mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-09 23:39:18 +00:00
4bc05954d0
DAMON is designed to be used by kernel space code such as the memory management subsystems, and therefore it provides only kernel space API. That said, letting the user space control DAMON could provide some benefits to them. For example, it will allow user space to analyze their specific workloads and make their own special optimizations. For such cases, this commit implements a simple DAMON application kernel module, namely 'damon-dbgfs', which merely wraps the DAMON api and exports those to the user space via the debugfs. 'damon-dbgfs' exports three files, ``attrs``, ``target_ids``, and ``monitor_on`` under its debugfs directory, ``<debugfs>/damon/``. Attributes ---------- Users can read and write the ``sampling interval``, ``aggregation interval``, ``regions update interval``, and min/max number of monitoring target regions by reading from and writing to the ``attrs`` file. For example, below commands set those values to 5 ms, 100 ms, 1,000 ms, 10, 1000 and check it again:: # cd <debugfs>/damon # echo 5000 100000 1000000 10 1000 > attrs # cat attrs 5000 100000 1000000 10 1000 Target IDs ---------- Some types of address spaces supports multiple monitoring target. For example, the virtual memory address spaces monitoring can have multiple processes as the monitoring targets. Users can set the targets by writing relevant id values of the targets to, and get the ids of the current targets by reading from the ``target_ids`` file. In case of the virtual address spaces monitoring, the values should be pids of the monitoring target processes. For example, below commands set processes having pids 42 and 4242 as the monitoring targets and check it again:: # cd <debugfs>/damon # echo 42 4242 > target_ids # cat target_ids 42 4242 Note that setting the target ids doesn't start the monitoring. Turning On/Off -------------- Setting the files as described above doesn't incur effect unless you explicitly start the monitoring. You can start, stop, and check the current status of the monitoring by writing to and reading from the ``monitor_on`` file. Writing ``on`` to the file starts the monitoring of the targets with the attributes. Writing ``off`` to the file stops those. DAMON also stops if every targets are invalidated (in case of the virtual memory monitoring, target processes are invalidated when terminated). Below example commands turn on, off, and check the status of DAMON:: # cd <debugfs>/damon # echo on > monitor_on # echo off > monitor_on # cat monitor_on off Please note that you cannot write to the above-mentioned debugfs files while the monitoring is turned on. If you write to the files while DAMON is running, an error code such as ``-EBUSY`` will be returned. [akpm@linux-foundation.org: remove unneeded "alloc failed" printks] [akpm@linux-foundation.org: replace macro with static inline] Link: https://lkml.kernel.org/r/20210716081449.22187-8-sj38.park@gmail.com Signed-off-by: SeongJae Park <sjpark@amazon.de> Reviewed-by: Leonard Foerster <foersleo@amazon.de> Reviewed-by: Fernand Sieber <sieberf@amazon.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Amit Shah <amit@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: David Woodhouse <dwmw@amazon.com> Cc: Fan Du <fan.du@intel.com> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Marco Elver <elver@google.com> Cc: Markus Boehme <markubo@amazon.de> Cc: Maximilian Heyne <mheyne@amazon.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
269 lines
10 KiB
C
269 lines
10 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* DAMON api
|
|
*
|
|
* Author: SeongJae Park <sjpark@amazon.de>
|
|
*/
|
|
|
|
#ifndef _DAMON_H_
|
|
#define _DAMON_H_
|
|
|
|
#include <linux/mutex.h>
|
|
#include <linux/time64.h>
|
|
#include <linux/types.h>
|
|
|
|
/* Minimal region size. Every damon_region is aligned by this. */
|
|
#define DAMON_MIN_REGION PAGE_SIZE
|
|
|
|
/**
|
|
* struct damon_addr_range - Represents an address region of [@start, @end).
|
|
* @start: Start address of the region (inclusive).
|
|
* @end: End address of the region (exclusive).
