old[i], new_stat);
}
__this_cpu_write(cpustat_tail, (tail + 1) % NUM_SAMPLE_PERIODS);
}
static void print_cpustat(void)
{
int i, group;
u8 tail = __this_cpu_read(cpustat_tail);
u64 sample_period_second = sample_period;
do_div(sample_period_second, NSEC_PER_SEC);
/*
* Outputting the "watchdog" prefix on every line is redundant and not
* concise, and the original alarm information is sufficient for
* positioning in logs, hence here printk() is used instead of pr_crit().
*/
printk(KERN_CRIT "CPU#%d Utilization every %llus during lockup:\n",
smp_processor_id(), sample_period_second);
for (i = 0; i < NUM_SAMPLE_PERIODS; i++) {
group = (tail + i) % NUM_SAMPLE_PERIODS;
printk(KERN_CRIT "\t#%d: %3u%% system,\t%3u%% softirq,\t"
"%3u%% hardirq,\t%3u%% idle\n", i + 1,
__this_cpu_read(cpustat_util[group][STATS_SYSTEM]),
__this_cpu_read(cpustat_util[group][STATS_SOFTIRQ]),
__this_cpu_read(cpustat_util[group][STATS_HARDIRQ]),
__this_cpu_read(cpustat_util[group][STATS_IDLE]));
}
}
#define HARDIRQ_PERCENT_THRESH 50
#define NUM_HARDIRQ_REPORT 5
struct irq_counts {
int irq;
u32 counts;
};
static DEFINE_PER_CPU(bool, snapshot_taken);
/* Tabulate the most frequent interrupts. */
static void tabulate_irq_count(struct irq_counts *irq_counts, int irq, u32 counts, int rank)
{
int i;
struct irq_counts new_count = {irq, counts};
for (i = 0; i < rank; i++) {
if (counts > irq_counts[i].counts)
swap(new_count, irq_counts[i]);
}
}
/*
* If the hardirq time exceeds HARDIRQ_PERCENT_THRESH% of the sample_period,
* then the cause of softlockup might be interrupt storm. In this case, it
* would be useful to start interrupt counting.
*/
static bool need_counting_irqs(void)
{
u8 util;
int tail = __this_cpu_read(cpustat_tail);
tail = (tail + NUM_HARDIRQ_REPORT - 1) % NUM_HARDIRQ_REPORT;
util = __this_cpu_read(cpustat_util[tail][STATS_HARDIRQ]);
return util > HARDIRQ_PERCENT_THRESH;
}
static void start_counting_irqs(void)
{
if (!__this_cpu_read(snapshot_taken)) {
kstat_snapshot_irqs();
__this_cpu_write(snapshot_taken, true);
}
}
static void stop_counting_irqs(void)
{
__this_cpu_write(snapshot_taken, false);
}
static void print_irq_counts(void)
{
unsigned int i, count;
struct irq_counts irq_counts_sorted[NUM_HARDIRQ_REPORT] = {
{-1, 0}, {-1, 0}, {-1, 0}, {-1, 0}, {-1, 0}
};
if (__this_cpu_read(snapshot_taken)) {
for_each_active_irq(i) {
count = kstat_get_irq_since_snapshot(i);
tabulate_irq_count(irq_counts_sorted, i, count, NUM_HARDIRQ_REPORT);
}
/*
* Outputting the "watchdog" prefix on every line is redundant and not
* concise, and the original alarm information is sufficient for
* positioning in logs, hence here printk() is used instead of pr_crit().
*/
printk(KERN_CRIT "CPU#%d Detect HardIRQ Time exceeds %d%%. Most frequent HardIRQs:\n",
smp_processor_id(), HARDIRQ_PERCENT_THRESH);
for (i = 0; i < NUM_HARDIRQ_REPORT; i++) {
if (irq_counts_sorted[i].irq == -1)
break;
printk(KERN_CRIT "\t#%u: %-10u\tirq#%d\n",
i + 1, irq_counts_sorted[i].counts,
irq_counts_sorted[i].irq);
}
/*
* If the hardirq time is less than HARDIRQ_PERCENT_THRESH% in the last
* sample_period, then we suspect the interrupt storm might be subsiding.
