linux-next/io_uring/kbuf.c
Linus Torvalds 5b9a7bb72f for-6.4/io_uring-2023-04-21
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmRCvawQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpiKTEACvp0jm3Lyhxb8RMsx5T6Ko0pFH3DIymiL4
 xpoZmAUflOjD0c+99FwHRQqKKXuo3OelhW+YOm0N6OOAt6JMSGmKpZh0UNJx+Fgj
 wMwiQ0X3Y5SaAsr5ZpXM+G1BV7ajihsMpu8/a718ERB3U3cLDz2qJfnzJh+E5Ip5
 pYB4vS3+/FAER2MYQ7IPeovch2wWYtxDPztOxNX6SORu3OvpWiz1GR/+8u0tqj50
 ROq97Jwjh5Tl4zP356EUSj/Vkfdr2yb+NlLbun8My5x8tYftZjnrNQ/+qeJNLwB8
 tWTrg166ox/VX3aYZruAgUPv0IyGPZg7qZV5R72ChBK3VhIbOOLOCm/V6dhvl/XH
 vu2FG7J8WylWHmc+OU8u7TeSJdrwxTLs4e2IFUBK9ymAYFp0Q9S924fgvSYsFvVB
 iNn58SPRIbuA4SPtRfCd7pENtZW/QKfBC5CYK+pjsZVX40c9dbe40foVu4t2/EAo
 gi9+gSWEUVRRW2osxjaHXh78cW63g0j9bNfS6n1Vy32Oo5Mwm7n+bVWqCU5bCBXI
 MpPOk6AgME3UPwFzGzSmx+PVw8VacPxYP1NF8RFTCwj7OowFnrolJtruDmKJgXWY
 BN41EDo41k/C5mEu16Jr9rAkHeVhHaNZ+JhyDrzv8llJ/rv+4zEJw9SrhnpufmOX
 +YERd/ndAw==
 =Erfk
 -----END PGP SIGNATURE-----

Merge tag 'for-6.4/io_uring-2023-04-21' of git://git.kernel.dk/linux

Pull io_uring updates from Jens Axboe:

 - Cleanup of the io-wq per-node mapping, notably getting rid of it so
   we just have a single io_wq entry per ring (Breno)

 - Followup to the above, move accounting to io_wq as well and
   completely drop struct io_wqe (Gabriel)

 - Enable KASAN for the internal io_uring caches (Breno)

 - Add support for multishot timeouts. Some applications use timeouts to
   wake someone waiting on completion entries, and this makes it a bit
   easier to just have a recurring timer rather than needing to rearm it
   every time (David)

 - Support archs that have shared cache coloring between userspace and
   the kernel, and hence have strict address requirements for mmap'ing
   the ring into userspace. This should only be parisc/hppa. (Helge, me)

 - XFS has supported O_DIRECT writes without needing to lock the inode
   exclusively for a long time, and ext4 now supports it as well. This
   is true for the common cases of not extending the file size. Flag the
   fs as having that feature, and utilize that to avoid serializing
   those writes in io_uring (me)

 - Enable completion batching for uring commands (me)

 - Revert patch adding io_uring restriction to what can be GUP mapped or
   not. This does not belong in io_uring, as io_uring isn't really
   special in this regard. Since this is also getting in the way of
   cleanups and improvements to the GUP code, get rid of if (me)

 - A few series greatly reducing the complexity of registered resources,
   like buffers or files. Not only does this clean up the code a lot,
   the simplified code is also a LOT more efficient (Pavel)

 - Series optimizing how we wait for events and run task_work related to
   it (Pavel)

 - Fixes for file/buffer unregistration with DEFER_TASKRUN (Pavel)

 - Misc cleanups and improvements (Pavel, me)

