mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 13:15:57 +00:00
cf61d53b02
Add a function which allows to modify easily the EM after the new voltage information is available. The device drivers for the chip can adjust the voltage values after setup. The voltage for the same frequency in OPP can be different due to chip binning. The voltage impacts the power usage and the EM power values can be updated to reflect that. Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Lukasz Luba <lukasz.luba@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
859 lines
21 KiB
C
859 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Energy Model of devices
|
|
*
|
|
* Copyright (c) 2018-2021, Arm ltd.
|
|
* Written by: Quentin Perret, Arm ltd.
|
|
* Improvements provided by: Lukasz Luba, Arm ltd.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "energy_model: " fmt
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/energy_model.h>
|
|
#include <linux/sched/topology.h>
|
|
#include <linux/slab.h>
|
|
|
|
/*
|
|
* Mutex serializing the registrations of performance domains and letting
|
|
* callbacks defined by drivers sleep.
|
|
*/
|
|
static DEFINE_MUTEX(em_pd_mutex);
|
|
|
|
static void em_cpufreq_update_efficiencies(struct device *dev,
|
|
struct em_perf_state *table);
|
|
static void em_check_capacity_update(void);
|
|
static void em_update_workfn(struct work_struct *work);
|
|
static DECLARE_DELAYED_WORK(em_update_work, em_update_workfn);
|
|
|
|
static bool _is_cpu_device(struct device *dev)
|
|
{
|
|
return (dev->bus == &cpu_subsys);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static struct dentry *rootdir;
|
|
|
|
struct em_dbg_info {
|
|
struct em_perf_domain *pd;
|
|
int ps_id;
|
|
};
|
|
|
|
#define DEFINE_EM_DBG_SHOW(name, fname) \
|
|
static int em_debug_##fname##_show(struct seq_file *s, void *unused) \
|
|
{ \
|
|
struct em_dbg_info *em_dbg = s->private; \
|
|
struct em_perf_state *table; \
|
|
unsigned long val; \
|
|
\
|
|
rcu_read_lock(); \
|
|
table = em_perf_state_from_pd(em_dbg->pd); \
|
|
val = table[em_dbg->ps_id].name; \
|
|
rcu_read_unlock(); \
|
|
\
|
|
seq_printf(s, "%lu\n", val); \
|
|
return 0; \
|
|
} \
|
|
DEFINE_SHOW_ATTRIBUTE(em_debug_##fname)
|
|
|
|
DEFINE_EM_DBG_SHOW(frequency, frequency);
|
|
DEFINE_EM_DBG_SHOW(power, power);
|
|
DEFINE_EM_DBG_SHOW(cost, cost);
|
|
DEFINE_EM_DBG_SHOW(performance, performance);
|
|
DEFINE_EM_DBG_SHOW(flags, inefficiency);
|
|
|
|
static void em_debug_create_ps(struct em_perf_domain *em_pd,
|
|
struct em_dbg_info *em_dbg, int i,
|
|
struct dentry *pd)
|
|
{
|
|
struct em_perf_state *table;
|
|
unsigned long freq;
|
|
struct dentry *d;
|
|
char name[24];
|
|
|
|
em_dbg[i].pd = em_pd;
|
|
em_dbg[i].ps_id = i;
|
|
|
|
rcu_read_lock();
|
|
table = em_perf_state_from_pd(em_pd);
|
|
freq = table[i].frequency;
|
|
rcu_read_unlock();
|
|
|
|
snprintf(name, sizeof(name), "ps:%lu", freq);
|
|
|
|
/* Create per-ps directory */
|
|
d = debugfs_create_dir(name, pd);
|
|
debugfs_create_file("frequency", 0444, d, &em_dbg[i],
|
|
&em_debug_frequency_fops);
