linux-next/kernel/seccomp.c
Kees Cook 485a252a55 seccomp: Fix tracer exit notifications during fatal signals
This fixes a ptrace vs fatal pending signals bug as manifested in
seccomp now that seccomp was reordered to happen after ptrace. The
short version is that seccomp should not attempt to call do_exit()
while fatal signals are pending under a tracer. The existing code was
trying to be as defensively paranoid as possible, but it now ends up
confusing ptrace. Instead, the syscall can just be skipped (which solves
the original concern that the do_exit() was addressing) and normal signal
handling, tracer notification, and process death can happen.

Paraphrasing from the original bug report:

If a tracee task is in a PTRACE_EVENT_SECCOMP trap, or has been resumed
after such a trap but not yet been scheduled, and another task in the
thread-group calls exit_group(), then the tracee task exits without the
ptracer receiving a PTRACE_EVENT_EXIT notification. Test case here:
https://gist.github.com/khuey/3c43ac247c72cef8c956ca73281c9be7

The bug happens because when __seccomp_filter() detects
fatal_signal_pending(), it calls do_exit() without dequeuing the fatal
signal. When do_exit() sends the PTRACE_EVENT_EXIT notification and
that task is descheduled, __schedule() notices that there is a fatal
signal pending and changes its state from TASK_TRACED to TASK_RUNNING.
That prevents the ptracer's waitpid() from returning the ptrace event.
A more detailed analysis is here:
https://github.com/mozilla/rr/issues/1762#issuecomment-237396255.

Reported-by: Robert O'Callahan <robert@ocallahan.org>
Reported-by: Kyle Huey <khuey@kylehuey.com>
Tested-by: Kyle Huey <khuey@kylehuey.com>
Fixes: 93e35efb8d ("x86/ptrace: run seccomp after ptrace")
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: James Morris <james.l.morris@oracle.com>
2016-08-30 16:12:46 -07:00

909 lines
24 KiB
C

/*
* linux/kernel/seccomp.c
*
* Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com>
*
* Copyright (C) 2012 Google, Inc.
* Will Drewry <wad@chromium.org>
*
* This defines a simple but solid secure-computing facility.
*
* Mode 1 uses a fixed list of allowed system calls.
* Mode 2 allows user-defined system call filters in the form
* of Berkeley Packet Filters/Linux Socket Filters.
*/
#include <linux/atomic.h>
#include <linux/audit.h>
#include <linux/compat.h>
#include <linux/sched.h>
#include <linux/seccomp.h>
#include <linux/slab.h>
#include <linux/syscalls.h>
#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
#include <asm/syscall.h>
#endif
#ifdef CONFIG_SECCOMP_FILTER
#include <linux/filter.h>
#include <linux/pid.h>
#include <linux/ptrace.h>
#include <linux/security.h>
#include <linux/tracehook.h>
#include <linux/uaccess.h>
/**
* struct seccomp_filter - container for seccomp BPF programs
*
* @usage: reference count to manage the object lifetime.
* get/put helpers should be used when accessing an instance
* outside of a lifetime-guarded section. In general, this
* is only needed for handling filters shared across tasks.
* @prev: points to a previously installed, or inherited, filter
* @len: the number of instructions in the program
* @insnsi: the BPF program instructions to evaluate
*
* seccomp_filter objects are organized in a tree linked via the @prev
* pointer. For any task, it appears to be a singly-linked list starting
* with current->seccomp.filter, the most recently attached or inherited filter.
* However, multiple filters may share a @prev node, by way of fork(), which
* results in a unidirectional tree existing in memory. This is similar to
* how namespaces work.
*
* seccomp_filter objects should never be modified after being attached
* to a task_struct (other than @usage).
*/
struct seccomp_filter {
atomic_t usage;
struct seccomp_filter *prev;
struct bpf_prog *prog;
};
/* Limit any path through the tree to 256KB worth of instructions. */
#define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
/*
* Endianness is explicitly ignored and left for BPF program authors to manage
* as per the specific architecture.