*/
if (!need_counting_irqs())
stop_counting_irqs();
}
}
static void report_cpu_status(void)
{
print_cpustat();
print_irq_counts();
}
#else
static inline void update_cpustat(void) { }
static inline void report_cpu_status(void) { }
static inline bool need_counting_irqs(void) { return false; }
static inline void start_counting_irqs(void) { }
static inline void stop_counting_irqs(void) { }
#endif
/*
* Hard-lockup warnings should be triggered after just a few seconds. Soft-
* lockups can have false positives under extreme conditions. So we generally
* want a higher threshold for soft lockups than for hard lockups. So we couple
* the thresholds with a factor: we make the soft threshold twice the amount of
* time the hard threshold is.
*/
static int get_softlockup_thresh(void)
{
return watchdog_thresh * 2;
}
/*
* Returns seconds, approximately. We don't need nanosecond
* resolution, and we don't need to waste time with a big divide when
* 2^30ns == 1.074s.
*/
static unsigned long get_timestamp(void)
{
return running_clock() >> 30LL; /* 2^30 ~= 10^9 */
}
static void set_sample_period(void)
{
/*
* convert watchdog_thresh from seconds to ns
* the divide by 5 is to give hrtimer several chances (two
* or three with the current relation between the soft
* and hard thresholds) to increment before the
* hardlockup detector generates a warning
*/
sample_period = get_softlockup_thresh() * ((u64)NSEC_PER_SEC / NUM_SAMPLE_PERIODS);
watchdog_update_hrtimer_threshold(sample_period);
}
static void update_report_ts(void)
{
__this_cpu_write(watchdog_report_ts, get_timestamp());
}
/* Commands for resetting the watchdog */
static void update_touch_ts(void)
{
__this_cpu_write(watchdog_touch_ts, get_timestamp());
update_report_ts();
}
/**
* touch_softlockup_watchdog_sched - touch watchdog on scheduler stalls
*
* Call when the scheduler may have stalled for legitimate reasons
* preventing the watchdog task from executing - e.g. the scheduler
* entering idle state. This should only be used for scheduler events.
* Use touch_softlockup_watchdog() for everything else.
*/
notrace void touch_softlockup_watchdog_sched(void)
{
/*
* Preemption can be enabled. It doesn't matter which CPU's watchdog
* report period gets restarted here, so use the raw_ operation.
*/
raw_cpu_write(watchdog_report_ts, SOFTLOCKUP_DELAY_REPORT);
}
notrace void touch_softlockup_watchdog(void)
{
touch_softlockup_watchdog_sched();
wq_watchdog_touch(raw_smp_processor_id());
}
EXPORT_SYMBOL(touch_softlockup_watchdog);
void touch_all_softlockup_watchdogs(void)
{
int cpu;
/*
* watchdog_mutex cannpt be taken here, as this might be called
* from (soft)interrupt context, so the access to
* watchdog_allowed_cpumask might race with a concurrent update.
*
* The watchdog time stamp can race against a concurrent real
* update as well, the only side effect might be a cycle delay for
* the softlockup check.
*/
for_each_cpu(cpu, &watchdog_allowed_mask) {
per_cpu(watchdog_report_ts, cpu) = SOFTLOCKUP_DELAY_REPORT;
wq_watchdog_touch(cpu);
}
}
void touch_softlockup_watchdog_sync(void)
{
__this_cpu_write(softlockup_touch_sync, true);
__this_cpu_write(watchdog_report_ts, SOFTLOCKUP_DELAY_REPORT);
}
static int is_softlockup(unsigned long touch_ts,
unsigned long period_ts,
unsigned long now)
{
if ((watchdog_enabled & WATCHDOG_SOFTOCKUP_ENABLED) && watchdog_thresh) {
/*
* If period_ts has not been updated during a sample_period, then
* in the subsequent few sample_periods, period_ts might also not
* be updated, which could indicate a potential softlockup. In
* this case, if we suspect the cause of the potential softlockup
* might be interrupt storm, then we need to count the interrupts
* to find which interrupt is storming.