|
|
*/
|
|
struct damon_addr_range {
|
|
unsigned long start;
|
|
unsigned long end;
|
|
};
|
|
|
|
/**
|
|
* struct damon_region - Represents a monitoring target region.
|
|
* @ar: The address range of the region.
|
|
* @sampling_addr: Address of the sample for the next access check.
|
|
* @nr_accesses: Access frequency of this region.
|
|
* @list: List head for siblings.
|
|
*/
|
|
struct damon_region {
|
|
struct damon_addr_range ar;
|
|
unsigned long sampling_addr;
|
|
unsigned int nr_accesses;
|
|
struct list_head list;
|
|
};
|
|
|
|
/**
|
|
* struct damon_target - Represents a monitoring target.
|
|
* @id: Unique identifier for this target.
|
|
* @nr_regions: Number of monitoring target regions of this target.
|
|
* @regions_list: Head of the monitoring target regions of this target.
|
|
* @list: List head for siblings.
|
|
*
|
|
* Each monitoring context could have multiple targets. For example, a context
|
|
* for virtual memory address spaces could have multiple target processes. The
|
|
* @id of each target should be unique among the targets of the context. For
|
|
* example, in the virtual address monitoring context, it could be a pidfd or
|
|
* an address of an mm_struct.
|
|
*/
|
|
struct damon_target {
|
|
unsigned long id;
|
|
unsigned int nr_regions;
|
|
struct list_head regions_list;
|
|
struct list_head list;
|
|
};
|
|
|
|
struct damon_ctx;
|
|
|
|
/**
|
|
* struct damon_primitive Monitoring primitives for given use cases.
|
|
*
|
|
* @init: Initialize primitive-internal data structures.
|
|
* @update: Update primitive-internal data structures.
|
|
* @prepare_access_checks: Prepare next access check of target regions.
|
|
* @check_accesses: Check the accesses to target regions.
|
|
* @reset_aggregated: Reset aggregated accesses monitoring results.
|
|
* @target_valid: Determine if the target is valid.
|
|
* @cleanup: Clean up the context.
|
|
*
|
|
* DAMON can be extended for various address spaces and usages. For this,
|
|
* users should register the low level primitives for their target address
|
|
* space and usecase via the &damon_ctx.primitive. Then, the monitoring thread
|
|
* (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
|
|
* the monitoring, @update after each &damon_ctx.primitive_update_interval, and
|
|
* @check_accesses, @target_valid and @prepare_access_checks after each
|
|
* &damon_ctx.sample_interval. Finally, @reset_aggregated is called after each
|
|
* &damon_ctx.aggr_interval.
|
|
*
|
|
* @init should initialize primitive-internal data structures. For example,
|
|
* this could be used to construct proper monitoring target regions and link
|
|
* those to @damon_ctx.adaptive_targets.
|
|
* @update should update the primitive-internal data structures. For example,
|
|
* this could be used to update monitoring target regions for current status.
|
|
* @prepare_access_checks should manipulate the monitoring regions to be
|
|
* prepared for the next access check.
|
|
* @check_accesses should check the accesses to each region that made after the
|
|
* last preparation and update the number of observed accesses of each region.
|
|
* It should also return max number of observed accesses that made as a result
|
|
* of its update. The value will be used for regions adjustment threshold.
|
|
* @reset_aggregated should reset the access monitoring results that aggregated
|
|
* by @check_accesses.
|
|
* @target_valid should check whether the target is still valid for the
|
|
* monitoring.
|
|
* @cleanup is called from @kdamond just before its termination.
|
|
*/
|
|
struct damon_primitive {
|
|
void (*init)(struct damon_ctx *context);
|
|
void (*update)(struct damon_ctx *context);
|
|
void (*prepare_access_checks)(struct damon_ctx *context);
|
|
unsigned int (*check_accesses)(struct damon_ctx *context);
|
|
void (*reset_aggregated)(struct damon_ctx *context);
|
|
bool (*target_valid)(void *target);
|
|
void (*cleanup)(struct damon_ctx *context);
|
|
};
|
|
|
|
/*
|
|
* struct damon_callback Monitoring events notification callbacks.