*/
static void populate_seccomp_data(struct seccomp_data *sd)
{
struct task_struct *task = current;
struct pt_regs *regs = task_pt_regs(task);
unsigned long args[6];
sd->nr = syscall_get_nr(task, regs);
sd->arch = syscall_get_arch();
syscall_get_arguments(task, regs, 0, 6, args);
sd->args[0] = args[0];
sd->args[1] = args[1];
sd->args[2] = args[2];
sd->args[3] = args[3];
sd->args[4] = args[4];
sd->args[5] = args[5];
sd->instruction_pointer = KSTK_EIP(task);
}
/**
* seccomp_check_filter - verify seccomp filter code
* @filter: filter to verify
* @flen: length of filter
*
* Takes a previously checked filter (by bpf_check_classic) and
* redirects all filter code that loads struct sk_buff data
* and related data through seccomp_bpf_load. It also
* enforces length and alignment checking of those loads.
*
* Returns 0 if the rule set is legal or -EINVAL if not.
*/
static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
{
int pc;
for (pc = 0; pc < flen; pc++) {
struct sock_filter *ftest = &filter[pc];
u16 code = ftest->code;
u32 k = ftest->k;
switch (code) {
case BPF_LD | BPF_W | BPF_ABS:
ftest->code = BPF_LDX | BPF_W | BPF_ABS;
/* 32-bit aligned and not out of bounds. */
if (k >= sizeof(struct seccomp_data) || k & 3)
return -EINVAL;
continue;
case BPF_LD | BPF_W | BPF_LEN:
ftest->code = BPF_LD | BPF_IMM;
ftest->k = sizeof(struct seccomp_data);
continue;
case BPF_LDX | BPF_W | BPF_LEN:
ftest->code = BPF_LDX | BPF_IMM;
ftest->k = sizeof(struct seccomp_data);
continue;
/* Explicitly include allowed calls. */
case BPF_RET | BPF_K:
case BPF_RET | BPF_A:
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU | BPF_MUL | BPF_X:
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU | BPF_LSH | BPF_K:
case BPF_ALU | BPF_LSH | BPF_X:
case BPF_ALU | BPF_RSH | BPF_K:
case BPF_ALU | BPF_RSH | BPF_X:
case BPF_ALU | BPF_NEG:
case BPF_LD | BPF_IMM:
case BPF_LDX | BPF_IMM:
case BPF_MISC | BPF_TAX:
case BPF_MISC | BPF_TXA:
case BPF_LD | BPF_MEM:
case BPF_LDX | BPF_MEM:
case BPF_ST:
case BPF_STX:
case BPF_JMP | BPF_JA:
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP | BPF_JSET | BPF_X:
continue;
default:
return -EINVAL;
}
}
return 0;
}
/**
* seccomp_run_filters - evaluates all seccomp filters against @syscall
* @syscall: number of the current system call
*
* Returns valid seccomp BPF response codes.
*/
static u32 seccomp_run_filters(const struct seccomp_data *sd)
{
struct seccomp_data sd_local;
u32 ret = SECCOMP_RET_ALLOW;
/* Make sure cross-thread synced filter points somewhere sane. */
struct seccomp_filter *f =
lockless_dereference(current->seccomp.filter);
/* Ensure unexpected behavior doesn't result in failing open. */
if (unlikely(WARN_ON(f == NULL)))
return SECCOMP_RET_KILL;
if (!sd) {
populate_seccomp_data(&sd_local);
sd = &sd_local;
}
/*
* All filters in the list are evaluated and the lowest BPF return
* value always takes priority (ignoring the DATA).
*/
for (; f; f = f->prev) {
u32 cur_ret = BPF_PROG_RUN(f->prog, (void *)sd);
if ((cur_ret & SECCOMP_RET_ACTION) < (ret & SECCOMP_RET_ACTION))
ret = cur_ret;
}
return ret;
}
#endif /* CONFIG_SECCOMP_FILTER */
static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
{
assert_spin_locked(&current->sighand->siglock);
if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
return false;
return true;
}
static inline void seccomp_assign_mode(struct task_struct *task,
unsigned long seccomp_mode)
{
assert_spin_locked(&task->sighand->siglock);
task->seccomp.mode = seccomp_mode;
/*
* Make sure TIF_SECCOMP cannot be set before the mode (and
* filter) is set.
