linux-next/kernel/bpf/helpers.c
Kumar Kartikeya Dwivedi c8e2ee1f3d bpf: Introduce support for bpf_local_irq_{save,restore}
Teach the verifier about IRQ-disabled sections through the introduction
of two new kfuncs, bpf_local_irq_save, to save IRQ state and disable
them, and bpf_local_irq_restore, to restore IRQ state and enable them
back again.

For the purposes of tracking the saved IRQ state, the verifier is taught
about a new special object on the stack of type STACK_IRQ_FLAG. This is
a 8 byte value which saves the IRQ flags which are to be passed back to
the IRQ restore kfunc.

Renumber the enums for REF_TYPE_* to simplify the check in
find_lock_state, filtering out non-lock types as they grow will become
cumbersome and is unecessary.

To track a dynamic number of IRQ-disabled regions and their associated
saved states, a new resource type RES_TYPE_IRQ is introduced, which its
state management functions: acquire_irq_state and release_irq_state,
taking advantage of the refactoring and clean ups made in earlier
commits.

One notable requirement of the kernel's IRQ save and restore API is that
they cannot happen out of order. For this purpose, when releasing reference
we keep track of the prev_id we saw with REF_TYPE_IRQ. Since reference
states are inserted in increasing order of the index, this is used to
remember the ordering of acquisitions of IRQ saved states, so that we
maintain a logical stack in acquisition order of resource identities,
and can enforce LIFO ordering when restoring IRQ state. The top of the
stack is maintained using bpf_verifier_state's active_irq_id.

To maintain the stack property when releasing reference states, we need
to modify release_reference_state to instead shift the remaining array
left using memmove instead of swapping deleted element with last that
might break the ordering. A selftest to test this subtle behavior is
added in late patches.

The logic to detect initialized and unitialized irq flag slots, marking
and unmarking is similar to how it's done for iterators. No additional
checks are needed in refsafe for REF_TYPE_IRQ, apart from the usual
check_id satisfiability check on the ref[i].id. We have to perform the
same check_ids check on state->active_irq_id as well.

To ensure we don't get assigned REF_TYPE_PTR by default after
acquire_reference_state, if someone forgets to assign the type, let's
also renumber the enum ref_state_type. This way any unassigned types
get caught by refsafe's default switch statement, don't assume
REF_TYPE_PTR by default.

The kfuncs themselves are plain wrappers over local_irq_save and
local_irq_restore macros.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241204030400.208005-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-12-04 08:38:29 -08:00

3226 lines
87 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*/
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/bpf-cgroup.h>
#include <linux/cgroup.h>
#include <linux/rcupdate.h>
#include <linux/random.h>
#include <linux/smp.h>
#include <linux/topology.h>
#include <linux/ktime.h>
#include <linux/sched.h>
#include <linux/uidgid.h>
#include <linux/filter.h>
#include <linux/ctype.h>
#include <linux/jiffies.h>
#include <linux/pid_namespace.h>
#include <linux/poison.h>
#include <linux/proc_ns.h>
#include <linux/sched/task.h>
#include <linux/security.h>
#include <linux/btf_ids.h>
#include <linux/bpf_mem_alloc.h>
#include <linux/kasan.h>
#include "../../lib/kstrtox.h"
/* If kernel subsystem is allowing eBPF programs to call this function,
* inside its own verifier_ops->get_func_proto() callback it should return
* bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
*
* Different map implementations will rely on rcu in map methods
* lookup/update/delete, therefore eBPF programs must run under rcu lock
* if program is allowed to access maps, so check rcu_read_lock_held() or
* rcu_read_lock_trace_held() in all three functions.
*/
BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
{
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
!rcu_read_lock_bh_held());
return (unsigned long) map->ops->map_lookup_elem(map, key);
}
const struct bpf_func_proto bpf_map_lookup_elem_proto = {
.func = bpf_map_lookup_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
};
BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
void *, value, u64, flags)
{
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
!rcu_read_lock_bh_held());
return map->ops->map_update_elem(map, key, value, flags);
}
const struct bpf_func_proto bpf_map_update_elem_proto = {
.func = bpf_map_update_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
.arg3_type = ARG_PTR_TO_MAP_VALUE,
.arg4_type = ARG_ANYTHING,
};
BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
{
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
!rcu_read_lock_bh_held());
return map->ops->map_delete_elem(map, key);
}
const struct bpf_func_proto bpf_map_delete_elem_proto = {
.func = bpf_map_delete_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
};
BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
{
return map->ops->map_push_elem(map, value, flags);
}
const struct bpf_func_proto bpf_map_push_elem_proto = {
.func = bpf_map_push_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_VALUE,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
{
return map->ops->map_pop_elem(map, value);
}
const struct bpf_func_proto bpf_map_pop_elem_proto = {
.func = bpf_map_pop_elem,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
};
BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
{
return map->ops->map_peek_elem(map, value);
}
const struct bpf_func_proto bpf_map_peek_elem_proto = {
.func = bpf_map_peek_elem,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
};
BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
{
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
}
const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
.func = bpf_map_lookup_percpu_elem,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_PTR_TO_MAP_KEY,
.arg3_type = ARG_ANYTHING,
};
const struct bpf_func_proto bpf_get_prandom_u32_proto = {
.func = bpf_user_rnd_u32,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_smp_processor_id)
{
return smp_processor_id();
}
const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
.func = bpf_get_smp_processor_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
.allow_fastcall = true,
};
BPF_CALL_0(bpf_get_numa_node_id)
{
return numa_node_id();
}
const struct bpf_func_proto bpf_get_numa_node_id_proto = {
.func = bpf_get_numa_node_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_ktime_get_ns)
{
/* NMI safe access to clock monotonic */
return ktime_get_mono_fast_ns();
}
const struct bpf_func_proto bpf_ktime_get_ns_proto = {
.func = bpf_ktime_get_ns,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_ktime_get_boot_ns)
{
/* NMI safe access to clock boottime */
return ktime_get_boot_fast_ns();
}
const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
.func = bpf_ktime_get_boot_ns,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_ktime_get_coarse_ns)
{
return ktime_get_coarse_ns();
}
const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
.func = bpf_ktime_get_coarse_ns,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_ktime_get_tai_ns)
{
/* NMI safe access to clock tai */
return ktime_get_tai_fast_ns();
}
const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
.func = bpf_ktime_get_tai_ns,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_current_pid_tgid)
{
struct task_struct *task = current;
if (unlikely(!task))
return -EINVAL;
return (u64) task->tgid << 32 | task->pid;
}
const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
.func = bpf_get_current_pid_tgid,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_0(bpf_get_current_uid_gid)
{
struct task_struct *task = current;
kuid_t uid;
kgid_t gid;
if (unlikely(!task))
return -EINVAL;
current_uid_gid(&uid, &gid);
return (u64) from_kgid(&init_user_ns, gid) << 32 |
from_kuid(&init_user_ns, uid);
}
const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
.func = bpf_get_current_uid_gid,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
{
struct task_struct *task = current;
if (unlikely(!task))
goto err_clear;
/* Verifier guarantees that size > 0 */
strscpy_pad(buf, task->comm, size);
return 0;
err_clear:
memset(buf, 0, size);
return -EINVAL;
}
const struct bpf_func_proto bpf_get_current_comm_proto = {
.func = bpf_get_current_comm,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE,
};
#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
{
arch_spinlock_t *l = (void *)lock;
union {
__u32 val;
arch_spinlock_t lock;
} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
preempt_disable();
arch_spin_lock(l);
}
static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
{
arch_spinlock_t *l = (void *)lock;
arch_spin_unlock(l);
preempt_enable();
}
#else
static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
{
atomic_t *l = (void *)lock;
BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
do {
atomic_cond_read_relaxed(l, !VAL);
} while (atomic_xchg(l, 1));
}
static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
{
atomic_t *l = (void *)lock;
atomic_set_release(l, 0);
}
#endif
static DEFINE_PER_CPU(unsigned long, irqsave_flags);
static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
{
unsigned long flags;
local_irq_save(flags);
__bpf_spin_lock(lock);
__this_cpu_write(irqsave_flags, flags);
}
NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
{
__bpf_spin_lock_irqsave(lock);
return 0;
}
const struct bpf_func_proto bpf_spin_lock_proto = {
.func = bpf_spin_lock,
.gpl_only = false,
.ret_type = RET_VOID,
.arg1_type = ARG_PTR_TO_SPIN_LOCK,
.arg1_btf_id = BPF_PTR_POISON,
};
static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
{
unsigned long flags;
flags = __this_cpu_read(irqsave_flags);
__bpf_spin_unlock(lock);
local_irq_restore(flags);
}
NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
{
__bpf_spin_unlock_irqrestore(lock);
return 0;
}
const struct bpf_func_proto bpf_spin_unlock_proto = {
.func = bpf_spin_unlock,
.gpl_only = false,
.ret_type = RET_VOID,
.arg1_type = ARG_PTR_TO_SPIN_LOCK,
.arg1_btf_id = BPF_PTR_POISON,
};
void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
bool lock_src)
{
struct bpf_spin_lock *lock;
if (lock_src)
lock = src + map->record->spin_lock_off;
else
lock = dst + map->record->spin_lock_off;
preempt_disable();
__bpf_spin_lock_irqsave(lock);
copy_map_value(map, dst, src);
__bpf_spin_unlock_irqrestore(lock);
preempt_enable();
}
BPF_CALL_0(bpf_jiffies64)
{
return get_jiffies_64();
}
const struct bpf_func_proto bpf_jiffies64_proto = {