*/
if (time_after_eq(now, period_ts + get_softlockup_thresh() / NUM_SAMPLE_PERIODS) &&
need_counting_irqs())
start_counting_irqs();
/* Warn about unreasonable delays. */
if (time_after(now, period_ts + get_softlockup_thresh()))
return now - touch_ts;
}
return 0;
}
/* watchdog detector functions */
static DEFINE_PER_CPU(struct completion, softlockup_completion);
static DEFINE_PER_CPU(struct cpu_stop_work, softlockup_stop_work);
/*
* The watchdog feed function - touches the timestamp.
*
* It only runs once every sample_period seconds (4 seconds by
* default) to reset the softlockup timestamp. If this gets delayed
* for more than 2*watchdog_thresh seconds then the debug-printout
* triggers in watchdog_timer_fn().
*/
static int softlockup_fn(void *data)
{
update_touch_ts();
stop_counting_irqs();
complete(this_cpu_ptr(&softlockup_completion));
return 0;
}
/* watchdog kicker functions */
static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
{
unsigned long touch_ts, period_ts, now;
struct pt_regs *regs = get_irq_regs();
int duration;
int softlockup_all_cpu_backtrace = sysctl_softlockup_all_cpu_backtrace;
unsigned long flags;
if (!watchdog_enabled)
return HRTIMER_NORESTART;
watchdog_hardlockup_kick();
/* kick the softlockup detector */
if (completion_done(this_cpu_ptr(&softlockup_completion))) {
reinit_completion(this_cpu_ptr(&softlockup_completion));
stop_one_cpu_nowait(smp_processor_id(),
softlockup_fn, NULL,
this_cpu_ptr(&softlockup_stop_work));
}
/* .. and repeat */
hrtimer_forward_now(hrtimer, ns_to_ktime(sample_period));
/*
* Read the current timestamp first. It might become invalid anytime
* when a virtual machine is stopped by the host or when the watchog
* is touched from NMI.
*/
now = get_timestamp();
/*
* If a virtual machine is stopped by the host it can look to
* the watchdog like a soft lockup. This function touches the watchdog.
*/
kvm_check_and_clear_guest_paused();
/*
* The stored timestamp is comparable with @now only when not touched.
* It might get touched anytime from NMI. Make sure that is_softlockup()
* uses the same (valid) value.
*/
period_ts = READ_ONCE(*this_cpu_ptr(&watchdog_report_ts));
update_cpustat();
/* Reset the interval when touched by known problematic code. */
if (period_ts == SOFTLOCKUP_DELAY_REPORT) {
if (unlikely(__this_cpu_read(softlockup_touch_sync))) {
/*
* If the time stamp was touched atomically
* make sure the scheduler tick is up to date.
*/
__this_cpu_write(softlockup_touch_sync, false);
sched_clock_tick();
}
update_report_ts();
return HRTIMER_RESTART;
}
/* Check for a softlockup. */
touch_ts = __this_cpu_read(watchdog_touch_ts);
duration = is_softlockup(touch_ts, period_ts, now);
if (unlikely(duration)) {
/*
* Prevent multiple soft-lockup reports if one cpu is already
* engaged in dumping all cpu back traces.
*/
if (softlockup_all_cpu_backtrace) {
if (test_and_set_bit_lock(0, &soft_lockup_nmi_warn))
return HRTIMER_RESTART;
}
/* Start period for the next softlockup warning. */
update_report_ts();
printk_cpu_sync_get_irqsave(flags);
pr_emerg("BUG: soft lockup - CPU#%d stuck for %us! [%s:%d]\n",
smp_processor_id(), duration,
current->comm, task_pid_nr(current));
report_cpu_status();
print_modules();
print_irqtrace_events(current);
if (regs)
show_regs(regs);
else
dump_stack();
printk_cpu_sync_put_irqrestore(flags);
if (softlockup_all_cpu_backtrace) {
trigger_allbutcpu_cpu_backtrace(smp_processor_id());
if (!softlockup_panic)
clear_bit_unlock(0, &soft_lockup_nmi_warn);
}
add_taint(TAINT_SOFTLOCKUP, LOCKDEP_STILL_OK);
if (softlockup_panic)
panic("softlockup: hung tasks");
}
return HRTIMER_RESTART;
}
static void watchdog_enable(unsigned int cpu)
{
struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer);
struct completion *done = this_cpu_ptr(&softlockup_completion);
WARN_ON_ONCE(cpu != smp_processor_id());
init_completion(done);
complete(done);
/*
* Start the timer first to prevent the hardlockup watchdog triggering
* before the timer has a chance to fire.