|
|
debugfs_create_file("power", 0444, d, &em_dbg[i],
|
|
&em_debug_power_fops);
|
|
debugfs_create_file("cost", 0444, d, &em_dbg[i],
|
|
&em_debug_cost_fops);
|
|
debugfs_create_file("performance", 0444, d, &em_dbg[i],
|
|
&em_debug_performance_fops);
|
|
debugfs_create_file("inefficient", 0444, d, &em_dbg[i],
|
|
&em_debug_inefficiency_fops);
|
|
}
|
|
|
|
static int em_debug_cpus_show(struct seq_file *s, void *unused)
|
|
{
|
|
seq_printf(s, "%*pbl\n", cpumask_pr_args(to_cpumask(s->private)));
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(em_debug_cpus);
|
|
|
|
static int em_debug_flags_show(struct seq_file *s, void *unused)
|
|
{
|
|
struct em_perf_domain *pd = s->private;
|
|
|
|
seq_printf(s, "%#lx\n", pd->flags);
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(em_debug_flags);
|
|
|
|
static void em_debug_create_pd(struct device *dev)
|
|
{
|
|
struct em_dbg_info *em_dbg;
|
|
struct dentry *d;
|
|
int i;
|
|
|
|
/* Create the directory of the performance domain */
|
|
d = debugfs_create_dir(dev_name(dev), rootdir);
|
|
|
|
if (_is_cpu_device(dev))
|
|
debugfs_create_file("cpus", 0444, d, dev->em_pd->cpus,
|
|
&em_debug_cpus_fops);
|
|
|
|
debugfs_create_file("flags", 0444, d, dev->em_pd,
|
|
&em_debug_flags_fops);
|
|
|
|
em_dbg = devm_kcalloc(dev, dev->em_pd->nr_perf_states,
|
|
sizeof(*em_dbg), GFP_KERNEL);
|
|
if (!em_dbg)
|
|
return;
|
|
|
|
/* Create a sub-directory for each performance state */
|
|
for (i = 0; i < dev->em_pd->nr_perf_states; i++)
|
|
em_debug_create_ps(dev->em_pd, em_dbg, i, d);
|
|
|
|
}
|
|
|
|
static void em_debug_remove_pd(struct device *dev)
|
|
{
|
|
debugfs_lookup_and_remove(dev_name(dev), rootdir);
|
|
}
|
|
|
|
static int __init em_debug_init(void)
|
|
{
|
|
/* Create /sys/kernel/debug/energy_model directory */
|
|
rootdir = debugfs_create_dir("energy_model", NULL);
|
|
|
|
return 0;
|
|
}
|
|
fs_initcall(em_debug_init);
|
|
#else /* CONFIG_DEBUG_FS */
|
|
static void em_debug_create_pd(struct device *dev) {}
|
|
static void em_debug_remove_pd(struct device *dev) {}
|
|
#endif
|
|
|
|
static void em_destroy_table_rcu(struct rcu_head *rp)
|
|
{
|
|
struct em_perf_table __rcu *table;
|
|
|
|
table = container_of(rp, struct em_perf_table, rcu);
|
|
kfree(table);
|
|
}
|
|
|
|
static void em_release_table_kref(struct kref *kref)
|
|
{
|
|
struct em_perf_table __rcu *table;
|
|
|
|
/* It was the last owner of this table so we can free */
|
|
table = container_of(kref, struct em_perf_table, kref);
|
|
|
|
call_rcu(&table->rcu, em_destroy_table_rcu);
|
|
}
|
|
|
|
/**
|
|
* em_table_free() - Handles safe free of the EM table when needed
|
|
* @table : EM table which is going to be freed
|
|
*
|
|
* No return values.
|
|
*/
|
|
void em_table_free(struct em_perf_table __rcu *table)
|
|
{
|
|
kref_put(&table->kref, em_release_table_kref);
|
|
}
|
|
|
|
/**
|
|
* em_table_alloc() - Allocate a new EM table
|
|
* @pd : EM performance domain for which this must be done
|
|
*
|
|
* Allocate a new EM table and initialize its kref to indicate that it
|
|
* has a user.