|
|
*
|
|
* @before_start: Called before starting the monitoring.
|
|
* @after_sampling: Called after each sampling.
|
|
* @after_aggregation: Called after each aggregation.
|
|
* @before_terminate: Called before terminating the monitoring.
|
|
* @private: User private data.
|
|
*
|
|
* The monitoring thread (&damon_ctx.kdamond) calls @before_start and
|
|
* @before_terminate just before starting and finishing the monitoring,
|
|
* respectively. Therefore, those are good places for installing and cleaning
|
|
* @private.
|
|
*
|
|
* The monitoring thread calls @after_sampling and @after_aggregation for each
|
|
* of the sampling intervals and aggregation intervals, respectively.
|
|
* Therefore, users can safely access the monitoring results without additional
|
|
* protection. For the reason, users are recommended to use these callback for
|
|
* the accesses to the results.
|
|
*
|
|
* If any callback returns non-zero, monitoring stops.
|
|
*/
|
|
struct damon_callback {
|
|
void *private;
|
|
|
|
int (*before_start)(struct damon_ctx *context);
|
|
int (*after_sampling)(struct damon_ctx *context);
|
|
int (*after_aggregation)(struct damon_ctx *context);
|
|
int (*before_terminate)(struct damon_ctx *context);
|
|
};
|
|
|
|
/**
|
|
* struct damon_ctx - Represents a context for each monitoring. This is the
|
|
* main interface that allows users to set the attributes and get the results
|
|
* of the monitoring.
|
|
*
|
|
* @sample_interval: The time between access samplings.
|
|
* @aggr_interval: The time between monitor results aggregations.
|
|
* @primitive_update_interval: The time between monitoring primitive updates.
|
|
*
|
|
* For each @sample_interval, DAMON checks whether each region is accessed or
|
|
* not. It aggregates and keeps the access information (number of accesses to
|
|
* each region) for @aggr_interval time. DAMON also checks whether the target
|
|
* memory regions need update (e.g., by ``mmap()`` calls from the application,
|
|
* in case of virtual memory monitoring) and applies the changes for each
|
|
* @primitive_update_interval. All time intervals are in micro-seconds.
|
|
* Please refer to &struct damon_primitive and &struct damon_callback for more
|
|
* detail.
|
|
*
|
|
* @kdamond: Kernel thread who does the monitoring.
|
|
* @kdamond_stop: Notifies whether kdamond should stop.
|
|
* @kdamond_lock: Mutex for the synchronizations with @kdamond.
|
|
*
|
|
* For each monitoring context, one kernel thread for the monitoring is
|
|
* created. The pointer to the thread is stored in @kdamond.
|
|
*
|
|
* Once started, the monitoring thread runs until explicitly required to be
|
|
* terminated or every monitoring target is invalid. The validity of the
|
|
* targets is checked via the &damon_primitive.target_valid of @primitive. The
|
|
* termination can also be explicitly requested by writing non-zero to
|
|
* @kdamond_stop. The thread sets @kdamond to NULL when it terminates.
|
|
* Therefore, users can know whether the monitoring is ongoing or terminated by
|
|
* reading @kdamond. Reads and writes to @kdamond and @kdamond_stop from
|
|
* outside of the monitoring thread must be protected by @kdamond_lock.
|
|
*
|
|
* Note that the monitoring thread protects only @kdamond and @kdamond_stop via
|
|
* @kdamond_lock. Accesses to other fields must be protected by themselves.
|
|
*
|
|
* @primitive: Set of monitoring primitives for given use cases.
|
|
* @callback: Set of callbacks for monitoring events notifications.
|
|
*
|
|
* @min_nr_regions: The minimum number of adaptive monitoring regions.
|
|
* @max_nr_regions: The maximum number of adaptive monitoring regions.