.func = bpf_jiffies64,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
#ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)
{
struct cgroup *cgrp;
u64 cgrp_id;
rcu_read_lock();
cgrp = task_dfl_cgroup(current);
cgrp_id = cgroup_id(cgrp);
rcu_read_unlock();
return cgrp_id;
}
const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
.func = bpf_get_current_cgroup_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
{
struct cgroup *cgrp;
struct cgroup *ancestor;
u64 cgrp_id;
rcu_read_lock();
cgrp = task_dfl_cgroup(current);
ancestor = cgroup_ancestor(cgrp, ancestor_level);
cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
rcu_read_unlock();
return cgrp_id;
}
const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
.func = bpf_get_current_ancestor_cgroup_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_ANYTHING,
};
#endif /* CONFIG_CGROUPS */
#define BPF_STRTOX_BASE_MASK 0x1F
static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
unsigned long long *res, bool *is_negative)
{
unsigned int base = flags & BPF_STRTOX_BASE_MASK;
const char *cur_buf = buf;
size_t cur_len = buf_len;
unsigned int consumed;
size_t val_len;
char str[64];
if (!buf || !buf_len || !res || !is_negative)
return -EINVAL;
if (base != 0 && base != 8 && base != 10 && base != 16)
return -EINVAL;
if (flags & ~BPF_STRTOX_BASE_MASK)
return -EINVAL;
while (cur_buf < buf + buf_len && isspace(*cur_buf))
++cur_buf;
*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
if (*is_negative)
++cur_buf;
consumed = cur_buf - buf;
cur_len -= consumed;
if (!cur_len)
return -EINVAL;
cur_len = min(cur_len, sizeof(str) - 1);
memcpy(str, cur_buf, cur_len);
str[cur_len] = '\0';
cur_buf = str;
cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
val_len = _parse_integer(cur_buf, base, res);
if (val_len & KSTRTOX_OVERFLOW)
return -ERANGE;
if (val_len == 0)
return -EINVAL;
cur_buf += val_len;
consumed += cur_buf - str;
return consumed;
}
static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
long long *res)
{
unsigned long long _res;
bool is_negative;
int err;
err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
if (err < 0)
return err;
if (is_negative) {
if ((long long)-_res > 0)
return -ERANGE;
*res = -_res;
} else {
if ((long long)_res < 0)
return -ERANGE;
*res = _res;
}
return err;
}
BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
s64 *, res)
{
long long _res;
int err;
*res = 0;
err = __bpf_strtoll(buf, buf_len, flags, &_res);
if (err < 0)
return err;
*res = _res;
return err;
}
const struct bpf_func_proto bpf_strtol_proto = {
.func = bpf_strtol,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
.arg4_size = sizeof(s64),
};
BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
u64 *, res)
{
unsigned long long _res;
bool is_negative;
int err;
*res = 0;
err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
if (err < 0)
return err;
if (is_negative)
return -EINVAL;
*res = _res;
return err;
}
const struct bpf_func_proto bpf_strtoul_proto = {
.func = bpf_strtoul,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
.arg4_size = sizeof(u64),
};
BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
{
return strncmp(s1, s2, s1_sz);
}
static const struct bpf_func_proto bpf_strncmp_proto = {
.func = bpf_strncmp,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_PTR_TO_CONST_STR,
};
BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
struct bpf_pidns_info *, nsdata, u32, size)
{
struct task_struct *task = current;
struct pid_namespace *pidns;
int err = -EINVAL;
if (unlikely(size != sizeof(struct bpf_pidns_info)))
goto clear;
if (unlikely((u64)(dev_t)dev != dev))
goto clear;
if (unlikely(!task))
goto clear;
pidns = task_active_pid_ns(task);
if (unlikely(!pidns)) {
err = -ENOENT;
goto clear;
}
if (!ns_match(&pidns->ns, (dev_t)dev, ino))
goto clear;
nsdata->pid = task_pid_nr_ns(task, pidns);
nsdata->tgid = task_tgid_nr_ns(task, pidns);
return 0;
clear:
memset((void *)nsdata, 0, (size_t) size);
return err;
}
const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
.func = bpf_get_ns_current_pid_tgid,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_ANYTHING,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
.arg4_type = ARG_CONST_SIZE,
};
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
.func = bpf_get_raw_cpu_id,
.gpl_only = false,
.ret_type = RET_INTEGER,
};
BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
u64, flags, void *, data, u64, size)
{
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
return -EINVAL;
return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
}
const struct bpf_func_proto bpf_event_output_data_proto = {
.func = bpf_event_output_data,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
const void __user *, user_ptr)
{
int ret = copy_from_user(dst, user_ptr, size);
if (unlikely(ret)) {
memset(dst, 0, size);
ret = -EFAULT;
}
return ret;
}
const struct bpf_func_proto bpf_copy_from_user_proto = {
.func = bpf_copy_from_user,
.gpl_only = false,
.might_sleep = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
{
int ret;
/* flags is not used yet */
if (unlikely(flags))
return -EINVAL;
if (unlikely(!size))
return 0;
ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
if (ret == size)
return 0;
memset(dst, 0, size);
/* Return -EFAULT for partial read */
return ret < 0 ? ret : -EFAULT;
}
const struct bpf_func_proto bpf_copy_from_user_task_proto = {
.func = bpf_copy_from_user_task,
.gpl_only = true,
.might_sleep = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_BTF_ID,
.arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
.arg5_type = ARG_ANYTHING
};
BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
{
if (cpu >= nr_cpu_ids)
return (unsigned long)NULL;
return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
}
const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
.func = bpf_per_cpu_ptr,
.gpl_only = false,
.ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
.arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
.arg2_type = ARG_ANYTHING,
};
BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
{
return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
}
const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
.func = bpf_this_cpu_ptr,
.gpl_only = false,
.ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
.arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
};
static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
size_t bufsz)
{
void __user *user_ptr = (__force void __user *)unsafe_ptr;
buf[0] = 0;
switch (fmt_ptype) {
case 's':
#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
if ((unsigned long)unsafe_ptr < TASK_SIZE)
return strncpy_from_user_nofault(buf, user_ptr, bufsz);
fallthrough;
#endif
case 'k':
return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
case 'u':
return strncpy_from_user_nofault(buf, user_ptr, bufsz);
}
return -EINVAL;
}
/* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
* arguments representation.
*/
#define MAX_BPRINTF_BIN_ARGS 512
/* Support executing three nested bprintf helper calls on a given CPU */
#define MAX_BPRINTF_NEST_LEVEL 3
struct bpf_bprintf_buffers {
char bin_args[MAX_BPRINTF_BIN_ARGS];
char buf[MAX_BPRINTF_BUF];
};
static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
{
int nest_level;
preempt_disable();
nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
this_cpu_dec(bpf_bprintf_nest_level);
preempt_enable();
return -EBUSY;
}
*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
return 0;
}
void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
{
if (!data->bin_args && !data->buf)
return;
if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
return;
this_cpu_dec(bpf_bprintf_nest_level);
preempt_enable();
}
/*
* bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
*
* Returns a negative value if fmt is an invalid format string or 0 otherwise.
*
* This can be used in two ways:
* - Format string verification only: when data->get_bin_args is false
* - Arguments preparation: in addition to the above verification, it writes in
* data->bin_args a binary representation of arguments usable by bstr_printf
* where pointers from BPF have been sanitized.
*
* In argument preparation mode, if 0 is returned, safe temporary buffers are
* allocated and bpf_bprintf_cleanup should be called to free them after use.
*/
int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
u32 num_args, struct bpf_bprintf_data *data)
{
bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
struct bpf_bprintf_buffers *buffers = NULL;
size_t sizeof_cur_arg, sizeof_cur_ip;
int err, i, num_spec = 0;
u64 cur_arg;
char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
fmt_end = strnchr(fmt, fmt_size, 0);
if (!fmt_end)
return -EINVAL;
fmt_size = fmt_end - fmt;
if (get_buffers && try_get_buffers(&buffers))
return -EBUSY;
if (data->get_bin_args) {
if (num_args)
tmp_buf = buffers->bin_args;
tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
data->bin_args = (u32 *)tmp_buf;
}
if (data->get_buf)
data->buf = buffers->buf;
for (i = 0; i < fmt_size; i++) {
if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
err = -EINVAL;
goto out;
}
if (fmt[i] != '%')
continue;
if (fmt[i + 1] == '%') {
i++;
continue;
}
if (num_spec >= num_args) {
err = -EINVAL;
goto out;
}
/* The string is zero-terminated so if fmt[i] != 0, we can
* always access fmt[i + 1], in the worst case it will be a 0
*/
i++;
/* skip optional "[0 +-][num]" width formatting field */
while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
fmt[i] == ' ')
i++;
if (fmt[i] >= '1' && fmt[i] <= '9') {
i++;
while (fmt[i] >= '0' && fmt[i] <= '9')
i++;
}
if (fmt[i] == 'p') {
sizeof_cur_arg = sizeof(long);
if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
fmt[i + 2] == 's') {
fmt_ptype = fmt[i + 1];
i += 2;
goto fmt_str;
}
if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
fmt[i + 1] == 'S') {
/* just kernel pointers */
if (tmp_buf)
cur_arg = raw_args[num_spec];
i++;
goto nocopy_fmt;
}
if (fmt[i + 1] == 'B') {
if (tmp_buf) {
err = snprintf(tmp_buf,
(tmp_buf_end - tmp_buf),
"%pB",
(void *)(long)raw_args[num_spec]);
tmp_buf += (err + 1);
}
i++;
num_spec++;
continue;
}
/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
(fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
err = -EINVAL;
goto out;
}
i += 2;
if (!tmp_buf)
goto nocopy_fmt;
sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
err = -ENOSPC;
goto out;
}
unsafe_ptr = (char *)(long)raw_args[num_spec];
err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
sizeof_cur_ip);
if (err < 0)
memset(cur_ip, 0, sizeof_cur_ip);
/* hack: bstr_printf expects IP addresses to be
* pre-formatted as strings, ironically, the easiest way
* to do that is to call snprintf.