|
|
* Returns allocated table or NULL.
|
|
*/
|
|
struct em_perf_table __rcu *em_table_alloc(struct em_perf_domain *pd)
|
|
{
|
|
struct em_perf_table __rcu *table;
|
|
int table_size;
|
|
|
|
table_size = sizeof(struct em_perf_state) * pd->nr_perf_states;
|
|
|
|
table = kzalloc(sizeof(*table) + table_size, GFP_KERNEL);
|
|
if (!table)
|
|
return NULL;
|
|
|
|
kref_init(&table->kref);
|
|
|
|
return table;
|
|
}
|
|
|
|
static void em_init_performance(struct device *dev, struct em_perf_domain *pd,
|
|
struct em_perf_state *table, int nr_states)
|
|
{
|
|
u64 fmax, max_cap;
|
|
int i, cpu;
|
|
|
|
/* This is needed only for CPUs and EAS skip other devices */
|
|
if (!_is_cpu_device(dev))
|
|
return;
|
|
|
|
cpu = cpumask_first(em_span_cpus(pd));
|
|
|
|
/*
|
|
* Calculate the performance value for each frequency with
|
|
* linear relationship. The final CPU capacity might not be ready at
|
|
* boot time, but the EM will be updated a bit later with correct one.
|
|
*/
|
|
fmax = (u64) table[nr_states - 1].frequency;
|
|
max_cap = (u64) arch_scale_cpu_capacity(cpu);
|
|
for (i = 0; i < nr_states; i++)
|
|
table[i].performance = div64_u64(max_cap * table[i].frequency,
|
|
fmax);
|
|
}
|
|
|
|
static int em_compute_costs(struct device *dev, struct em_perf_state *table,
|
|
struct em_data_callback *cb, int nr_states,
|
|
unsigned long flags)
|
|
{
|
|
unsigned long prev_cost = ULONG_MAX;
|
|
int i, ret;
|
|
|
|
/* Compute the cost of each performance state. */
|
|
for (i = nr_states - 1; i >= 0; i--) {
|
|
unsigned long power_res, cost;
|
|
|
|
if ((flags & EM_PERF_DOMAIN_ARTIFICIAL) && cb->get_cost) {
|
|
ret = cb->get_cost(dev, table[i].frequency, &cost);
|
|
if (ret || !cost || cost > EM_MAX_POWER) {
|
|
dev_err(dev, "EM: invalid cost %lu %d\n",
|
|
cost, ret);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
/* increase resolution of 'cost' precision */
|
|
power_res = table[i].power * 10;
|
|
cost = power_res / table[i].performance;
|
|
}
|
|
|
|
table[i].cost = cost;
|
|
|
|
if (table[i].cost >= prev_cost) {
|
|
table[i].flags = EM_PERF_STATE_INEFFICIENT;
|
|
dev_dbg(dev, "EM: OPP:%lu is inefficient\n",
|
|
table[i].frequency);
|
|
} else {
|
|
prev_cost = table[i].cost;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* em_dev_compute_costs() - Calculate cost values for new runtime EM table
|
|
* @dev : Device for which the EM table is to be updated
|
|
* @table : The new EM table that is going to get the costs calculated
|
|
* @nr_states : Number of performance states
|
|
*
|
|
* Calculate the em_perf_state::cost values for new runtime EM table. The
|
|
* values are used for EAS during task placement. It also calculates and sets
|
|
* the efficiency flag for each performance state. When the function finish
|
|
* successfully the EM table is ready to be updated and used by EAS.
|
|
*
|
|
* Return 0 on success or a proper error in case of failure.