* tag 'for-6.4/io_uring-2023-04-21' of git://git.kernel.dk/linux: (71 commits)
  Revert "io_uring/rsrc: disallow multi-source reg buffers"
  io_uring: add support for multishot timeouts
  io_uring/rsrc: disassociate nodes and rsrc_data
  io_uring/rsrc: devirtualise rsrc put callbacks
  io_uring/rsrc: pass node to io_rsrc_put_work()
  io_uring/rsrc: inline io_rsrc_put_work()
  io_uring/rsrc: add empty flag in rsrc_node
  io_uring/rsrc: merge nodes and io_rsrc_put
  io_uring/rsrc: infer node from ctx on io_queue_rsrc_removal
  io_uring/rsrc: remove unused io_rsrc_node::llist
  io_uring/rsrc: refactor io_queue_rsrc_removal
  io_uring/rsrc: simplify single file node switching
  io_uring/rsrc: clean up __io_sqe_buffers_update()
  io_uring/rsrc: inline switch_start fast path
  io_uring/rsrc: remove rsrc_data refs
  io_uring/rsrc: fix DEFER_TASKRUN rsrc quiesce
  io_uring/rsrc: use wq for quiescing
  io_uring/rsrc: refactor io_rsrc_ref_quiesce
  io_uring/rsrc: remove io_rsrc_node::done
  io_uring/rsrc: use nospec'ed indexes
  ...
2023-04-26 12:40:31 -07:00