*/
smp_mb__before_atomic();
set_tsk_thread_flag(task, TIF_SECCOMP);
}
#ifdef CONFIG_SECCOMP_FILTER
/* Returns 1 if the parent is an ancestor of the child. */
static int is_ancestor(struct seccomp_filter *parent,
struct seccomp_filter *child)
{
/* NULL is the root ancestor. */
if (parent == NULL)
return 1;
for (; child; child = child->prev)
if (child == parent)
return 1;
return 0;
}
/**
* seccomp_can_sync_threads: checks if all threads can be synchronized
*
* Expects sighand and cred_guard_mutex locks to be held.
*
* Returns 0 on success, -ve on error, or the pid of a thread which was
* either not in the correct seccomp mode or it did not have an ancestral
* seccomp filter.
*/
static inline pid_t seccomp_can_sync_threads(void)
{
struct task_struct *thread, *caller;
BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
assert_spin_locked(&current->sighand->siglock);
/* Validate all threads being eligible for synchronization. */
caller = current;
for_each_thread(caller, thread) {
pid_t failed;
/* Skip current, since it is initiating the sync. */
if (thread == caller)
continue;
if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
(thread->seccomp.mode == SECCOMP_MODE_FILTER &&
is_ancestor(thread->seccomp.filter,
caller->seccomp.filter)))
continue;
/* Return the first thread that cannot be synchronized. */
failed = task_pid_vnr(thread);
/* If the pid cannot be resolved, then return -ESRCH */
if (unlikely(WARN_ON(failed == 0)))
failed = -ESRCH;
return failed;
}
return 0;
}
/**
* seccomp_sync_threads: sets all threads to use current's filter
*
* Expects sighand and cred_guard_mutex locks to be held, and for
* seccomp_can_sync_threads() to have returned success already
* without dropping the locks.
*
*/
static inline void seccomp_sync_threads(void)
{
struct task_struct *thread, *caller;
BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
assert_spin_locked(&current->sighand->siglock);
/* Synchronize all threads. */
caller = current;
for_each_thread(caller, thread) {
/* Skip current, since it needs no changes. */
if (thread == caller)
continue;
/* Get a task reference for the new leaf node. */
get_seccomp_filter(caller);
/*
* Drop the task reference to the shared ancestor since
* current's path will hold a reference. (This also
* allows a put before the assignment.)
*/
put_seccomp_filter(thread);
smp_store_release(&thread->seccomp.filter,
caller->seccomp.filter);
/*
* Don't let an unprivileged task work around
* the no_new_privs restriction by creating
* a thread that sets it up, enters seccomp,
* then dies.
*/
if (task_no_new_privs(caller))
task_set_no_new_privs(thread);
/*
* Opt the other thread into seccomp if needed.
* As threads are considered to be trust-realm
* equivalent (see ptrace_may_access), it is safe to
* allow one thread to transition the other.
*/
if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
seccomp_assign_mode(thread, SECCOMP_MODE_FILTER);
}
}
/**
* seccomp_prepare_filter: Prepares a seccomp filter for use.
* @fprog: BPF program to install
*
* Returns filter on success or an ERR_PTR on failure.
*/
static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
{
struct seccomp_filter *sfilter;
int ret;
const bool save_orig = IS_ENABLED(CONFIG_CHECKPOINT_RESTORE);
if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
return ERR_PTR(-EINVAL);
BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
/*
* Installing a seccomp filter requires that the task has
* CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
* This avoids scenarios where unprivileged tasks can affect the
* behavior of privileged children.
*/
if (!task_no_new_privs(current) &&
security_capable_noaudit(current_cred(), current_user_ns(),
CAP_SYS_ADMIN) != 0)
return ERR_PTR(-EACCES);
/* Allocate a new seccomp_filter */
sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
if (!sfilter)
return ERR_PTR(-ENOMEM);
ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
seccomp_check_filter, save_orig);
if (ret < 0) {
kfree(sfilter);
return ERR_PTR(ret);
}
atomic_set(&sfilter->usage, 1);
return sfilter;
}
/**
* seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
* @user_filter: pointer to the user data containing a sock_fprog.
*
* Returns 0 on success and non-zero otherwise.