|
|
*/
|
|
int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
|
|
int nr_states)
|
|
{
|
|
return em_compute_costs(dev, table, NULL, nr_states, 0);
|
|
}
|
|
|
|
/**
|
|
* em_dev_update_perf_domain() - Update runtime EM table for a device
|
|
* @dev : Device for which the EM is to be updated
|
|
* @new_table : The new EM table that is going to be used from now
|
|
*
|
|
* Update EM runtime modifiable table for the @dev using the provided @table.
|
|
*
|
|
* This function uses a mutex to serialize writers, so it must not be called
|
|
* from a non-sleeping context.
|
|
*
|
|
* Return 0 on success or an error code on failure.
|
|
*/
|
|
int em_dev_update_perf_domain(struct device *dev,
|
|
struct em_perf_table __rcu *new_table)
|
|
{
|
|
struct em_perf_table __rcu *old_table;
|
|
struct em_perf_domain *pd;
|
|
|
|
if (!dev)
|
|
return -EINVAL;
|
|
|
|
/* Serialize update/unregister or concurrent updates */
|
|
mutex_lock(&em_pd_mutex);
|
|
|
|
if (!dev->em_pd) {
|
|
mutex_unlock(&em_pd_mutex);
|
|
return -EINVAL;
|
|
}
|
|
pd = dev->em_pd;
|
|
|
|
kref_get(&new_table->kref);
|
|
|
|
old_table = pd->em_table;
|
|
rcu_assign_pointer(pd->em_table, new_table);
|
|
|
|
em_cpufreq_update_efficiencies(dev, new_table->state);
|
|
|
|
em_table_free(old_table);
|
|
|
|
mutex_unlock(&em_pd_mutex);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(em_dev_update_perf_domain);
|
|
|
|
static int em_create_perf_table(struct device *dev, struct em_perf_domain *pd,
|
|
struct em_perf_state *table,
|
|
struct em_data_callback *cb,
|
|
unsigned long flags)
|
|
{
|
|
unsigned long power, freq, prev_freq = 0;
|
|
int nr_states = pd->nr_perf_states;
|
|
int i, ret;
|
|
|
|
/* Build the list of performance states for this performance domain */
|
|
for (i = 0, freq = 0; i < nr_states; i++, freq++) {
|
|
/*
|
|
* active_power() is a driver callback which ceils 'freq' to
|
|
* lowest performance state of 'dev' above 'freq' and updates
|
|
* 'power' and 'freq' accordingly.
|
|
*/
|
|
ret = cb->active_power(dev, &power, &freq);
|
|
if (ret) {
|
|
dev_err(dev, "EM: invalid perf. state: %d\n",
|
|
ret);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* We expect the driver callback to increase the frequency for
|
|
* higher performance states.
|
|
*/
|
|
if (freq <= prev_freq) {
|
|
dev_err(dev, "EM: non-increasing freq: %lu\n",
|
|
freq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* The power returned by active_state() is expected to be
|
|
* positive and be in range.