637 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/namei.h>
#include <linux/poll.h>
#include <linux/io_uring.h>
#include <uapi/linux/io_uring.h>
#include "io_uring.h"
#include "opdef.h"
#include "kbuf.h"
#define IO_BUFFER_LIST_BUF_PER_PAGE (PAGE_SIZE / sizeof(struct io_uring_buf))
#define BGID_ARRAY 64
struct io_provide_buf {
struct file *file;
__u64 addr;
__u32 len;
__u32 bgid;
__u16 nbufs;
__u16 bid;
};
static inline struct io_buffer_list *io_buffer_get_list(struct io_ring_ctx *ctx,
unsigned int bgid)
{
if (ctx->io_bl && bgid < BGID_ARRAY)
return &ctx->io_bl[bgid];
return xa_load(&ctx->io_bl_xa, bgid);
}
static int io_buffer_add_list(struct io_ring_ctx *ctx,
struct io_buffer_list *bl, unsigned int bgid)
{
bl->bgid = bgid;
if (bgid < BGID_ARRAY)
return 0;
return xa_err(xa_store(&ctx->io_bl_xa, bgid, bl, GFP_KERNEL));
}
void io_kbuf_recycle_legacy(struct io_kiocb *req, unsigned issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
struct io_buffer *buf;
/*
* For legacy provided buffer mode, don't recycle if we already did
* IO to this buffer. For ring-mapped provided buffer mode, we should
* increment ring->head to explicitly monopolize the buffer to avoid
* multiple use.
*/
if (req->flags & REQ_F_PARTIAL_IO)
return;
io_ring_submit_lock(ctx, issue_flags);
buf = req->kbuf;
bl = io_buffer_get_list(ctx, buf->bgid);
list_add(&buf->list, &bl->buf_list);
req->flags &= ~REQ_F_BUFFER_SELECTED;
req->buf_index = buf->bgid;
io_ring_submit_unlock(ctx, issue_flags);
return;
}
unsigned int __io_put_kbuf(struct io_kiocb *req, unsigned issue_flags)
{
unsigned int cflags;
/*
* We can add this buffer back to two lists:
*
* 1) The io_buffers_cache list. This one is protected by the
* ctx->uring_lock. If we already hold this lock, add back to this
* list as we can grab it from issue as well.
* 2) The io_buffers_comp list. This one is protected by the
* ctx->completion_lock.
*
* We migrate buffers from the comp_list to the issue cache list
* when we need one.
*/
if (req->flags & REQ_F_BUFFER_RING) {
/* no buffers to recycle for this case */
cflags = __io_put_kbuf_list(req, NULL);
} else if (issue_flags & IO_URING_F_UNLOCKED) {
struct io_ring_ctx *ctx = req->ctx;
spin_lock(&ctx->completion_lock);
cflags = __io_put_kbuf_list(req, &ctx->io_buffers_comp);
spin_unlock(&ctx->completion_lock);
} else {
lockdep_assert_held(&req->ctx->uring_lock);
cflags = __io_put_kbuf_list(req, &req->ctx->io_buffers_cache);
}
return cflags;
}
static void __user *io_provided_buffer_select(struct io_kiocb *req, size_t *len,
struct io_buffer_list *bl)
{
if (!list_empty(&bl->buf_list)) {
struct io_buffer *kbuf;
kbuf = list_first_entry(&bl->buf_list, struct io_buffer, list);
list_del(&kbuf->list);
if (*len == 0 || *len > kbuf->len)
*len = kbuf->len;
req->flags |= REQ_F_BUFFER_SELECTED;
req->kbuf = kbuf;
req->buf_index = kbuf->bid;
return u64_to_user_ptr(kbuf->addr);
}
return NULL;
}
static void __user *io_ring_buffer_select(struct io_kiocb *req, size_t *len,
struct io_buffer_list *bl,
unsigned int issue_flags)
{
struct io_uring_buf_ring *br = bl->buf_ring;
struct io_uring_buf *buf;
__u16 head = bl->head;
if (unlikely(smp_load_acquire(&br->tail) == head))
return NULL;
head &= bl->mask;
/* mmaped buffers are always contig */
if (bl->is_mmap || head < IO_BUFFER_LIST_BUF_PER_PAGE) {
buf = &br->bufs[head];
} else {
int off = head & (IO_BUFFER_LIST_BUF_PER_PAGE - 1);
int index = head / IO_BUFFER_LIST_BUF_PER_PAGE;
buf = page_address(bl->buf_pages[index]);