*/
hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
hrtimer->function = watchdog_timer_fn;
hrtimer_start(hrtimer, ns_to_ktime(sample_period),
HRTIMER_MODE_REL_PINNED_HARD);
/* Initialize timestamp */
update_touch_ts();
/* Enable the hardlockup detector */
if (watchdog_enabled & WATCHDOG_HARDLOCKUP_ENABLED)
watchdog_hardlockup_enable(cpu);
}
static void watchdog_disable(unsigned int cpu)
{
struct hrtimer *hrtimer = this_cpu_ptr(&watchdog_hrtimer);
WARN_ON_ONCE(cpu != smp_processor_id());
/*
* Disable the hardlockup detector first. That prevents that a large
* delay between disabling the timer and disabling the hardlockup
* detector causes a false positive.
*/
watchdog_hardlockup_disable(cpu);
hrtimer_cancel(hrtimer);
wait_for_completion(this_cpu_ptr(&softlockup_completion));
}
static int softlockup_stop_fn(void *data)
{
watchdog_disable(smp_processor_id());
return 0;
}
static void softlockup_stop_all(void)
{
int cpu;
if (!softlockup_initialized)
return;
for_each_cpu(cpu, &watchdog_allowed_mask)
smp_call_on_cpu(cpu, softlockup_stop_fn, NULL, false);
cpumask_clear(&watchdog_allowed_mask);
}
static int softlockup_start_fn(void *data)
{
watchdog_enable(smp_processor_id());
return 0;
}
static void softlockup_start_all(void)
{
int cpu;
cpumask_copy(&watchdog_allowed_mask, &watchdog_cpumask);
for_each_cpu(cpu, &watchdog_allowed_mask)
smp_call_on_cpu(cpu, softlockup_start_fn, NULL, false);
}
int lockup_detector_online_cpu(unsigned int cpu)
{
if (cpumask_test_cpu(cpu, &watchdog_allowed_mask))
watchdog_enable(cpu);
return 0;
}
int lockup_detector_offline_cpu(unsigned int cpu)
{
if (cpumask_test_cpu(cpu, &watchdog_allowed_mask))
watchdog_disable(cpu);
return 0;
}
static void __lockup_detector_reconfigure(void)
{
cpus_read_lock();
watchdog_hardlockup_stop();
softlockup_stop_all();
set_sample_period();
lockup_detector_update_enable();
if (watchdog_enabled && watchdog_thresh)
softlockup_start_all();
watchdog_hardlockup_start();
cpus_read_unlock();
/*
* Must be called outside the cpus locked section to prevent
* recursive locking in the perf code.
*/
__lockup_detector_cleanup();
}
void lockup_detector_reconfigure(void)
{
mutex_lock(&watchdog_mutex);
__lockup_detector_reconfigure();
mutex_unlock(&watchdog_mutex);
}
/*
* Create the watchdog infrastructure and configure the detector(s).
*/
static __init void lockup_detector_setup(void)
{
/*
* If sysctl is off and watchdog got disabled on the command line,
* nothing to do here.
*/
lockup_detector_update_enable();
if (!IS_ENABLED(CONFIG_SYSCTL) &&
!(watchdog_enabled && watchdog_thresh))
return;
mutex_lock(&watchdog_mutex);
__lockup_detector_reconfigure();
softlockup_initialized = true;
mutex_unlock(&watchdog_mutex);
}
#else /* CONFIG_SOFTLOCKUP_DETECTOR */
static void __lockup_detector_reconfigure(void)
{
cpus_read_lock();
watchdog_hardlockup_stop();
lockup_detector_update_enable();
watchdog_hardlockup_start();
cpus_read_unlock();
}
void lockup_detector_reconfigure(void)
{
__lockup_detector_reconfigure();
}
static inline void lockup_detector_setup(void)
{
__lockup_detector_reconfigure();
}
#endif /* !CONFIG_SOFTLOCKUP_DETECTOR */
static void __lockup_detector_cleanup(void)
{
lockdep_assert_held(&watchdog_mutex);
hardlockup_detector_perf_cleanup();
}
/**
* lockup_detector_cleanup - Cleanup after cpu hotplug or sysctl changes
*
* Caller must not hold the cpu hotplug rwsem.