*/
ip_spec[2] = fmt[i - 1];
ip_spec[3] = fmt[i];
err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
ip_spec, &cur_ip);
tmp_buf += err + 1;
num_spec++;
continue;
} else if (fmt[i] == 's') {
fmt_ptype = fmt[i];
fmt_str:
if (fmt[i + 1] != 0 &&
!isspace(fmt[i + 1]) &&
!ispunct(fmt[i + 1])) {
err = -EINVAL;
goto out;
}
if (!tmp_buf)
goto nocopy_fmt;
if (tmp_buf_end == tmp_buf) {
err = -ENOSPC;
goto out;
}
unsafe_ptr = (char *)(long)raw_args[num_spec];
err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
fmt_ptype,
tmp_buf_end - tmp_buf);
if (err < 0) {
tmp_buf[0] = '\0';
err = 1;
}
tmp_buf += err;
num_spec++;
continue;
} else if (fmt[i] == 'c') {
if (!tmp_buf)
goto nocopy_fmt;
if (tmp_buf_end == tmp_buf) {
err = -ENOSPC;
goto out;
}
*tmp_buf = raw_args[num_spec];
tmp_buf++;
num_spec++;
continue;
}
sizeof_cur_arg = sizeof(int);
if (fmt[i] == 'l') {
sizeof_cur_arg = sizeof(long);
i++;
}
if (fmt[i] == 'l') {
sizeof_cur_arg = sizeof(long long);
i++;
}
if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
fmt[i] != 'x' && fmt[i] != 'X') {
err = -EINVAL;
goto out;
}
if (tmp_buf)
cur_arg = raw_args[num_spec];
nocopy_fmt:
if (tmp_buf) {
tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
err = -ENOSPC;
goto out;
}
if (sizeof_cur_arg == 8) {
*(u32 *)tmp_buf = *(u32 *)&cur_arg;
*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
} else {
*(u32 *)tmp_buf = (u32)(long)cur_arg;
}
tmp_buf += sizeof_cur_arg;
}
num_spec++;
}
err = 0;
out:
if (err)
bpf_bprintf_cleanup(data);
return err;
}
BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
const void *, args, u32, data_len)
{
struct bpf_bprintf_data data = {
.get_bin_args = true,
};
int err, num_args;
if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
(data_len && !args))
return -EINVAL;
num_args = data_len / 8;
/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
* can safely give an unbounded size.
*/
err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
if (err < 0)
return err;
err = bstr_printf(str, str_size, fmt, data.bin_args);
bpf_bprintf_cleanup(&data);
return err + 1;
}
const struct bpf_func_proto bpf_snprintf_proto = {
.func = bpf_snprintf,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM_OR_NULL,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_PTR_TO_CONST_STR,
.arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
};
struct bpf_async_cb {
struct bpf_map *map;
struct bpf_prog *prog;
void __rcu *callback_fn;
void *value;
union {
struct rcu_head rcu;
struct work_struct delete_work;
};
u64 flags;
};
/* BPF map elements can contain 'struct bpf_timer'.
* Such map owns all of its BPF timers.
* 'struct bpf_timer' is allocated as part of map element allocation
* and it's zero initialized.
* That space is used to keep 'struct bpf_async_kern'.
* bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
* remembers 'struct bpf_map *' pointer it's part of.
* bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
* bpf_timer_start() arms the timer.
* If user space reference to a map goes to zero at this point
* ops->map_release_uref callback is responsible for cancelling the timers,
* freeing their memory, and decrementing prog's refcnts.
* bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
* Inner maps can contain bpf timers as well. ops->map_release_uref is
* freeing the timers when inner map is replaced or deleted by user space.
*/
struct bpf_hrtimer {
struct bpf_async_cb cb;
struct hrtimer timer;
atomic_t cancelling;
};
struct bpf_work {
struct bpf_async_cb cb;
struct work_struct work;
struct work_struct delete_work;
};
/* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
struct bpf_async_kern {
union {
struct bpf_async_cb *cb;
struct bpf_hrtimer *timer;
struct bpf_work *work;
};
/* bpf_spin_lock is used here instead of spinlock_t to make
* sure that it always fits into space reserved by struct bpf_timer
* regardless of LOCKDEP and spinlock debug flags.
*/
struct bpf_spin_lock lock;
} __attribute__((aligned(8)));
enum bpf_async_type {
BPF_ASYNC_TYPE_TIMER = 0,
BPF_ASYNC_TYPE_WQ,
};
static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
{
struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
struct bpf_map *map = t->cb.map;
void *value = t->cb.value;
bpf_callback_t callback_fn;
void *key;
u32 idx;
BTF_TYPE_EMIT(struct bpf_timer);
callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
if (!callback_fn)
goto out;
/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
* cannot be preempted by another bpf_timer_cb() on the same cpu.
* Remember the timer this callback is servicing to prevent
* deadlock if callback_fn() calls bpf_timer_cancel() or
* bpf_map_delete_elem() on the same timer.
*/
this_cpu_write(hrtimer_running, t);
if (map->map_type == BPF_MAP_TYPE_ARRAY) {
struct bpf_array *array = container_of(map, struct bpf_array, map);
/* compute the key */
idx = ((char *)value - array->value) / array->elem_size;
key = &idx;
} else { /* hash or lru */
key = value - round_up(map->key_size, 8);
}
callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
/* The verifier checked that return value is zero. */
this_cpu_write(hrtimer_running, NULL);
out:
return HRTIMER_NORESTART;
}
static void bpf_wq_work(struct work_struct *work)
{
struct bpf_work *w = container_of(work, struct bpf_work, work);
struct bpf_async_cb *cb = &w->cb;
struct bpf_map *map = cb->map;
bpf_callback_t callback_fn;
void *value = cb->value;
void *key;
u32 idx;
BTF_TYPE_EMIT(struct bpf_wq);
callback_fn = READ_ONCE(cb->callback_fn);
if (!callback_fn)
return;
if (map->map_type == BPF_MAP_TYPE_ARRAY) {
struct bpf_array *array = container_of(map, struct bpf_array, map);
/* compute the key */
idx = ((char *)value - array->value) / array->elem_size;
key = &idx;
} else { /* hash or lru */
key = value - round_up(map->key_size, 8);
}
rcu_read_lock_trace();
migrate_disable();
callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
migrate_enable();
rcu_read_unlock_trace();
}
static void bpf_wq_delete_work(struct work_struct *work)
{
struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
cancel_work_sync(&w->work);
kfree_rcu(w, cb.rcu);
}
static void bpf_timer_delete_work(struct work_struct *work)
{
struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
/* Cancel the timer and wait for callback to complete if it was running.
* If hrtimer_cancel() can be safely called it's safe to call
* kfree_rcu(t) right after for both preallocated and non-preallocated
* maps. The async->cb = NULL was already done and no code path can see
* address 't' anymore. Timer if armed for existing bpf_hrtimer before
* bpf_timer_cancel_and_free will have been cancelled.
*/
hrtimer_cancel(&t->timer);
kfree_rcu(t, cb.rcu);
}
static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
enum bpf_async_type type)
{
struct bpf_async_cb *cb;
struct bpf_hrtimer *t;
struct bpf_work *w;
clockid_t clockid;
size_t size;
int ret = 0;
if (in_nmi())
return -EOPNOTSUPP;
switch (type) {
case BPF_ASYNC_TYPE_TIMER:
size = sizeof(struct bpf_hrtimer);
break;
case BPF_ASYNC_TYPE_WQ:
size = sizeof(struct bpf_work);
break;
default:
return -EINVAL;
}
__bpf_spin_lock_irqsave(&async->lock);
t = async->timer;
if (t) {
ret = -EBUSY;
goto out;
}
/* allocate hrtimer via map_kmalloc to use memcg accounting */
cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node);
if (!cb) {
ret = -ENOMEM;
goto out;
}
switch (type) {
case BPF_ASYNC_TYPE_TIMER:
clockid = flags & (MAX_CLOCKS - 1);
t = (struct bpf_hrtimer *)cb;
atomic_set(&t->cancelling, 0);
INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
t->timer.function = bpf_timer_cb;
cb->value = (void *)async - map->record->timer_off;
break;
case BPF_ASYNC_TYPE_WQ:
w = (struct bpf_work *)cb;
INIT_WORK(&w->work, bpf_wq_work);
INIT_WORK(&w->delete_work, bpf_wq_delete_work);
cb->value = (void *)async - map->record->wq_off;
break;
}
cb->map = map;
cb->prog = NULL;
cb->flags = flags;
rcu_assign_pointer(cb->callback_fn, NULL);
WRITE_ONCE(async->cb, cb);
/* Guarantee the order between async->cb and map->usercnt. So
* when there are concurrent uref release and bpf timer init, either
* bpf_timer_cancel_and_free() called by uref release reads a no-NULL
* timer or atomic64_read() below returns a zero usercnt.