|
|
*/
|
|
if (!power || power > EM_MAX_POWER) {
|
|
dev_err(dev, "EM: invalid power: %lu\n",
|
|
power);
|
|
return -EINVAL;
|
|
}
|
|
|
|
table[i].power = power;
|
|
table[i].frequency = prev_freq = freq;
|
|
}
|
|
|
|
em_init_performance(dev, pd, table, nr_states);
|
|
|
|
ret = em_compute_costs(dev, table, cb, nr_states, flags);
|
|
if (ret)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int em_create_pd(struct device *dev, int nr_states,
|
|
struct em_data_callback *cb, cpumask_t *cpus,
|
|
unsigned long flags)
|
|
{
|
|
struct em_perf_table __rcu *em_table;
|
|
struct em_perf_domain *pd;
|
|
struct device *cpu_dev;
|
|
int cpu, ret, num_cpus;
|
|
|
|
if (_is_cpu_device(dev)) {
|
|
num_cpus = cpumask_weight(cpus);
|
|
|
|
/* Prevent max possible energy calculation to not overflow */
|
|
if (num_cpus > EM_MAX_NUM_CPUS) {
|
|
dev_err(dev, "EM: too many CPUs, overflow possible\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pd = kzalloc(sizeof(*pd) + cpumask_size(), GFP_KERNEL);
|
|
if (!pd)
|
|
return -ENOMEM;
|
|
|
|
cpumask_copy(em_span_cpus(pd), cpus);
|
|
} else {
|
|
pd = kzalloc(sizeof(*pd), GFP_KERNEL);
|
|
if (!pd)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pd->nr_perf_states = nr_states;
|
|
|
|
em_table = em_table_alloc(pd);
|
|
if (!em_table)
|
|
goto free_pd;
|
|
|
|
ret = em_create_perf_table(dev, pd, em_table->state, cb, flags);
|
|
if (ret)
|
|
goto free_pd_table;
|
|
|
|
rcu_assign_pointer(pd->em_table, em_table);
|
|
|
|
if (_is_cpu_device(dev))
|
|
for_each_cpu(cpu, cpus) {
|
|
cpu_dev = get_cpu_device(cpu);
|
|
cpu_dev->em_pd = pd;
|
|
}
|
|
|
|
dev->em_pd = pd;
|
|
|
|
return 0;
|
|
|
|
free_pd_table:
|
|
kfree(em_table);
|
|
free_pd:
|
|
kfree(pd);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void
|
|
em_cpufreq_update_efficiencies(struct device *dev, struct em_perf_state *table)
|
|
{
|
|
struct em_perf_domain *pd = dev->em_pd;
|
|
struct cpufreq_policy *policy;
|
|
int found = 0;
|
|
int i, cpu;
|
|
|
|
if (!_is_cpu_device(dev))
|
|
return;
|
|
|
|
/* Try to get a CPU which is active and in this PD */
|
|
cpu = cpumask_first_and(em_span_cpus(pd), cpu_active_mask);
|
|
if (cpu >= nr_cpu_ids) {
|
|
dev_warn(dev, "EM: No online CPU for CPUFreq policy\n");
|
|
return;
|
|
}
|
|
|
|
policy = cpufreq_cpu_get(cpu);
|
|
if (!policy) {
|
|
dev_warn(dev, "EM: Access to CPUFreq policy failed\n");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < pd->nr_perf_states; i++) {
|
|
if (!(table[i].flags & EM_PERF_STATE_INEFFICIENT))
|
|
continue;
|
|
|
|
if (!cpufreq_table_set_inefficient(policy, table[i].frequency))
|
|
found++;
|
|
}
|
|
|
|
cpufreq_cpu_put(policy);
|
|
|
|
if (!found)
|
|
return;
|
|
|
|
/*
|
|
* Efficiencies have been installed in CPUFreq, inefficient frequencies
|
|
* will be skipped. The EM can do the same.
|
|
*/
|
|
pd->flags |= EM_PERF_DOMAIN_SKIP_INEFFICIENCIES;
|
|
}
|
|
|
|
/**
|
|
* em_pd_get() - Return the performance domain for a device
|
|
* @dev : Device to find the performance domain for
|
|
*
|
|
* Returns the performance domain to which @dev belongs, or NULL if it doesn't
|
|
* exist.
|
|
*/
|
|
struct em_perf_domain *em_pd_get(struct device *dev)
|
|
{
|
|
if (IS_ERR_OR_NULL(dev))
|
|
return NULL;
|
|
|
|
return dev->em_pd;
|
|
}
|
|
EXPORT_SYMBOL_GPL(em_pd_get);
|
|
|
|
/**
|
|
* em_cpu_get() - Return the performance domain for a CPU
|
|
* @cpu : CPU to find the performance domain for
|
|
*
|
|
* Returns the performance domain to which @cpu belongs, or NULL if it doesn't
|
|
* exist.