*/
static struct seccomp_filter *
seccomp_prepare_user_filter(const char __user *user_filter)
{
struct sock_fprog fprog;
struct seccomp_filter *filter = ERR_PTR(-EFAULT);
#ifdef CONFIG_COMPAT
if (in_compat_syscall()) {
struct compat_sock_fprog fprog32;
if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
goto out;
fprog.len = fprog32.len;
fprog.filter = compat_ptr(fprog32.filter);
} else /* falls through to the if below. */
#endif
if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
goto out;
filter = seccomp_prepare_filter(&fprog);
out:
return filter;
}
/**
* seccomp_attach_filter: validate and attach filter
* @flags: flags to change filter behavior
* @filter: seccomp filter to add to the current process
*
* Caller must be holding current->sighand->siglock lock.
*
* Returns 0 on success, -ve on error.
*/
static long seccomp_attach_filter(unsigned int flags,
struct seccomp_filter *filter)
{
unsigned long total_insns;
struct seccomp_filter *walker;
assert_spin_locked(&current->sighand->siglock);
/* Validate resulting filter length. */
total_insns = filter->prog->len;
for (walker = current->seccomp.filter; walker; walker = walker->prev)
total_insns += walker->prog->len + 4; /* 4 instr penalty */
if (total_insns > MAX_INSNS_PER_PATH)
return -ENOMEM;
/* If thread sync has been requested, check that it is possible. */
if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
int ret;
ret = seccomp_can_sync_threads();
if (ret)
return ret;
}
/*
* If there is an existing filter, make it the prev and don't drop its
* task reference.
*/
filter->prev = current->seccomp.filter;
current->seccomp.filter = filter;
/* Now that the new filter is in place, synchronize to all threads. */
if (flags & SECCOMP_FILTER_FLAG_TSYNC)
seccomp_sync_threads();
return 0;
}
/* get_seccomp_filter - increments the reference count of the filter on @tsk */
void get_seccomp_filter(struct task_struct *tsk)
{
struct seccomp_filter *orig = tsk->seccomp.filter;
if (!orig)
return;
/* Reference count is bounded by the number of total processes. */
atomic_inc(&orig->usage);
}
static inline void seccomp_filter_free(struct seccomp_filter *filter)
{
if (filter) {
bpf_prog_destroy(filter->prog);
kfree(filter);
}
}
/* put_seccomp_filter - decrements the ref count of tsk->seccomp.filter */
void put_seccomp_filter(struct task_struct *tsk)
{
struct seccomp_filter *orig = tsk->seccomp.filter;
/* Clean up single-reference branches iteratively. */
while (orig && atomic_dec_and_test(&orig->usage)) {
struct seccomp_filter *freeme = orig;
orig = orig->prev;
seccomp_filter_free(freeme);
}
}
/**
* seccomp_send_sigsys - signals the task to allow in-process syscall emulation
* @syscall: syscall number to send to userland
* @reason: filter-supplied reason code to send to userland (via si_errno)
*
* Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
*/
static void seccomp_send_sigsys(int syscall, int reason)
{
struct siginfo info;
memset(&info, 0, sizeof(info));
info.si_signo = SIGSYS;
info.si_code = SYS_SECCOMP;
info.si_call_addr = (void __user *)KSTK_EIP(current);
info.si_errno = reason;
info.si_arch = syscall_get_arch();
info.si_syscall = syscall;
force_sig_info(SIGSYS, &info, current);
}
#endif /* CONFIG_SECCOMP_FILTER */
/*
* Secure computing mode 1 allows only read/write/exit/sigreturn.
* To be fully secure this must be combined with rlimit
* to limit the stack allocations too.
*/
static const int mode1_syscalls[] = {
__NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
0, /* null terminated */
};
static void __secure_computing_strict(int this_syscall)
{
const int *syscall_whitelist = mode1_syscalls;
#ifdef CONFIG_COMPAT
if (in_compat_syscall())
syscall_whitelist = get_compat_mode1_syscalls();
#endif
do {
if (*syscall_whitelist == this_syscall)
return;
} while (*++syscall_whitelist);
#ifdef SECCOMP_DEBUG
dump_stack();
#endif
audit_seccomp(this_syscall, SIGKILL, SECCOMP_RET_KILL);
do_exit(SIGKILL);
}
#ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
void secure_computing_strict(int this_syscall)
{
int mode = current->seccomp.mode;
if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
return;
if (mode == SECCOMP_MODE_DISABLED)
return;
else if (mode == SECCOMP_MODE_STRICT)
__secure_computing_strict(this_syscall);
else
BUG();
}
#else
#ifdef CONFIG_SECCOMP_FILTER
static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
const bool recheck_after_trace)
{
u32 filter_ret, action;
int data;
/*
* Make sure that any changes to mode from another thread have
* been seen after TIF_SECCOMP was seen.