buf += off;
}
if (*len == 0 || *len > buf->len)
*len = buf->len;
req->flags |= REQ_F_BUFFER_RING;
req->buf_list = bl;
req->buf_index = buf->bid;
if (issue_flags & IO_URING_F_UNLOCKED || !file_can_poll(req->file)) {
/*
* If we came in unlocked, we have no choice but to consume the
* buffer here, otherwise nothing ensures that the buffer won't
* get used by others. This does mean it'll be pinned until the
* IO completes, coming in unlocked means we're being called from
* io-wq context and there may be further retries in async hybrid
* mode. For the locked case, the caller must call commit when
* the transfer completes (or if we get -EAGAIN and must poll of
* retry).
*/
req->buf_list = NULL;
bl->head++;
}
return u64_to_user_ptr(buf->addr);
}
void __user *io_buffer_select(struct io_kiocb *req, size_t *len,
unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
void __user *ret = NULL;
io_ring_submit_lock(req->ctx, issue_flags);
bl = io_buffer_get_list(ctx, req->buf_index);
if (likely(bl)) {
if (bl->is_mapped)
ret = io_ring_buffer_select(req, len, bl, issue_flags);
else
ret = io_provided_buffer_select(req, len, bl);
}
io_ring_submit_unlock(req->ctx, issue_flags);
return ret;
}
static __cold int io_init_bl_list(struct io_ring_ctx *ctx)
{
int i;
ctx->io_bl = kcalloc(BGID_ARRAY, sizeof(struct io_buffer_list),
GFP_KERNEL);
if (!ctx->io_bl)
return -ENOMEM;
for (i = 0; i < BGID_ARRAY; i++) {
INIT_LIST_HEAD(&ctx->io_bl[i].buf_list);
ctx->io_bl[i].bgid = i;
}
return 0;
}
static int __io_remove_buffers(struct io_ring_ctx *ctx,
struct io_buffer_list *bl, unsigned nbufs)
{
unsigned i = 0;
/* shouldn't happen */
if (!nbufs)
return 0;
if (bl->is_mapped) {
i = bl->buf_ring->tail - bl->head;
if (bl->is_mmap) {
struct page *page;
page = virt_to_head_page(bl->buf_ring);
if (put_page_testzero(page))
free_compound_page(page);
bl->buf_ring = NULL;
bl->is_mmap = 0;
} else if (bl->buf_nr_pages) {
int j;
for (j = 0; j < bl->buf_nr_pages; j++)
unpin_user_page(bl->buf_pages[j]);
kvfree(bl->buf_pages);
bl->buf_pages = NULL;
bl->buf_nr_pages = 0;
}
/* make sure it's seen as empty */
INIT_LIST_HEAD(&bl->buf_list);
bl->is_mapped = 0;
return i;
}
/* protects io_buffers_cache */
lockdep_assert_held(&ctx->uring_lock);
while (!list_empty(&bl->buf_list)) {
struct io_buffer *nxt;
nxt = list_first_entry(&bl->buf_list, struct io_buffer, list);
list_move(&nxt->list, &ctx->io_buffers_cache);
if (++i == nbufs)
return i;
cond_resched();
}
return i;
}
void io_destroy_buffers(struct io_ring_ctx *ctx)
{
struct io_buffer_list *bl;
unsigned long index;
int i;
for (i = 0; i < BGID_ARRAY; i++) {
if (!ctx->io_bl)
break;
__io_remove_buffers(ctx, &ctx->io_bl[i], -1U);
}
xa_for_each(&ctx->io_bl_xa, index, bl) {
xa_erase(&ctx->io_bl_xa, bl->bgid);
__io_remove_buffers(ctx, bl, -1U);
kfree(bl);
}
while (!list_empty(&ctx->io_buffers_pages)) {
struct page *page;
page = list_first_entry(&ctx->io_buffers_pages, struct page, lru);
list_del_init(&page->lru);
__free_page(page);
}
}
int io_remove_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
u64 tmp;
if (sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
sqe->splice_fd_in)
return -EINVAL;
tmp = READ_ONCE(sqe->fd);
if (!tmp || tmp > USHRT_MAX)
return -EINVAL;
memset(p, 0, sizeof(*p));
p->nbufs = tmp;
p->bgid = READ_ONCE(sqe->buf_group);
return 0;
}
int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
int ret = 0;
io_ring_submit_lock(ctx, issue_flags);
ret = -ENOENT;