|
|
* @adaptive_targets: Head of monitoring targets (&damon_target) list.
|
|
*/
|
|
struct damon_ctx {
|
|
unsigned long sample_interval;
|
|
unsigned long aggr_interval;
|
|
unsigned long primitive_update_interval;
|
|
|
|
/* private: internal use only */
|
|
struct timespec64 last_aggregation;
|
|
struct timespec64 last_primitive_update;
|
|
|
|
/* public: */
|
|
struct task_struct *kdamond;
|
|
bool kdamond_stop;
|
|
struct mutex kdamond_lock;
|
|
|
|
struct damon_primitive primitive;
|
|
struct damon_callback callback;
|
|
|
|
unsigned long min_nr_regions;
|
|
unsigned long max_nr_regions;
|
|
struct list_head adaptive_targets;
|
|
};
|
|
|
|
#define damon_next_region(r) \
|
|
(container_of(r->list.next, struct damon_region, list))
|
|
|
|
#define damon_prev_region(r) \
|
|
(container_of(r->list.prev, struct damon_region, list))
|
|
|
|
#define damon_for_each_region(r, t) \
|
|
list_for_each_entry(r, &t->regions_list, list)
|
|
|
|
#define damon_for_each_region_safe(r, next, t) \
|
|
list_for_each_entry_safe(r, next, &t->regions_list, list)
|
|
|
|
#define damon_for_each_target(t, ctx) \
|
|
list_for_each_entry(t, &(ctx)->adaptive_targets, list)
|
|
|
|
#define damon_for_each_target_safe(t, next, ctx) \
|
|
list_for_each_entry_safe(t, next, &(ctx)->adaptive_targets, list)
|
|
|
|
#ifdef CONFIG_DAMON
|
|
|
|
struct damon_region *damon_new_region(unsigned long start, unsigned long end);
|
|
inline void damon_insert_region(struct damon_region *r,
|
|
struct damon_region *prev, struct damon_region *next,
|
|
struct damon_target *t);
|
|
void damon_add_region(struct damon_region *r, struct damon_target *t);
|
|
void damon_destroy_region(struct damon_region *r, struct damon_target *t);
|
|
|
|
struct damon_target *damon_new_target(unsigned long id);
|
|
void damon_add_target(struct damon_ctx *ctx, struct damon_target *t);
|
|
void damon_free_target(struct damon_target *t);
|
|
void damon_destroy_target(struct damon_target *t);
|
|
unsigned int damon_nr_regions(struct damon_target *t);
|
|
|
|
struct damon_ctx *damon_new_ctx(void);
|
|
void damon_destroy_ctx(struct damon_ctx *ctx);
|
|
int damon_set_targets(struct damon_ctx *ctx,
|
|
unsigned long *ids, ssize_t nr_ids);
|
|
int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
|
|
unsigned long aggr_int, unsigned long primitive_upd_int,
|
|
unsigned long min_nr_reg, unsigned long max_nr_reg);
|
|
int damon_nr_running_ctxs(void);
|
|
|
|
int damon_start(struct damon_ctx **ctxs, int nr_ctxs);
|
|
int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);
|
|
|
|
#endif /* CONFIG_DAMON */
|
|
|
|
#ifdef CONFIG_DAMON_VADDR
|
|
|
|
/* Monitoring primitives for virtual memory address spaces */
|
|
void damon_va_init(struct damon_ctx *ctx);
|
|
void damon_va_update(struct damon_ctx *ctx);
|
|
void damon_va_prepare_access_checks(struct damon_ctx *ctx);
|
|
unsigned int damon_va_check_accesses(struct damon_ctx *ctx);
|
|
bool damon_va_target_valid(void *t);
|
|
void damon_va_cleanup(struct damon_ctx *ctx);
|
|
void damon_va_set_primitives(struct damon_ctx *ctx);
|
|
|
|
#endif /* CONFIG_DAMON_VADDR */
|
|
|
|
#endif /* _DAMON_H */
|