*/
void lockup_detector_cleanup(void)
{
mutex_lock(&watchdog_mutex);
__lockup_detector_cleanup();
mutex_unlock(&watchdog_mutex);
}
/**
* lockup_detector_soft_poweroff - Interface to stop lockup detector(s)
*
* Special interface for parisc. It prevents lockup detector warnings from
* the default pm_poweroff() function which busy loops forever.
*/
void lockup_detector_soft_poweroff(void)
{
watchdog_enabled = 0;
}
#ifdef CONFIG_SYSCTL
/* Propagate any changes to the watchdog infrastructure */
static void proc_watchdog_update(void)
{
/* Remove impossible cpus to keep sysctl output clean. */
cpumask_and(&watchdog_cpumask, &watchdog_cpumask, cpu_possible_mask);
__lockup_detector_reconfigure();
}
/*
* common function for watchdog, nmi_watchdog and soft_watchdog parameter
*
* caller | table->data points to | 'which'
* -------------------|----------------------------------|-------------------------------
* proc_watchdog | watchdog_user_enabled | WATCHDOG_HARDLOCKUP_ENABLED |
* | | WATCHDOG_SOFTOCKUP_ENABLED
* -------------------|----------------------------------|-------------------------------
* proc_nmi_watchdog | watchdog_hardlockup_user_enabled | WATCHDOG_HARDLOCKUP_ENABLED
* -------------------|----------------------------------|-------------------------------
* proc_soft_watchdog | watchdog_softlockup_user_enabled | WATCHDOG_SOFTOCKUP_ENABLED
*/
static int proc_watchdog_common(int which, struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int err, old, *param = table->data;
mutex_lock(&watchdog_mutex);
if (!write) {
/*
* On read synchronize the userspace interface. This is a
* racy snapshot.
*/
*param = (watchdog_enabled & which) != 0;
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
} else {
old = READ_ONCE(*param);
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!err && old != READ_ONCE(*param))
proc_watchdog_update();
}
mutex_unlock(&watchdog_mutex);
return err;
}
/*
* /proc/sys/kernel/watchdog
*/
static int proc_watchdog(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
return proc_watchdog_common(WATCHDOG_HARDLOCKUP_ENABLED |
WATCHDOG_SOFTOCKUP_ENABLED,
table, write, buffer, lenp, ppos);
}
/*
* /proc/sys/kernel/nmi_watchdog
*/
static int proc_nmi_watchdog(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
if (!watchdog_hardlockup_available && write)
return -ENOTSUPP;
return proc_watchdog_common(WATCHDOG_HARDLOCKUP_ENABLED,
table, write, buffer, lenp, ppos);
}
#ifdef CONFIG_SOFTLOCKUP_DETECTOR
/*
* /proc/sys/kernel/soft_watchdog
*/
static int proc_soft_watchdog(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
return proc_watchdog_common(WATCHDOG_SOFTOCKUP_ENABLED,
table, write, buffer, lenp, ppos);
}
#endif
/*
* /proc/sys/kernel/watchdog_thresh
*/
static int proc_watchdog_thresh(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int err, old;
mutex_lock(&watchdog_mutex);
old = READ_ONCE(watchdog_thresh);
err = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
if (!err && write && old != READ_ONCE(watchdog_thresh))
proc_watchdog_update();
mutex_unlock(&watchdog_mutex);
return err;
}
/*
* The cpumask is the mask of possible cpus that the watchdog can run
* on, not the mask of cpus it is actually running on. This allows the
* user to specify a mask that will include cpus that have not yet
* been brought online, if desired.