*/
smp_mb();
if (!atomic64_read(&map->usercnt)) {
/* maps with timers must be either held by user space
* or pinned in bpffs.
*/
WRITE_ONCE(async->cb, NULL);
kfree(cb);
ret = -EPERM;
}
out:
__bpf_spin_unlock_irqrestore(&async->lock);
return ret;
}
BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
u64, flags)
{
clock_t clockid = flags & (MAX_CLOCKS - 1);
BUILD_BUG_ON(MAX_CLOCKS != 16);
BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
if (flags >= MAX_CLOCKS ||
/* similar to timerfd except _ALARM variants are not supported */
(clockid != CLOCK_MONOTONIC &&
clockid != CLOCK_REALTIME &&
clockid != CLOCK_BOOTTIME))
return -EINVAL;
return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
}
static const struct bpf_func_proto bpf_timer_init_proto = {
.func = bpf_timer_init,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_TIMER,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
};
static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
struct bpf_prog_aux *aux, unsigned int flags,
enum bpf_async_type type)
{
struct bpf_prog *prev, *prog = aux->prog;
struct bpf_async_cb *cb;
int ret = 0;
if (in_nmi())
return -EOPNOTSUPP;
__bpf_spin_lock_irqsave(&async->lock);
cb = async->cb;
if (!cb) {
ret = -EINVAL;
goto out;
}
if (!atomic64_read(&cb->map->usercnt)) {
/* maps with timers must be either held by user space
* or pinned in bpffs. Otherwise timer might still be
* running even when bpf prog is detached and user space
* is gone, since map_release_uref won't ever be called.
*/
ret = -EPERM;
goto out;
}
prev = cb->prog;
if (prev != prog) {
/* Bump prog refcnt once. Every bpf_timer_set_callback()
* can pick different callback_fn-s within the same prog.
*/
prog = bpf_prog_inc_not_zero(prog);
if (IS_ERR(prog)) {
ret = PTR_ERR(prog);
goto out;
}
if (prev)
/* Drop prev prog refcnt when swapping with new prog */
bpf_prog_put(prev);
cb->prog = prog;
}
rcu_assign_pointer(cb->callback_fn, callback_fn);
out:
__bpf_spin_unlock_irqrestore(&async->lock);
return ret;
}
BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
struct bpf_prog_aux *, aux)
{
return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
}
static const struct bpf_func_proto bpf_timer_set_callback_proto = {
.func = bpf_timer_set_callback,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_TIMER,
.arg2_type = ARG_PTR_TO_FUNC,
};
BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
{
struct bpf_hrtimer *t;
int ret = 0;
enum hrtimer_mode mode;
if (in_nmi())
return -EOPNOTSUPP;
if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
return -EINVAL;
__bpf_spin_lock_irqsave(&timer->lock);
t = timer->timer;
if (!t || !t->cb.prog) {
ret = -EINVAL;
goto out;
}
if (flags & BPF_F_TIMER_ABS)
mode = HRTIMER_MODE_ABS_SOFT;
else
mode = HRTIMER_MODE_REL_SOFT;
if (flags & BPF_F_TIMER_CPU_PIN)
mode |= HRTIMER_MODE_PINNED;
hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
out:
__bpf_spin_unlock_irqrestore(&timer->lock);
return ret;
}
static const struct bpf_func_proto bpf_timer_start_proto = {
.func = bpf_timer_start,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_TIMER,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_ANYTHING,
};
static void drop_prog_refcnt(struct bpf_async_cb *async)
{
struct bpf_prog *prog = async->prog;
if (prog) {
bpf_prog_put(prog);
async->prog = NULL;
rcu_assign_pointer(async->callback_fn, NULL);
}
}
BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
{
struct bpf_hrtimer *t, *cur_t;
bool inc = false;
int ret = 0;
if (in_nmi())
return -EOPNOTSUPP;
rcu_read_lock();
__bpf_spin_lock_irqsave(&timer->lock);
t = timer->timer;
if (!t) {
ret = -EINVAL;
goto out;
}
cur_t = this_cpu_read(hrtimer_running);
if (cur_t == t) {
/* If bpf callback_fn is trying to bpf_timer_cancel()
* its own timer the hrtimer_cancel() will deadlock
* since it waits for callback_fn to finish.
*/
ret = -EDEADLK;
goto out;
}
/* Only account in-flight cancellations when invoked from a timer
* callback, since we want to avoid waiting only if other _callbacks_
* are waiting on us, to avoid introducing lockups. Non-callback paths
* are ok, since nobody would synchronously wait for their completion.
*/
if (!cur_t)
goto drop;
atomic_inc(&t->cancelling);
/* Need full barrier after relaxed atomic_inc */
smp_mb__after_atomic();
inc = true;
if (atomic_read(&cur_t->cancelling)) {
/* We're cancelling timer t, while some other timer callback is
* attempting to cancel us. In such a case, it might be possible
* that timer t belongs to the other callback, or some other
* callback waiting upon it (creating transitive dependencies
* upon us), and we will enter a deadlock if we continue
* cancelling and waiting for it synchronously, since it might
* do the same. Bail!
*/
ret = -EDEADLK;
goto out;
}
drop:
drop_prog_refcnt(&t->cb);
out:
__bpf_spin_unlock_irqrestore(&timer->lock);
/* Cancel the timer and wait for associated callback to finish
* if it was running.
*/
ret = ret ?: hrtimer_cancel(&t->timer);
if (inc)
atomic_dec(&t->cancelling);
rcu_read_unlock();
return ret;
}
static const struct bpf_func_proto bpf_timer_cancel_proto = {
.func = bpf_timer_cancel,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_TIMER,
};
static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
{
struct bpf_async_cb *cb;
/* Performance optimization: read async->cb without lock first. */
if (!READ_ONCE(async->cb))
return NULL;
__bpf_spin_lock_irqsave(&async->lock);
/* re-read it under lock */
cb = async->cb;
if (!cb)
goto out;
drop_prog_refcnt(cb);
/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
* this timer, since it won't be initialized.
*/
WRITE_ONCE(async->cb, NULL);
out:
__bpf_spin_unlock_irqrestore(&async->lock);
return cb;
}
/* This function is called by map_delete/update_elem for individual element and
* by ops->map_release_uref when the user space reference to a map reaches zero.
*/
void bpf_timer_cancel_and_free(void *val)
{
struct bpf_hrtimer *t;
t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
if (!t)
return;
/* We check that bpf_map_delete/update_elem() was called from timer
* callback_fn. In such case we don't call hrtimer_cancel() (since it
* will deadlock) and don't call hrtimer_try_to_cancel() (since it will
* just return -1). Though callback_fn is still running on this cpu it's
* safe to do kfree(t) because bpf_timer_cb() read everything it needed
* from 't'. The bpf subprog callback_fn won't be able to access 't',
* since async->cb = NULL was already done. The timer will be
* effectively cancelled because bpf_timer_cb() will return
* HRTIMER_NORESTART.
*
* However, it is possible the timer callback_fn calling us armed the
* timer _before_ calling us, such that failing to cancel it here will
* cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
* Therefore, we _need_ to cancel any outstanding timers before we do
* kfree_rcu, even though no more timers can be armed.
*
* Moreover, we need to schedule work even if timer does not belong to
* the calling callback_fn, as on two different CPUs, we can end up in a
* situation where both sides run in parallel, try to cancel one
* another, and we end up waiting on both sides in hrtimer_cancel
* without making forward progress, since timer1 depends on time2
* callback to finish, and vice versa.
*
* CPU 1 (timer1_cb) CPU 2 (timer2_cb)
* bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1)
*
* To avoid these issues, punt to workqueue context when we are in a
* timer callback.
*/
if (this_cpu_read(hrtimer_running))
queue_work(system_unbound_wq, &t->cb.delete_work);
else
bpf_timer_delete_work(&t->cb.delete_work);
}
/* This function is called by map_delete/update_elem for individual element and
* by ops->map_release_uref when the user space reference to a map reaches zero.
*/
void bpf_wq_cancel_and_free(void *val)
{
struct bpf_work *work;
BTF_TYPE_EMIT(struct bpf_wq);
work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
if (!work)
return;
/* Trigger cancel of the sleepable work, but *do not* wait for
* it to finish if it was running as we might not be in a
* sleepable context.
* kfree will be called once the work has finished.
*/
schedule_work(&work->delete_work);
}
BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
{
unsigned long *kptr = dst;
/* This helper may be inlined by verifier. */
return xchg(kptr, (unsigned long)ptr);
}
/* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
* helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
* denote type that verifier will determine.