|
|
*/
|
|
struct em_perf_domain *em_cpu_get(int cpu)
|
|
{
|
|
struct device *cpu_dev;
|
|
|
|
cpu_dev = get_cpu_device(cpu);
|
|
if (!cpu_dev)
|
|
return NULL;
|
|
|
|
return em_pd_get(cpu_dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(em_cpu_get);
|
|
|
|
/**
|
|
* em_dev_register_perf_domain() - Register the Energy Model (EM) for a device
|
|
* @dev : Device for which the EM is to register
|
|
* @nr_states : Number of performance states to register
|
|
* @cb : Callback functions providing the data of the Energy Model
|
|
* @cpus : Pointer to cpumask_t, which in case of a CPU device is
|
|
* obligatory. It can be taken from i.e. 'policy->cpus'. For other
|
|
* type of devices this should be set to NULL.
|
|
* @microwatts : Flag indicating that the power values are in micro-Watts or
|
|
* in some other scale. It must be set properly.
|
|
*
|
|
* Create Energy Model tables for a performance domain using the callbacks
|
|
* defined in cb.
|
|
*
|
|
* The @microwatts is important to set with correct value. Some kernel
|
|
* sub-systems might rely on this flag and check if all devices in the EM are
|
|
* using the same scale.
|
|
*
|
|
* If multiple clients register the same performance domain, all but the first
|
|
* registration will be ignored.
|
|
*
|
|
* Return 0 on success
|
|
*/
|
|
int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
|
|
struct em_data_callback *cb, cpumask_t *cpus,
|
|
bool microwatts)
|
|
{
|
|
unsigned long cap, prev_cap = 0;
|
|
unsigned long flags = 0;
|
|
int cpu, ret;
|
|
|
|
if (!dev || !nr_states || !cb)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Use a mutex to serialize the registration of performance domains and
|
|
* let the driver-defined callback functions sleep.
|
|
*/
|
|
mutex_lock(&em_pd_mutex);
|
|
|
|
if (dev->em_pd) {
|
|
ret = -EEXIST;
|
|
goto unlock;
|
|
}
|
|
|
|
if (_is_cpu_device(dev)) {
|
|
if (!cpus) {
|
|
dev_err(dev, "EM: invalid CPU mask\n");
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
for_each_cpu(cpu, cpus) {
|
|
if (em_cpu_get(cpu)) {
|
|
dev_err(dev, "EM: exists for CPU%d\n", cpu);
|
|
ret = -EEXIST;
|
|
goto unlock;
|
|
}
|
|
/*
|
|
* All CPUs of a domain must have the same
|
|
* micro-architecture since they all share the same
|
|
* table.
|
|
*/
|
|
cap = arch_scale_cpu_capacity(cpu);
|
|
if (prev_cap && prev_cap != cap) {
|
|
dev_err(dev, "EM: CPUs of %*pbl must have the same capacity\n",
|
|
cpumask_pr_args(cpus));
|
|
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
prev_cap = cap;
|
|
}
|
|
}
|
|
|
|
if (microwatts)
|
|
flags |= EM_PERF_DOMAIN_MICROWATTS;
|
|
else if (cb->get_cost)
|
|
flags |= EM_PERF_DOMAIN_ARTIFICIAL;
|
|
|
|
/*
|
|
* EM only supports uW (exception is artificial EM).
|
|
* Therefore, check and force the drivers to provide
|
|
* power in uW.
|
|
*/
|
|
if (!microwatts && !(flags & EM_PERF_DOMAIN_ARTIFICIAL)) {
|
|
dev_err(dev, "EM: only supports uW power values\n");
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = em_create_pd(dev, nr_states, cb, cpus, flags);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
dev->em_pd->flags |= flags;
|
|
|
|
em_cpufreq_update_efficiencies(dev, dev->em_pd->em_table->state);
|
|
|
|
em_debug_create_pd(dev);
|
|
dev_info(dev, "EM: created perf domain\n");
|
|
|
|
unlock:
|
|
mutex_unlock(&em_pd_mutex);
|
|
|
|
if (_is_cpu_device(dev))
|
|
em_check_capacity_update();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(em_dev_register_perf_domain);
|
|
|
|
/**
|
|
* em_dev_unregister_perf_domain() - Unregister Energy Model (EM) for a device
|
|
* @dev : Device for which the EM is registered
|
|
*
|
|
* Unregister the EM for the specified @dev (but not a CPU device).