bl = io_buffer_get_list(ctx, p->bgid);
if (bl) {
ret = -EINVAL;
/* can't use provide/remove buffers command on mapped buffers */
if (!bl->is_mapped)
ret = __io_remove_buffers(ctx, bl, p->nbufs);
}
io_ring_submit_unlock(ctx, issue_flags);
if (ret < 0)
req_set_fail(req);
io_req_set_res(req, ret, 0);
return IOU_OK;
}
int io_provide_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
unsigned long size, tmp_check;
struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
u64 tmp;
if (sqe->rw_flags || sqe->splice_fd_in)
return -EINVAL;
tmp = READ_ONCE(sqe->fd);
if (!tmp || tmp > USHRT_MAX)
return -E2BIG;
p->nbufs = tmp;
p->addr = READ_ONCE(sqe->addr);
p->len = READ_ONCE(sqe->len);
if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
&size))
return -EOVERFLOW;
if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
return -EOVERFLOW;
size = (unsigned long)p->len * p->nbufs;
if (!access_ok(u64_to_user_ptr(p->addr), size))
return -EFAULT;
p->bgid = READ_ONCE(sqe->buf_group);
tmp = READ_ONCE(sqe->off);
if (tmp > USHRT_MAX)
return -E2BIG;
if (tmp + p->nbufs >= USHRT_MAX)
return -EINVAL;
p->bid = tmp;
return 0;
}
static int io_refill_buffer_cache(struct io_ring_ctx *ctx)
{
struct io_buffer *buf;
struct page *page;
int bufs_in_page;
/*
* Completions that don't happen inline (eg not under uring_lock) will
* add to ->io_buffers_comp. If we don't have any free buffers, check
* the completion list and splice those entries first.
*/
if (!list_empty_careful(&ctx->io_buffers_comp)) {
spin_lock(&ctx->completion_lock);
if (!list_empty(&ctx->io_buffers_comp)) {
list_splice_init(&ctx->io_buffers_comp,
&ctx->io_buffers_cache);
spin_unlock(&ctx->completion_lock);
return 0;
}
spin_unlock(&ctx->completion_lock);
}
/*
* No free buffers and no completion entries either. Allocate a new
* page worth of buffer entries and add those to our freelist.
*/
page = alloc_page(GFP_KERNEL_ACCOUNT);
if (!page)
return -ENOMEM;
list_add(&page->lru, &ctx->io_buffers_pages);
buf = page_address(page);
bufs_in_page = PAGE_SIZE / sizeof(*buf);
while (bufs_in_page) {
list_add_tail(&buf->list, &ctx->io_buffers_cache);
buf++;
bufs_in_page--;
}
return 0;
}
static int io_add_buffers(struct io_ring_ctx *ctx, struct io_provide_buf *pbuf,
struct io_buffer_list *bl)
{
struct io_buffer *buf;
u64 addr = pbuf->addr;
int i, bid = pbuf->bid;
for (i = 0; i < pbuf->nbufs; i++) {
if (list_empty(&ctx->io_buffers_cache) &&
io_refill_buffer_cache(ctx))
break;
buf = list_first_entry(&ctx->io_buffers_cache, struct io_buffer,
list);
list_move_tail(&buf->list, &bl->buf_list);
buf->addr = addr;
buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
buf->bid = bid;
buf->bgid = pbuf->bgid;
addr += pbuf->len;
bid++;
cond_resched();
}
return i ? 0 : -ENOMEM;
}
int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
int ret = 0;
io_ring_submit_lock(ctx, issue_flags);
if (unlikely(p->bgid < BGID_ARRAY && !ctx->io_bl)) {
ret = io_init_bl_list(ctx);
if (ret)
goto err;
}
bl = io_buffer_get_list(ctx, p->bgid);
if (unlikely(!bl)) {
bl = kzalloc(sizeof(*bl), GFP_KERNEL_ACCOUNT);
if (!bl) {
ret = -ENOMEM;
goto err;
}
INIT_LIST_HEAD(&bl->buf_list);
ret = io_buffer_add_list(ctx, bl, p->bgid);
if (ret) {
kfree(bl);
goto err;
}
}
/* can't add buffers via this command for a mapped buffer ring */
if (bl->is_mapped) {
ret = -EINVAL;
goto err;
}
ret = io_add_buffers(ctx, p, bl);
err:
io_ring_submit_unlock(ctx, issue_flags);
if (ret < 0)
req_set_fail(req);
io_req_set_res(req, ret, 0);