*/
static const struct bpf_func_proto bpf_kptr_xchg_proto = {
.func = bpf_kptr_xchg,
.gpl_only = false,
.ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
.ret_btf_id = BPF_PTR_POISON,
.arg1_type = ARG_KPTR_XCHG_DEST,
.arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
.arg2_btf_id = BPF_PTR_POISON,
};
/* Since the upper 8 bits of dynptr->size is reserved, the
* maximum supported size is 2^24 - 1.
*/
#define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
#define DYNPTR_TYPE_SHIFT 28
#define DYNPTR_SIZE_MASK 0xFFFFFF
#define DYNPTR_RDONLY_BIT BIT(31)
bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
{
return ptr->size & DYNPTR_RDONLY_BIT;
}
void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
{
ptr->size |= DYNPTR_RDONLY_BIT;
}
static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
{
ptr->size |= type << DYNPTR_TYPE_SHIFT;
}
static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
{
return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
}
u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
{
return ptr->size & DYNPTR_SIZE_MASK;
}
static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
{
u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
ptr->size = new_size | metadata;
}
int bpf_dynptr_check_size(u32 size)
{
return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
}
void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
enum bpf_dynptr_type type, u32 offset, u32 size)
{
ptr->data = data;
ptr->offset = offset;
ptr->size = size;
bpf_dynptr_set_type(ptr, type);
}
void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
{
memset(ptr, 0, sizeof(*ptr));
}
static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
{
u32 size = __bpf_dynptr_size(ptr);
if (len > size || offset > size - len)
return -E2BIG;
return 0;
}
BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
{
int err;
BTF_TYPE_EMIT(struct bpf_dynptr);
err = bpf_dynptr_check_size(size);
if (err)
goto error;
/* flags is currently unsupported */
if (flags) {
err = -EINVAL;
goto error;
}
bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
return 0;
error:
bpf_dynptr_set_null(ptr);
return err;
}
static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
.func = bpf_dynptr_from_mem,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
};
BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
u32, offset, u64, flags)
{
enum bpf_dynptr_type type;
int err;
if (!src->data || flags)
return -EINVAL;
err = bpf_dynptr_check_off_len(src, offset, len);
if (err)
return err;
type = bpf_dynptr_get_type(src);
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
/* Source and destination may possibly overlap, hence use memmove to
* copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
* pointing to overlapping PTR_TO_MAP_VALUE regions.
*/
memmove(dst, src->data + src->offset + offset, len);
return 0;
case BPF_DYNPTR_TYPE_SKB:
return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
case BPF_DYNPTR_TYPE_XDP:
return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
default:
WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
return -EFAULT;
}
}
static const struct bpf_func_proto bpf_dynptr_read_proto = {
.func = bpf_dynptr_read,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
.arg4_type = ARG_ANYTHING,
.arg5_type = ARG_ANYTHING,
};
BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
u32, len, u64, flags)
{
enum bpf_dynptr_type type;
int err;
if (!dst->data || __bpf_dynptr_is_rdonly(dst))
return -EINVAL;
err = bpf_dynptr_check_off_len(dst, offset, len);
if (err)
return err;
type = bpf_dynptr_get_type(dst);
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
if (flags)
return -EINVAL;
/* Source and destination may possibly overlap, hence use memmove to
* copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
* pointing to overlapping PTR_TO_MAP_VALUE regions.
*/
memmove(dst->data + dst->offset + offset, src, len);
return 0;
case BPF_DYNPTR_TYPE_SKB:
return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
flags);
case BPF_DYNPTR_TYPE_XDP:
if (flags)
return -EINVAL;
return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
default:
WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
return -EFAULT;
}
}
static const struct bpf_func_proto bpf_dynptr_write_proto = {
.func = bpf_dynptr_write,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg4_type = ARG_CONST_SIZE_OR_ZERO,
.arg5_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
{
enum bpf_dynptr_type type;
int err;
if (!ptr->data)
return 0;
err = bpf_dynptr_check_off_len(ptr, offset, len);
if (err)
return 0;
if (__bpf_dynptr_is_rdonly(ptr))
return 0;
type = bpf_dynptr_get_type(ptr);
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
return (unsigned long)(ptr->data + ptr->offset + offset);
case BPF_DYNPTR_TYPE_SKB:
case BPF_DYNPTR_TYPE_XDP:
/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
return 0;
default:
WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
return 0;
}
}
static const struct bpf_func_proto bpf_dynptr_data_proto = {
.func = bpf_dynptr_data,
.gpl_only = false,
.ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
.arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
};
const struct bpf_func_proto bpf_get_current_task_proto __weak;
const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
const struct bpf_func_proto bpf_probe_read_user_proto __weak;
const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
{
switch (func_id) {
case BPF_FUNC_map_lookup_elem:
return &bpf_map_lookup_elem_proto;
case BPF_FUNC_map_update_elem:
return &bpf_map_update_elem_proto;
case BPF_FUNC_map_delete_elem:
return &bpf_map_delete_elem_proto;
case BPF_FUNC_map_push_elem:
return &bpf_map_push_elem_proto;
case BPF_FUNC_map_pop_elem:
return &bpf_map_pop_elem_proto;
case BPF_FUNC_map_peek_elem:
return &bpf_map_peek_elem_proto;
case BPF_FUNC_map_lookup_percpu_elem:
return &bpf_map_lookup_percpu_elem_proto;
case BPF_FUNC_get_prandom_u32:
return &bpf_get_prandom_u32_proto;
case BPF_FUNC_get_smp_processor_id:
return &bpf_get_raw_smp_processor_id_proto;
case BPF_FUNC_get_numa_node_id:
return &bpf_get_numa_node_id_proto;
case BPF_FUNC_tail_call:
return &bpf_tail_call_proto;
case BPF_FUNC_ktime_get_ns:
return &bpf_ktime_get_ns_proto;
case BPF_FUNC_ktime_get_boot_ns:
return &bpf_ktime_get_boot_ns_proto;
case BPF_FUNC_ktime_get_tai_ns:
return &bpf_ktime_get_tai_ns_proto;
case BPF_FUNC_ringbuf_output:
return &bpf_ringbuf_output_proto;
case BPF_FUNC_ringbuf_reserve:
return &bpf_ringbuf_reserve_proto;
case BPF_FUNC_ringbuf_submit:
return &bpf_ringbuf_submit_proto;
case BPF_FUNC_ringbuf_discard:
return &bpf_ringbuf_discard_proto;
case BPF_FUNC_ringbuf_query:
return &bpf_ringbuf_query_proto;
case BPF_FUNC_strncmp:
return &bpf_strncmp_proto;
case BPF_FUNC_strtol:
return &bpf_strtol_proto;
case BPF_FUNC_strtoul:
return &bpf_strtoul_proto;
case BPF_FUNC_get_current_pid_tgid:
return &bpf_get_current_pid_tgid_proto;
case BPF_FUNC_get_ns_current_pid_tgid:
return &bpf_get_ns_current_pid_tgid_proto;
default:
break;
}
if (!bpf_token_capable(prog->aux->token, CAP_BPF))
return NULL;
switch (func_id) {
case BPF_FUNC_spin_lock:
return &bpf_spin_lock_proto;
case BPF_FUNC_spin_unlock:
return &bpf_spin_unlock_proto;
case BPF_FUNC_jiffies64:
return &bpf_jiffies64_proto;
case BPF_FUNC_per_cpu_ptr:
return &bpf_per_cpu_ptr_proto;
case BPF_FUNC_this_cpu_ptr:
return &bpf_this_cpu_ptr_proto;
case BPF_FUNC_timer_init:
return &bpf_timer_init_proto;
case BPF_FUNC_timer_set_callback:
return &bpf_timer_set_callback_proto;
case BPF_FUNC_timer_start:
return &bpf_timer_start_proto;
case BPF_FUNC_timer_cancel:
return &bpf_timer_cancel_proto;
case BPF_FUNC_kptr_xchg:
return &bpf_kptr_xchg_proto;
case BPF_FUNC_for_each_map_elem:
return &bpf_for_each_map_elem_proto;
case BPF_FUNC_loop:
return &bpf_loop_proto;
case BPF_FUNC_user_ringbuf_drain:
return &bpf_user_ringbuf_drain_proto;
case BPF_FUNC_ringbuf_reserve_dynptr:
return &bpf_ringbuf_reserve_dynptr_proto;
case BPF_FUNC_ringbuf_submit_dynptr:
return &bpf_ringbuf_submit_dynptr_proto;
case BPF_FUNC_ringbuf_discard_dynptr:
return &bpf_ringbuf_discard_dynptr_proto;
case BPF_FUNC_dynptr_from_mem:
return &bpf_dynptr_from_mem_proto;
case BPF_FUNC_dynptr_read:
return &bpf_dynptr_read_proto;
case BPF_FUNC_dynptr_write:
return &bpf_dynptr_write_proto;
case BPF_FUNC_dynptr_data:
return &bpf_dynptr_data_proto;
#ifdef CONFIG_CGROUPS
case BPF_FUNC_cgrp_storage_get:
return &bpf_cgrp_storage_get_proto;
case BPF_FUNC_cgrp_storage_delete:
return &bpf_cgrp_storage_delete_proto;
case BPF_FUNC_get_current_cgroup_id:
return &bpf_get_current_cgroup_id_proto;
case BPF_FUNC_get_current_ancestor_cgroup_id:
return &bpf_get_current_ancestor_cgroup_id_proto;
#endif
default:
break;
}
if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
return NULL;
switch (func_id) {
case BPF_FUNC_trace_printk:
return bpf_get_trace_printk_proto();
case BPF_FUNC_get_current_task:
return &bpf_get_current_task_proto;
case BPF_FUNC_get_current_task_btf:
return &bpf_get_current_task_btf_proto;
case BPF_FUNC_probe_read_user:
return &bpf_probe_read_user_proto;
case BPF_FUNC_probe_read_kernel:
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
NULL : &bpf_probe_read_kernel_proto;
case BPF_FUNC_probe_read_user_str:
return &bpf_probe_read_user_str_proto;
case BPF_FUNC_probe_read_kernel_str:
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
NULL : &bpf_probe_read_kernel_str_proto;
case BPF_FUNC_snprintf_btf:
return &bpf_snprintf_btf_proto;
case BPF_FUNC_snprintf:
return &bpf_snprintf_proto;
case BPF_FUNC_task_pt_regs:
return &bpf_task_pt_regs_proto;
case BPF_FUNC_trace_vprintk:
return bpf_get_trace_vprintk_proto();
default:
return NULL;
}
}
EXPORT_SYMBOL_GPL(bpf_base_func_proto);
void bpf_list_head_free(const struct btf_field *field, void *list_head,
struct bpf_spin_lock *spin_lock)
{
struct list_head *head = list_head, *orig_head = list_head;
BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
/* Do the actual list draining outside the lock to not hold the lock for
* too long, and also prevent deadlocks if tracing programs end up
* executing on entry/exit of functions called inside the critical
* section, and end up doing map ops that call bpf_list_head_free for
* the same map value again.