*/
rmb();
filter_ret = seccomp_run_filters(sd);
data = filter_ret & SECCOMP_RET_DATA;
action = filter_ret & SECCOMP_RET_ACTION;
switch (action) {
case SECCOMP_RET_ERRNO:
/* Set low-order bits as an errno, capped at MAX_ERRNO. */
if (data > MAX_ERRNO)
data = MAX_ERRNO;
syscall_set_return_value(current, task_pt_regs(current),
-data, 0);
goto skip;
case SECCOMP_RET_TRAP:
/* Show the handler the original registers. */
syscall_rollback(current, task_pt_regs(current));
/* Let the filter pass back 16 bits of data. */
seccomp_send_sigsys(this_syscall, data);
goto skip;
case SECCOMP_RET_TRACE:
/* We've been put in this state by the ptracer already. */
if (recheck_after_trace)
return 0;
/* ENOSYS these calls if there is no tracer attached. */
if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
syscall_set_return_value(current,
task_pt_regs(current),
-ENOSYS, 0);
goto skip;
}
/* Allow the BPF to provide the event message */
ptrace_event(PTRACE_EVENT_SECCOMP, data);
/*
* The delivery of a fatal signal during event
* notification may silently skip tracer notification,
* which could leave us with a potentially unmodified
* syscall that the tracer would have liked to have
* changed. Since the process is about to die, we just
* force the syscall to be skipped and let the signal
* kill the process and correctly handle any tracer exit
* notifications.
*/
if (fatal_signal_pending(current))
goto skip;
/* Check if the tracer forced the syscall to be skipped. */
this_syscall = syscall_get_nr(current, task_pt_regs(current));
if (this_syscall < 0)
goto skip;
/*
* Recheck the syscall, since it may have changed. This
* intentionally uses a NULL struct seccomp_data to force
* a reload of all registers. This does not goto skip since
* a skip would have already been reported.
*/
if (__seccomp_filter(this_syscall, NULL, true))
return -1;
return 0;
case SECCOMP_RET_ALLOW:
return 0;
case SECCOMP_RET_KILL:
default:
audit_seccomp(this_syscall, SIGSYS, action);
do_exit(SIGSYS);
}
unreachable();
skip:
audit_seccomp(this_syscall, 0, action);
return -1;
}
#else
static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
const bool recheck_after_trace)
{
BUG();
}
#endif
int __secure_computing(const struct seccomp_data *sd)
{
int mode = current->seccomp.mode;
int this_syscall;
if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
return 0;
this_syscall = sd ? sd->nr :
syscall_get_nr(current, task_pt_regs(current));
switch (mode) {
case SECCOMP_MODE_STRICT:
__secure_computing_strict(this_syscall); /* may call do_exit */
return 0;
case SECCOMP_MODE_FILTER:
return __seccomp_filter(this_syscall, sd, false);
default:
BUG();
}
}
#endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
long prctl_get_seccomp(void)
{
return current->seccomp.mode;
}
/**
* seccomp_set_mode_strict: internal function for setting strict seccomp
*
* Once current->seccomp.mode is non-zero, it may not be changed.
*
* Returns 0 on success or -EINVAL on failure.
*/
static long seccomp_set_mode_strict(void)
{
const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
long ret = -EINVAL;
spin_lock_irq(&current->sighand->siglock);
if (!seccomp_may_assign_mode(seccomp_mode))
goto out;
#ifdef TIF_NOTSC
disable_TSC();
#endif
seccomp_assign_mode(current, seccomp_mode);
ret = 0;
out:
spin_unlock_irq(&current->sighand->siglock);
return ret;
}
#ifdef CONFIG_SECCOMP_FILTER
/**
* seccomp_set_mode_filter: internal function for setting seccomp filter
* @flags: flags to change filter behavior
* @filter: struct sock_fprog containing filter
*
* This function may be called repeatedly to install additional filters.
* Every filter successfully installed will be evaluated (in reverse order)
* for each system call the task makes.
*
* Once current->seccomp.mode is non-zero, it may not be changed.
*
* Returns 0 on success or -EINVAL on failure.