return IOU_OK;
}
static int io_pin_pbuf_ring(struct io_uring_buf_reg *reg,
struct io_buffer_list *bl)
{
struct io_uring_buf_ring *br;
struct page **pages;
int nr_pages;
pages = io_pin_pages(reg->ring_addr,
flex_array_size(br, bufs, reg->ring_entries),
&nr_pages);
if (IS_ERR(pages))
return PTR_ERR(pages);
br = page_address(pages[0]);
#ifdef SHM_COLOUR
/*
* On platforms that have specific aliasing requirements, SHM_COLOUR
* is set and we must guarantee that the kernel and user side align
* nicely. We cannot do that if IOU_PBUF_RING_MMAP isn't set and
* the application mmap's the provided ring buffer. Fail the request
* if we, by chance, don't end up with aligned addresses. The app
* should use IOU_PBUF_RING_MMAP instead, and liburing will handle
* this transparently.
*/
if ((reg->ring_addr | (unsigned long) br) & (SHM_COLOUR - 1)) {
int i;
for (i = 0; i < nr_pages; i++)
unpin_user_page(pages[i]);
return -EINVAL;
}
#endif
bl->buf_pages = pages;
bl->buf_nr_pages = nr_pages;
bl->buf_ring = br;
bl->is_mapped = 1;
bl->is_mmap = 0;
return 0;
}
static int io_alloc_pbuf_ring(struct io_uring_buf_reg *reg,
struct io_buffer_list *bl)
{
gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
size_t ring_size;
void *ptr;
ring_size = reg->ring_entries * sizeof(struct io_uring_buf_ring);
ptr = (void *) __get_free_pages(gfp, get_order(ring_size));
if (!ptr)
return -ENOMEM;
bl->buf_ring = ptr;
bl->is_mapped = 1;
bl->is_mmap = 1;
return 0;
}
int io_register_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
{
struct io_uring_buf_reg reg;
struct io_buffer_list *bl, *free_bl = NULL;
int ret;
if (copy_from_user(&reg, arg, sizeof(reg)))
return -EFAULT;
if (reg.resv[0] || reg.resv[1] || reg.resv[2])
return -EINVAL;
if (reg.flags & ~IOU_PBUF_RING_MMAP)
return -EINVAL;
if (!(reg.flags & IOU_PBUF_RING_MMAP)) {
if (!reg.ring_addr)
return -EFAULT;
if (reg.ring_addr & ~PAGE_MASK)
return -EINVAL;
} else {
if (reg.ring_addr)
return -EINVAL;
}
if (!is_power_of_2(reg.ring_entries))
return -EINVAL;
/* cannot disambiguate full vs empty due to head/tail size */
if (reg.ring_entries >= 65536)
return -EINVAL;
if (unlikely(reg.bgid < BGID_ARRAY && !ctx->io_bl)) {
int ret = io_init_bl_list(ctx);
if (ret)
return ret;
}
bl = io_buffer_get_list(ctx, reg.bgid);
if (bl) {
/* if mapped buffer ring OR classic exists, don't allow */
if (bl->is_mapped || !list_empty(&bl->buf_list))
return -EEXIST;
} else {
free_bl = bl = kzalloc(sizeof(*bl), GFP_KERNEL);
if (!bl)
return -ENOMEM;
}
if (!(reg.flags & IOU_PBUF_RING_MMAP))
ret = io_pin_pbuf_ring(&reg, bl);
else
ret = io_alloc_pbuf_ring(&reg, bl);
if (!ret) {
bl->nr_entries = reg.ring_entries;
bl->mask = reg.ring_entries - 1;
io_buffer_add_list(ctx, bl, reg.bgid);
return 0;
}
kfree(free_bl);
return ret;
}
int io_unregister_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
{
struct io_uring_buf_reg reg;
struct io_buffer_list *bl;
if (copy_from_user(&reg, arg, sizeof(reg)))
return -EFAULT;
if (reg.resv[0] || reg.resv[1] || reg.resv[2])
return -EINVAL;
if (reg.flags)
return -EINVAL;
bl = io_buffer_get_list(ctx, reg.bgid);
if (!bl)
return -ENOENT;
if (!bl->is_mapped)
return -EINVAL;
__io_remove_buffers(ctx, bl, -1U);
if (bl->bgid >= BGID_ARRAY) {
xa_erase(&ctx->io_bl_xa, bl->bgid);
kfree(bl);
}
return 0;
}
void *io_pbuf_get_address(struct io_ring_ctx *ctx, unsigned long bgid)
{
struct io_buffer_list *bl;
bl = io_buffer_get_list(ctx, bgid);
if (!bl || !bl->is_mmap)
return NULL;
return bl->buf_ring;
}