*/
__bpf_spin_lock_irqsave(spin_lock);
if (!head->next || list_empty(head))
goto unlock;
head = head->next;
unlock:
INIT_LIST_HEAD(orig_head);
__bpf_spin_unlock_irqrestore(spin_lock);
while (head != orig_head) {
void *obj = head;
obj -= field->graph_root.node_offset;
head = head->next;
/* The contained type can also have resources, including a
* bpf_list_head which needs to be freed.
*/
migrate_disable();
__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
migrate_enable();
}
}
/* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
* 'rb_node *', so field name of rb_node within containing struct is not
* needed.
*
* Since bpf_rb_tree's node type has a corresponding struct btf_field with
* graph_root.node_offset, it's not necessary to know field name
* or type of node struct
*/
#define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
for (pos = rb_first_postorder(root); \
pos && ({ n = rb_next_postorder(pos); 1; }); \
pos = n)
void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
struct bpf_spin_lock *spin_lock)
{
struct rb_root_cached orig_root, *root = rb_root;
struct rb_node *pos, *n;
void *obj;
BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
__bpf_spin_lock_irqsave(spin_lock);
orig_root = *root;
*root = RB_ROOT_CACHED;
__bpf_spin_unlock_irqrestore(spin_lock);
bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
obj = pos;
obj -= field->graph_root.node_offset;
migrate_disable();
__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
migrate_enable();
}
}
__bpf_kfunc_start_defs();
__bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
{
struct btf_struct_meta *meta = meta__ign;
u64 size = local_type_id__k;
void *p;
p = bpf_mem_alloc(&bpf_global_ma, size);
if (!p)
return NULL;
if (meta)
bpf_obj_init(meta->record, p);
return p;
}
__bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
{
u64 size = local_type_id__k;
/* The verifier has ensured that meta__ign must be NULL */
return bpf_mem_alloc(&bpf_global_percpu_ma, size);
}
/* Must be called under migrate_disable(), as required by bpf_mem_free */
void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
{
struct bpf_mem_alloc *ma;
if (rec && rec->refcount_off >= 0 &&
!refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
/* Object is refcounted and refcount_dec didn't result in 0
* refcount. Return without freeing the object
*/
return;
}
if (rec)
bpf_obj_free_fields(rec, p);
if (percpu)
ma = &bpf_global_percpu_ma;
else
ma = &bpf_global_ma;
bpf_mem_free_rcu(ma, p);
}
__bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
{
struct btf_struct_meta *meta = meta__ign;
void *p = p__alloc;
__bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
}
__bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
{
/* The verifier has ensured that meta__ign must be NULL */
bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
}
__bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
{
struct btf_struct_meta *meta = meta__ign;
struct bpf_refcount *ref;
/* Could just cast directly to refcount_t *, but need some code using
* bpf_refcount type so that it is emitted in vmlinux BTF
*/
ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
if (!refcount_inc_not_zero((refcount_t *)ref))
return NULL;
/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
* in verifier.c
*/
return (void *)p__refcounted_kptr;
}
static int __bpf_list_add(struct bpf_list_node_kern *node,
struct bpf_list_head *head,
bool tail, struct btf_record *rec, u64 off)
{
struct list_head *n = &node->list_head, *h = (void *)head;
/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
* called on its fields, so init here
*/
if (unlikely(!h->next))
INIT_LIST_HEAD(h);
/* node->owner != NULL implies !list_empty(n), no need to separately
* check the latter
*/
if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
/* Only called from BPF prog, no need to migrate_disable */
__bpf_obj_drop_impl((void *)n - off, rec, false);
return -EINVAL;
}
tail ? list_add_tail(n, h) : list_add(n, h);
WRITE_ONCE(node->owner, head);
return 0;
}
__bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
struct bpf_list_node *node,
void *meta__ign, u64 off)
{
struct bpf_list_node_kern *n = (void *)node;
struct btf_struct_meta *meta = meta__ign;
return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
}
__bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
struct bpf_list_node *node,
void *meta__ign, u64 off)
{
struct bpf_list_node_kern *n = (void *)node;
struct btf_struct_meta *meta = meta__ign;
return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
}
static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
{
struct list_head *n, *h = (void *)head;
struct bpf_list_node_kern *node;
/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
* called on its fields, so init here
*/
if (unlikely(!h->next))
INIT_LIST_HEAD(h);
if (list_empty(h))
return NULL;
n = tail ? h->prev : h->next;
node = container_of(n, struct bpf_list_node_kern, list_head);
if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
return NULL;
list_del_init(n);
WRITE_ONCE(node->owner, NULL);
return (struct bpf_list_node *)n;
}
__bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
{
return __bpf_list_del(head, false);
}
__bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
{
return __bpf_list_del(head, true);
}
__bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
struct bpf_rb_node *node)
{
struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
struct rb_root_cached *r = (struct rb_root_cached *)root;
struct rb_node *n = &node_internal->rb_node;
/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
* n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
*/
if (READ_ONCE(node_internal->owner) != root)
return NULL;
rb_erase_cached(n, r);
RB_CLEAR_NODE(n);
WRITE_ONCE(node_internal->owner, NULL);
return (struct bpf_rb_node *)n;
}
/* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
* program
*/
static int __bpf_rbtree_add(struct bpf_rb_root *root,
struct bpf_rb_node_kern *node,
void *less, struct btf_record *rec, u64 off)
{
struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
struct rb_node *parent = NULL, *n = &node->rb_node;
bpf_callback_t cb = (bpf_callback_t)less;
bool leftmost = true;
/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
* check the latter
*/
if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
/* Only called from BPF prog, no need to migrate_disable */
__bpf_obj_drop_impl((void *)n - off, rec, false);
return -EINVAL;
}
while (*link) {
parent = *link;
if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
link = &parent->rb_left;
} else {
link = &parent->rb_right;
leftmost = false;
}
}
rb_link_node(n, parent, link);
rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
WRITE_ONCE(node->owner, root);
return 0;
}
__bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
void *meta__ign, u64 off)
{
struct btf_struct_meta *meta = meta__ign;
struct bpf_rb_node_kern *n = (void *)node;
return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
}
__bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
{
struct rb_root_cached *r = (struct rb_root_cached *)root;
return (struct bpf_rb_node *)rb_first_cached(r);
}
/**
* bpf_task_acquire - Acquire a reference to a task. A task acquired by this
* kfunc which is not stored in a map as a kptr, must be released by calling
* bpf_task_release().
* @p: The task on which a reference is being acquired.
*/
__bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
{
if (refcount_inc_not_zero(&p->rcu_users))
return p;
return NULL;
}
/**
* bpf_task_release - Release the reference acquired on a task.
* @p: The task on which a reference is being released.
*/
__bpf_kfunc void bpf_task_release(struct task_struct *p)
{
put_task_struct_rcu_user(p);
}
__bpf_kfunc void bpf_task_release_dtor(void *p)
{
put_task_struct_rcu_user(p);
}
CFI_NOSEAL(bpf_task_release_dtor);
#ifdef CONFIG_CGROUPS
/**
* bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
* this kfunc which is not stored in a map as a kptr, must be released by
* calling bpf_cgroup_release().
* @cgrp: The cgroup on which a reference is being acquired.
*/
__bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
{
return cgroup_tryget(cgrp) ? cgrp : NULL;
}
/**
* bpf_cgroup_release - Release the reference acquired on a cgroup.
* If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
* not be freed until the current grace period has ended, even if its refcount
* drops to 0.