|
|
*/
|
|
void em_dev_unregister_perf_domain(struct device *dev)
|
|
{
|
|
if (IS_ERR_OR_NULL(dev) || !dev->em_pd)
|
|
return;
|
|
|
|
if (_is_cpu_device(dev))
|
|
return;
|
|
|
|
/*
|
|
* The mutex separates all register/unregister requests and protects
|
|
* from potential clean-up/setup issues in the debugfs directories.
|
|
* The debugfs directory name is the same as device's name.
|
|
*/
|
|
mutex_lock(&em_pd_mutex);
|
|
em_debug_remove_pd(dev);
|
|
|
|
em_table_free(dev->em_pd->em_table);
|
|
|
|
kfree(dev->em_pd);
|
|
dev->em_pd = NULL;
|
|
mutex_unlock(&em_pd_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(em_dev_unregister_perf_domain);
|
|
|
|
static struct em_perf_table __rcu *em_table_dup(struct em_perf_domain *pd)
|
|
{
|
|
struct em_perf_table __rcu *em_table;
|
|
struct em_perf_state *ps, *new_ps;
|
|
int ps_size;
|
|
|
|
em_table = em_table_alloc(pd);
|
|
if (!em_table)
|
|
return NULL;
|
|
|
|
new_ps = em_table->state;
|
|
|
|
rcu_read_lock();
|
|
ps = em_perf_state_from_pd(pd);
|
|
/* Initialize data based on old table */
|
|
ps_size = sizeof(struct em_perf_state) * pd->nr_perf_states;
|
|
memcpy(new_ps, ps, ps_size);
|
|
|
|
rcu_read_unlock();
|
|
|
|
return em_table;
|
|
}
|
|
|
|
static int em_recalc_and_update(struct device *dev, struct em_perf_domain *pd,
|
|
struct em_perf_table __rcu *em_table)
|
|
{
|
|
int ret;
|
|
|
|
ret = em_compute_costs(dev, em_table->state, NULL, pd->nr_perf_states,
|
|
pd->flags);
|
|
if (ret)
|
|
goto free_em_table;
|
|
|
|
ret = em_dev_update_perf_domain(dev, em_table);
|
|
if (ret)
|
|
goto free_em_table;
|
|
|
|
/*
|
|
* This is one-time-update, so give up the ownership in this updater.
|
|
* The EM framework has incremented the usage counter and from now
|
|
* will keep the reference (then free the memory when needed).
|
|
*/
|
|
free_em_table:
|
|
em_table_free(em_table);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Adjustment of CPU performance values after boot, when all CPUs capacites
|
|
* are correctly calculated.