*/
static int proc_watchdog_cpumask(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
int err;
mutex_lock(&watchdog_mutex);
err = proc_do_large_bitmap(table, write, buffer, lenp, ppos);
if (!err && write)
proc_watchdog_update();
mutex_unlock(&watchdog_mutex);
return err;
}
static const int sixty = 60;
static struct ctl_table watchdog_sysctls[] = {
{
.procname = "watchdog",
.data = &watchdog_user_enabled,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_watchdog,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{
.procname = "watchdog_thresh",
.data = &watchdog_thresh,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_watchdog_thresh,
.extra1 = SYSCTL_ZERO,
.extra2 = (void *)&sixty,
},
{
.procname = "watchdog_cpumask",
.data = &watchdog_cpumask_bits,
.maxlen = NR_CPUS,
.mode = 0644,
.proc_handler = proc_watchdog_cpumask,
},
#ifdef CONFIG_SOFTLOCKUP_DETECTOR
{
.procname = "soft_watchdog",
.data = &watchdog_softlockup_user_enabled,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_soft_watchdog,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{
.procname = "softlockup_panic",
.data = &softlockup_panic,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
#ifdef CONFIG_SMP
{
.procname = "softlockup_all_cpu_backtrace",
.data = &sysctl_softlockup_all_cpu_backtrace,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
#endif /* CONFIG_SMP */
#endif
#ifdef CONFIG_HARDLOCKUP_DETECTOR
{
.procname = "hardlockup_panic",
.data = &hardlockup_panic,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
#ifdef CONFIG_SMP
{
.procname = "hardlockup_all_cpu_backtrace",
.data = &sysctl_hardlockup_all_cpu_backtrace,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
#endif /* CONFIG_SMP */
#endif
};
static struct ctl_table watchdog_hardlockup_sysctl[] = {
{
.procname = "nmi_watchdog",
.data = &watchdog_hardlockup_user_enabled,
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_nmi_watchdog,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
};
static void __init watchdog_sysctl_init(void)
{
register_sysctl_init("kernel", watchdog_sysctls);
if (watchdog_hardlockup_available)
watchdog_hardlockup_sysctl[0].mode = 0644;
register_sysctl_init("kernel", watchdog_hardlockup_sysctl);
}
#else
#define watchdog_sysctl_init() do { } while (0)
#endif /* CONFIG_SYSCTL */
static void __init lockup_detector_delay_init(struct work_struct *work);
static bool allow_lockup_detector_init_retry __initdata;
static struct work_struct detector_work __initdata =
__WORK_INITIALIZER(detector_work, lockup_detector_delay_init);
static void __init lockup_detector_delay_init(struct work_struct *work)
{
int ret;
ret = watchdog_hardlockup_probe();
if (ret) {
pr_info("Delayed init of the lockup detector failed: %d\n", ret);
pr_info("Hard watchdog permanently disabled\n");
return;
}
allow_lockup_detector_init_retry = false;
watchdog_hardlockup_available = true;
lockup_detector_setup();
}
/*
* lockup_detector_retry_init - retry init lockup detector if possible.
*
* Retry hardlockup detector init. It is useful when it requires some
* functionality that has to be initialized later on a particular
* platform.
*/
void __init lockup_detector_retry_init(void)
{
/* Must be called before late init calls */
if (!allow_lockup_detector_init_retry)
return;
schedule_work(&detector_work);
}
/*
* Ensure that optional delayed hardlockup init is proceed before
* the init code and memory is freed.
*/
static int __init lockup_detector_check(void)
{
/* Prevent any later retry. */
allow_lockup_detector_init_retry = false;
/* Make sure no work is pending. */
flush_work(&detector_work);
watchdog_sysctl_init();
return 0;
}
late_initcall_sync(lockup_detector_check);
void __init lockup_detector_init(void)
{
if (tick_nohz_full_enabled())
pr_info("Disabling watchdog on nohz_full cores by default\n");
cpumask_copy(&watchdog_cpumask,
housekeeping_cpumask(HK_TYPE_TIMER));
if (!watchdog_hardlockup_probe())
watchdog_hardlockup_available = true;
else
allow_lockup_detector_init_retry = true;
lockup_detector_setup();
}