* @cgrp: The cgroup on which a reference is being released.
*/
__bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
{
cgroup_put(cgrp);
}
__bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
{
cgroup_put(cgrp);
}
CFI_NOSEAL(bpf_cgroup_release_dtor);
/**
* bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
* array. A cgroup returned by this kfunc which is not subsequently stored in a
* map, must be released by calling bpf_cgroup_release().
* @cgrp: The cgroup for which we're performing a lookup.
* @level: The level of ancestor to look up.
*/
__bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
{
struct cgroup *ancestor;
if (level > cgrp->level || level < 0)
return NULL;
/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
ancestor = cgrp->ancestors[level];
if (!cgroup_tryget(ancestor))
return NULL;
return ancestor;
}
/**
* bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
* kfunc which is not subsequently stored in a map, must be released by calling
* bpf_cgroup_release().
* @cgid: cgroup id.
*/
__bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
{
struct cgroup *cgrp;
cgrp = cgroup_get_from_id(cgid);
if (IS_ERR(cgrp))
return NULL;
return cgrp;
}
/**
* bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
* task's membership of cgroup ancestry.
* @task: the task to be tested
* @ancestor: possible ancestor of @task's cgroup
*
* Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
* It follows all the same rules as cgroup_is_descendant, and only applies
* to the default hierarchy.
*/
__bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
struct cgroup *ancestor)
{
long ret;
rcu_read_lock();
ret = task_under_cgroup_hierarchy(task, ancestor);
rcu_read_unlock();
return ret;
}
BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
struct cgroup *cgrp;
if (unlikely(idx >= array->map.max_entries))
return -E2BIG;
cgrp = READ_ONCE(array->ptrs[idx]);
if (unlikely(!cgrp))
return -EAGAIN;
return task_under_cgroup_hierarchy(current, cgrp);
}
const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
.func = bpf_current_task_under_cgroup,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
};
/**
* bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
* specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
* hierarchy ID.
* @task: The target task
* @hierarchy_id: The ID of a cgroup1 hierarchy
*
* On success, the cgroup is returen. On failure, NULL is returned.
*/
__bpf_kfunc struct cgroup *
bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
{
struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
if (IS_ERR(cgrp))
return NULL;
return cgrp;
}
#endif /* CONFIG_CGROUPS */
/**
* bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
* in the root pid namespace idr. If a task is returned, it must either be
* stored in a map, or released with bpf_task_release().
* @pid: The pid of the task being looked up.
*/
__bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
{
struct task_struct *p;
rcu_read_lock();
p = find_task_by_pid_ns(pid, &init_pid_ns);
if (p)
p = bpf_task_acquire(p);
rcu_read_unlock();
return p;
}
/**
* bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
* in the pid namespace of the current task. If a task is returned, it must
* either be stored in a map, or released with bpf_task_release().
* @vpid: The vpid of the task being looked up.
*/
__bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
{
struct task_struct *p;
rcu_read_lock();
p = find_task_by_vpid(vpid);
if (p)
p = bpf_task_acquire(p);
rcu_read_unlock();
return p;
}
/**
* bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
* @p: The dynptr whose data slice to retrieve
* @offset: Offset into the dynptr
* @buffer__opt: User-provided buffer to copy contents into. May be NULL
* @buffer__szk: Size (in bytes) of the buffer if present. This is the
* length of the requested slice. This must be a constant.
*
* For non-skb and non-xdp type dynptrs, there is no difference between
* bpf_dynptr_slice and bpf_dynptr_data.
*
* If buffer__opt is NULL, the call will fail if buffer_opt was needed.
*
* If the intention is to write to the data slice, please use
* bpf_dynptr_slice_rdwr.
*
* The user must check that the returned pointer is not null before using it.
*
* Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
* does not change the underlying packet data pointers, so a call to
* bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
* the bpf program.
*
* Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
* data slice (can be either direct pointer to the data or a pointer to the user
* provided buffer, with its contents containing the data, if unable to obtain
* direct pointer)
*/
__bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
void *buffer__opt, u32 buffer__szk)
{
const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
enum bpf_dynptr_type type;
u32 len = buffer__szk;
int err;
if (!ptr->data)
return NULL;
err = bpf_dynptr_check_off_len(ptr, offset, len);
if (err)
return NULL;
type = bpf_dynptr_get_type(ptr);
switch (type) {
case BPF_DYNPTR_TYPE_LOCAL:
case BPF_DYNPTR_TYPE_RINGBUF:
return ptr->data + ptr->offset + offset;
case BPF_DYNPTR_TYPE_SKB:
if (buffer__opt)
return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
else
return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
case BPF_DYNPTR_TYPE_XDP:
{
void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
if (!IS_ERR_OR_NULL(xdp_ptr))
return xdp_ptr;
if (!buffer__opt)
return NULL;
bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
return buffer__opt;
}
default:
WARN_ONCE(true, "unknown dynptr type %d\n", type);
return NULL;
}
}
/**
* bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
* @p: The dynptr whose data slice to retrieve
* @offset: Offset into the dynptr
* @buffer__opt: User-provided buffer to copy contents into. May be NULL
* @buffer__szk: Size (in bytes) of the buffer if present. This is the
* length of the requested slice. This must be a constant.
*
* For non-skb and non-xdp type dynptrs, there is no difference between
* bpf_dynptr_slice and bpf_dynptr_data.
*
* If buffer__opt is NULL, the call will fail if buffer_opt was needed.
*
* The returned pointer is writable and may point to either directly the dynptr
* data at the requested offset or to the buffer if unable to obtain a direct
* data pointer to (example: the requested slice is to the paged area of an skb
* packet). In the case where the returned pointer is to the buffer, the user
* is responsible for persisting writes through calling bpf_dynptr_write(). This
* usually looks something like this pattern:
*
* struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
* if (!eth)
* return TC_ACT_SHOT;
*
* // mutate eth header //
*
* if (eth == buffer)
* bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
*
* Please note that, as in the example above, the user must check that the
* returned pointer is not null before using it.
*
* Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
* does not change the underlying packet data pointers, so a call to
* bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
* the bpf program.
*
* Return: NULL if the call failed (eg invalid dynptr), pointer to a
* data slice (can be either direct pointer to the data or a pointer to the user
* provided buffer, with its contents containing the data, if unable to obtain
* direct pointer)
*/
__bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
void *buffer__opt, u32 buffer__szk)
{
const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
return NULL;
/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
*
* For skb-type dynptrs, it is safe to write into the returned pointer
* if the bpf program allows skb data writes. There are two possibilities
* that may occur when calling bpf_dynptr_slice_rdwr:
*
* 1) The requested slice is in the head of the skb. In this case, the
* returned pointer is directly to skb data, and if the skb is cloned, the
* verifier will have uncloned it (see bpf_unclone_prologue()) already.
* The pointer can be directly written into.
*
* 2) Some portion of the requested slice is in the paged buffer area.
* In this case, the requested data will be copied out into the buffer
* and the returned pointer will be a pointer to the buffer. The skb
* will not be pulled. To persist the write, the user will need to call
* bpf_dynptr_write(), which will pull the skb and commit the write.
*
* Similarly for xdp programs, if the requested slice is not across xdp
* fragments, then a direct pointer will be returned, otherwise the data
* will be copied out into the buffer and the user will need to call
* bpf_dynptr_write() to commit changes.
*/
return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
}
__bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end)
{
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
u32 size;
if (!ptr->data || start > end)
return -EINVAL;
size = __bpf_dynptr_size(ptr);
if (start > size || end > size)
return -ERANGE;
ptr->offset += start;
bpf_dynptr_set_size(ptr, end - start);
return 0;
}
__bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
{
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
return !ptr->data;
}
__bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
{
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
if (!ptr->data)
return false;
return __bpf_dynptr_is_rdonly(ptr);
}
__bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p)
{
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
if (!ptr->data)
return -EINVAL;
return __bpf_dynptr_size(ptr);
}
__bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
struct bpf_dynptr *clone__uninit)
{
struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
if (!ptr->data) {
bpf_dynptr_set_null(clone);
return -EINVAL;
}
*clone = *ptr;
return 0;
}
__bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
{
return obj;
}
__bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
{
return (void *)obj__ign;
}
__bpf_kfunc void bpf_rcu_read_lock(void)
{
rcu_read_lock();
}
__bpf_kfunc void bpf_rcu_read_unlock(void)
{
rcu_read_unlock();
}
struct bpf_throw_ctx {
struct bpf_prog_aux *aux;
u64 sp;
u64 bp;
int cnt;
};
static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
{
struct bpf_throw_ctx *ctx = cookie;
struct bpf_prog *prog;
if (!is_bpf_text_address(ip))
return !ctx->cnt;
prog = bpf_prog_ksym_find(ip);
ctx->cnt++;
if (bpf_is_subprog(prog))
return true;
ctx->aux = prog->aux;
ctx->sp = sp;
ctx->bp = bp;
return false;
}
__bpf_kfunc void bpf_throw(u64 cookie)
{
struct bpf_throw_ctx ctx = {};
arch_bpf_stack_walk(bpf_stack_walker, &ctx);
WARN_ON_ONCE(!ctx.aux);
if (ctx.aux)
WARN_ON_ONCE(!ctx.aux->exception_boundary);
WARN_ON_ONCE(!ctx.bp);
WARN_ON_ONCE(!ctx.cnt);
/* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
* deeper stack depths than ctx.sp as we do not return from bpf_throw,
* which skips compiler generated instrumentation to do the same.