*/
static long seccomp_set_mode_filter(unsigned int flags,
const char __user *filter)
{
const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
struct seccomp_filter *prepared = NULL;
long ret = -EINVAL;
/* Validate flags. */
if (flags & ~SECCOMP_FILTER_FLAG_MASK)
return -EINVAL;
/* Prepare the new filter before holding any locks. */
prepared = seccomp_prepare_user_filter(filter);
if (IS_ERR(prepared))
return PTR_ERR(prepared);
/*
* Make sure we cannot change seccomp or nnp state via TSYNC
* while another thread is in the middle of calling exec.
*/
if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
mutex_lock_killable(&current->signal->cred_guard_mutex))
goto out_free;
spin_lock_irq(&current->sighand->siglock);
if (!seccomp_may_assign_mode(seccomp_mode))
goto out;
ret = seccomp_attach_filter(flags, prepared);
if (ret)
goto out;
/* Do not free the successfully attached filter. */
prepared = NULL;
seccomp_assign_mode(current, seccomp_mode);
out:
spin_unlock_irq(&current->sighand->siglock);
if (flags & SECCOMP_FILTER_FLAG_TSYNC)
mutex_unlock(&current->signal->cred_guard_mutex);
out_free:
seccomp_filter_free(prepared);
return ret;
}
#else
static inline long seccomp_set_mode_filter(unsigned int flags,
const char __user *filter)
{
return -EINVAL;
}
#endif
/* Common entry point for both prctl and syscall. */
static long do_seccomp(unsigned int op, unsigned int flags,
const char __user *uargs)
{
switch (op) {
case SECCOMP_SET_MODE_STRICT:
if (flags != 0 || uargs != NULL)
return -EINVAL;
return seccomp_set_mode_strict();
case SECCOMP_SET_MODE_FILTER:
return seccomp_set_mode_filter(flags, uargs);
default:
return -EINVAL;
}
}
SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
const char __user *, uargs)
{
return do_seccomp(op, flags, uargs);
}
/**
* prctl_set_seccomp: configures current->seccomp.mode
* @seccomp_mode: requested mode to use
* @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
*
* Returns 0 on success or -EINVAL on failure.
*/
long prctl_set_seccomp(unsigned long seccomp_mode, char __user *filter)
{
unsigned int op;
char __user *uargs;
switch (seccomp_mode) {
case SECCOMP_MODE_STRICT:
op = SECCOMP_SET_MODE_STRICT;
/*
* Setting strict mode through prctl always ignored filter,
* so make sure it is always NULL here to pass the internal
* check in do_seccomp().
*/
uargs = NULL;
break;
case SECCOMP_MODE_FILTER:
op = SECCOMP_SET_MODE_FILTER;
uargs = filter;
break;
default:
return -EINVAL;
}
/* prctl interface doesn't have flags, so they are always zero. */
return do_seccomp(op, 0, uargs);
}
#if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
void __user *data)
{
struct seccomp_filter *filter;
struct sock_fprog_kern *fprog;
long ret;
unsigned long count = 0;
if (!capable(CAP_SYS_ADMIN) ||
current->seccomp.mode != SECCOMP_MODE_DISABLED) {
return -EACCES;
}
spin_lock_irq(&task->sighand->siglock);
if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
ret = -EINVAL;
goto out;
}
filter = task->seccomp.filter;
while (filter) {
filter = filter->prev;
count++;
}
if (filter_off >= count) {
ret = -ENOENT;
goto out;
}
count -= filter_off;
filter = task->seccomp.filter;
while (filter && count > 1) {
filter = filter->prev;
count--;
}
if (WARN_ON(count != 1 || !filter)) {
/* The filter tree shouldn't shrink while we're using it. */
ret = -ENOENT;
goto out;
}
fprog = filter->prog->orig_prog;
if (!fprog) {
/* This must be a new non-cBPF filter, since we save
* every cBPF filter's orig_prog above when
* CONFIG_CHECKPOINT_RESTORE is enabled.
*/
ret = -EMEDIUMTYPE;
goto out;
}
ret = fprog->len;
if (!data)
goto out;
get_seccomp_filter(task);
spin_unlock_irq(&task->sighand->siglock);
if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
ret = -EFAULT;
put_seccomp_filter(task);
return ret;
out:
spin_unlock_irq(&task->sighand->siglock);
return ret;
}
#endif