|
|
*/
|
|
static void em_adjust_new_capacity(struct device *dev,
|
|
struct em_perf_domain *pd,
|
|
u64 max_cap)
|
|
{
|
|
struct em_perf_table __rcu *em_table;
|
|
|
|
em_table = em_table_dup(pd);
|
|
if (!em_table) {
|
|
dev_warn(dev, "EM: allocation failed\n");
|
|
return;
|
|
}
|
|
|
|
em_init_performance(dev, pd, em_table->state, pd->nr_perf_states);
|
|
|
|
em_recalc_and_update(dev, pd, em_table);
|
|
}
|
|
|
|
static void em_check_capacity_update(void)
|
|
{
|
|
cpumask_var_t cpu_done_mask;
|
|
struct em_perf_state *table;
|
|
struct em_perf_domain *pd;
|
|
unsigned long cpu_capacity;
|
|
int cpu;
|
|
|
|
if (!zalloc_cpumask_var(&cpu_done_mask, GFP_KERNEL)) {
|
|
pr_warn("no free memory\n");
|
|
return;
|
|
}
|
|
|
|
/* Check if CPUs capacity has changed than update EM */
|
|
for_each_possible_cpu(cpu) {
|
|
struct cpufreq_policy *policy;
|
|
unsigned long em_max_perf;
|
|
struct device *dev;
|
|
|
|
if (cpumask_test_cpu(cpu, cpu_done_mask))
|
|
continue;
|
|
|
|
policy = cpufreq_cpu_get(cpu);
|
|
if (!policy) {
|
|
pr_debug("Accessing cpu%d policy failed\n", cpu);
|
|
schedule_delayed_work(&em_update_work,
|
|
msecs_to_jiffies(1000));
|
|
break;
|
|
}
|
|
cpufreq_cpu_put(policy);
|
|
|
|
pd = em_cpu_get(cpu);
|
|
if (!pd || em_is_artificial(pd))
|
|
continue;
|
|
|
|
cpumask_or(cpu_done_mask, cpu_done_mask,
|
|
em_span_cpus(pd));
|
|
|
|
cpu_capacity = arch_scale_cpu_capacity(cpu);
|
|
|
|
rcu_read_lock();
|
|
table = em_perf_state_from_pd(pd);
|
|
em_max_perf = table[pd->nr_perf_states - 1].performance;
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* Check if the CPU capacity has been adjusted during boot
|
|
* and trigger the update for new performance values.
|
|
*/
|
|
if (em_max_perf == cpu_capacity)
|
|
continue;
|
|
|
|
pr_debug("updating cpu%d cpu_cap=%lu old capacity=%lu\n",
|
|
cpu, cpu_capacity, em_max_perf);
|
|
|
|
dev = get_cpu_device(cpu);
|
|
em_adjust_new_capacity(dev, pd, cpu_capacity);
|
|
}
|
|
|
|
free_cpumask_var(cpu_done_mask);
|
|
}
|
|
|
|
static void em_update_workfn(struct work_struct *work)
|
|
{
|
|
em_check_capacity_update();
|
|
}
|
|
|
|
/**
|
|
* em_dev_update_chip_binning() - Update Energy Model after the new voltage
|
|
* information is present in the OPPs.
|
|
* @dev : Device for which the Energy Model has to be updated.
|
|
*
|
|
* This function allows to update easily the EM with new values available in
|
|
* the OPP framework and DT. It can be used after the chip has been properly
|
|
* verified by device drivers and the voltages adjusted for the 'chip binning'.
|
|
*/
|
|
int em_dev_update_chip_binning(struct device *dev)
|
|
{
|
|
struct em_perf_table __rcu *em_table;
|
|
struct em_perf_domain *pd;
|
|
int i, ret;
|
|
|
|
if (IS_ERR_OR_NULL(dev))
|
|
return -EINVAL;
|
|
|
|
pd = em_pd_get(dev);
|
|
if (!pd) {
|
|
dev_warn(dev, "Couldn't find Energy Model\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
em_table = em_table_dup(pd);
|
|
if (!em_table) {
|
|
dev_warn(dev, "EM: allocation failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Update power values which might change due to new voltage in OPPs */
|
|
for (i = 0; i < pd->nr_perf_states; i++) {
|
|
unsigned long freq = em_table->state[i].frequency;
|
|
unsigned long power;
|
|
|
|
ret = dev_pm_opp_calc_power(dev, &power, &freq);
|
|
if (ret) {
|
|
em_table_free(em_table);
|
|
return ret;
|
|
}
|
|
|
|
em_table->state[i].power = power;
|
|
}
|
|
|
|
return em_recalc_and_update(dev, pd, em_table);
|
|
}
|
|
EXPORT_SYMBOL_GPL(em_dev_update_chip_binning);
|