*/
kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
WARN(1, "A call to BPF exception callback should never return\n");
}
__bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
{
struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
struct bpf_map *map = p__map;
BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
if (flags)
return -EINVAL;
return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
}
__bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
{
struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
struct bpf_work *w;
if (in_nmi())
return -EOPNOTSUPP;
if (flags)
return -EINVAL;
w = READ_ONCE(async->work);
if (!w || !READ_ONCE(w->cb.prog))
return -EINVAL;
schedule_work(&w->work);
return 0;
}
__bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
int (callback_fn)(void *map, int *key, void *value),
unsigned int flags,
void *aux__ign)
{
struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign;
struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
if (flags)
return -EINVAL;
return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
}
__bpf_kfunc void bpf_preempt_disable(void)
{
preempt_disable();
}
__bpf_kfunc void bpf_preempt_enable(void)
{
preempt_enable();
}
struct bpf_iter_bits {
__u64 __opaque[2];
} __aligned(8);
#define BITS_ITER_NR_WORDS_MAX 511
struct bpf_iter_bits_kern {
union {
__u64 *bits;
__u64 bits_copy;
};
int nr_bits;
int bit;
} __aligned(8);
/* On 64-bit hosts, unsigned long and u64 have the same size, so passing
* a u64 pointer and an unsigned long pointer to find_next_bit() will
* return the same result, as both point to the same 8-byte area.
*
* For 32-bit little-endian hosts, using a u64 pointer or unsigned long
* pointer also makes no difference. This is because the first iterated
* unsigned long is composed of bits 0-31 of the u64 and the second unsigned
* long is composed of bits 32-63 of the u64.
*
* However, for 32-bit big-endian hosts, this is not the case. The first
* iterated unsigned long will be bits 32-63 of the u64, so swap these two
* ulong values within the u64.
*/
static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
{
#if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
unsigned int i;
for (i = 0; i < nr; i++)
bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
#endif
}
/**
* bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
* @it: The new bpf_iter_bits to be created
* @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
* @nr_words: The size of the specified memory area, measured in 8-byte units.
* The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
* further reduced by the BPF memory allocator implementation.
*
* This function initializes a new bpf_iter_bits structure for iterating over
* a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
* copies the data of the memory area to the newly created bpf_iter_bits @it for
* subsequent iteration operations.
*
* On success, 0 is returned. On failure, ERR is returned.
*/
__bpf_kfunc int
bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
{
struct bpf_iter_bits_kern *kit = (void *)it;
u32 nr_bytes = nr_words * sizeof(u64);
u32 nr_bits = BYTES_TO_BITS(nr_bytes);
int err;
BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
__alignof__(struct bpf_iter_bits));
kit->nr_bits = 0;
kit->bits_copy = 0;
kit->bit = -1;
if (!unsafe_ptr__ign || !nr_words)
return -EINVAL;
if (nr_words > BITS_ITER_NR_WORDS_MAX)
return -E2BIG;
/* Optimization for u64 mask */
if (nr_bits == 64) {
err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
if (err)
return -EFAULT;
swap_ulong_in_u64(&kit->bits_copy, nr_words);
kit->nr_bits = nr_bits;
return 0;
}
if (bpf_mem_alloc_check_size(false, nr_bytes))
return -E2BIG;
/* Fallback to memalloc */
kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
if (!kit->bits)
return -ENOMEM;
err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
if (err) {
bpf_mem_free(&bpf_global_ma, kit->bits);
return err;
}
swap_ulong_in_u64(kit->bits, nr_words);
kit->nr_bits = nr_bits;
return 0;
}
/**
* bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
* @it: The bpf_iter_bits to be checked
*
* This function returns a pointer to a number representing the value of the
* next bit in the bits.
*
* If there are no further bits available, it returns NULL.
*/
__bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
{
struct bpf_iter_bits_kern *kit = (void *)it;
int bit = kit->bit, nr_bits = kit->nr_bits;
const void *bits;
if (!nr_bits || bit >= nr_bits)
return NULL;
bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
bit = find_next_bit(bits, nr_bits, bit + 1);
if (bit >= nr_bits) {
kit->bit = bit;
return NULL;
}
kit->bit = bit;
return &kit->bit;
}
/**
* bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
* @it: The bpf_iter_bits to be destroyed
*
* Destroy the resource associated with the bpf_iter_bits.
*/
__bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
{
struct bpf_iter_bits_kern *kit = (void *)it;
if (kit->nr_bits <= 64)
return;
bpf_mem_free(&bpf_global_ma, kit->bits);
}
/**
* bpf_copy_from_user_str() - Copy a string from an unsafe user address
* @dst: Destination address, in kernel space. This buffer must be
* at least @dst__sz bytes long.
* @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
* @unsafe_ptr__ign: Source address, in user space.
* @flags: The only supported flag is BPF_F_PAD_ZEROS
*
* Copies a NUL-terminated string from userspace to BPF space. If user string is
* too long this will still ensure zero termination in the dst buffer unless
* buffer size is 0.
*
* If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
* memset all of @dst on failure.
*/
__bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
{
int ret;
if (unlikely(flags & ~BPF_F_PAD_ZEROS))
return -EINVAL;
if (unlikely(!dst__sz))
return 0;
ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
if (ret < 0) {
if (flags & BPF_F_PAD_ZEROS)
memset((char *)dst, 0, dst__sz);
return ret;
}
if (flags & BPF_F_PAD_ZEROS)
memset((char *)dst + ret, 0, dst__sz - ret);
else
((char *)dst)[ret] = '\0';
return ret + 1;
}
/* Keep unsinged long in prototype so that kfunc is usable when emitted to
* vmlinux.h in BPF programs directly, but note that while in BPF prog, the
* unsigned long always points to 8-byte region on stack, the kernel may only
* read and write the 4-bytes on 32-bit.
*/
__bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag)
{
local_irq_save(*flags__irq_flag);
}
__bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag)
{
local_irq_restore(*flags__irq_flag);
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(generic_btf_ids)
#ifdef CONFIG_CRASH_DUMP
BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
#endif
BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
BTF_ID_FLAGS(func, bpf_list_push_front_impl)
BTF_ID_FLAGS(func, bpf_list_push_back_impl)
BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
#ifdef CONFIG_CGROUPS
BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
#endif
BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_throw)
BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
BTF_KFUNCS_END(generic_btf_ids)
static const struct btf_kfunc_id_set generic_kfunc_set = {
.owner = THIS_MODULE,
.set = &generic_btf_ids,
};
BTF_ID_LIST(generic_dtor_ids)
BTF_ID(struct, task_struct)
BTF_ID(func, bpf_task_release_dtor)
#ifdef CONFIG_CGROUPS
BTF_ID(struct, cgroup)
BTF_ID(func, bpf_cgroup_release_dtor)
#endif
BTF_KFUNCS_START(common_btf_ids)
BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
BTF_ID_FLAGS(func, bpf_rcu_read_lock)
BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
#ifdef CONFIG_CGROUPS
BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
#endif
BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
BTF_ID_FLAGS(func, bpf_dynptr_adjust)
BTF_ID_FLAGS(func, bpf_dynptr_is_null)
BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
BTF_ID_FLAGS(func, bpf_dynptr_size)
BTF_ID_FLAGS(func, bpf_dynptr_clone)
BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
BTF_ID_FLAGS(func, bpf_wq_init)
BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
BTF_ID_FLAGS(func, bpf_wq_start)
BTF_ID_FLAGS(func, bpf_preempt_disable)
BTF_ID_FLAGS(func, bpf_preempt_enable)
BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
BTF_ID_FLAGS(func, bpf_get_kmem_cache)
BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
BTF_ID_FLAGS(func, bpf_local_irq_save)
BTF_ID_FLAGS(func, bpf_local_irq_restore)
BTF_KFUNCS_END(common_btf_ids)
static const struct btf_kfunc_id_set common_kfunc_set = {
.owner = THIS_MODULE,
.set = &common_btf_ids,
};
static int __init kfunc_init(void)
{
int ret;
const struct btf_id_dtor_kfunc generic_dtors[] = {
{
.btf_id = generic_dtor_ids[0],
.kfunc_btf_id = generic_dtor_ids[1]
},
#ifdef CONFIG_CGROUPS
{
.btf_id = generic_dtor_ids[2],
.kfunc_btf_id = generic_dtor_ids[3]
},
#endif
};
ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
ARRAY_SIZE(generic_dtors),
THIS_MODULE);
return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
}
late_initcall(kfunc_init);
/* Get a pointer to dynptr data up to len bytes for read only access. If
* the dynptr doesn't have continuous data up to len bytes, return NULL.
*/
const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
{
const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
return bpf_dynptr_slice(p, 0, NULL, len);
}
/* Get a pointer to dynptr data up to len bytes for read write access. If
* the dynptr doesn't have continuous data up to len bytes, or the dynptr
* is read only, return NULL.
*/
void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
{
if (__bpf_dynptr_is_rdonly(ptr))
return NULL;
return (void *)__bpf_dynptr_data(ptr, len);
}