linux-next/drivers/hwmon/coretemp.c
Linus Torvalds 15223fdbdf hwmon updates for v6.9
* New drivers for
 
   - Amphenol ChipCap 2
 
   - ASPEED g6 PWM/Fan tach
 
   - Astera Labs PT5161L retimer
 
   - ASUS ROG RYUJIN II 360 AIO cooler
 
   - LTC4282
 
   - Microsoft Surface devices
 
   - MPS MPQ8785 Synchronous Step-Down Converter
 
   - NZXT Kraken X and Z series AIO CPU coolers
 
 * Additional chip support in existing drivers
 
   - Ayaneo Air Plus 7320u (oxp-sensors)
 
   - INA260 (ina2xx)
 
   - XPS 9315 (dell-smm)
 
   - MSI customer ID (nct6683)
 
 * Devicetree bindings updates
 
   - Common schema for hardware monitoring devices
 
   - Common schema for fans
 
   - Update chip descriptions to use common schema
 
   - Document regulator properties in several drivers
 
   - Explicit bindings for infineon buck converters
 
 * Other improvements
 
   - Replaced rbtree with maple tree register cache in several drivers
 
   - Added support for humidity min/max alarm and volatage fault attributes
     to hwmon core
 
   - Dropped non-functional I2C_CLASS_HWMON support for drivers w/o detect()
 
   - Dropped obsolete and redundant entried from MAINTAINERS
 
   - Cleaned up axi-fan-control and coretemp drivers
 
   - Minor fixes and improvements in several other drivers
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEiHPvMQj9QTOCiqgVyx8mb86fmYEFAmXvI8QACgkQyx8mb86f
 mYFWTQ/9Hz4QfgIueAEhWGy0XORt7nSCeexkWIR341iyRk4LQA0UjDQg3+Ub5Hi1
 7IBGDNi124S1I/W8fJl1KFgXjbirhuzpHq4DF60Ty+egTZ9IZpu3uySR4mubixYm
 J3el7SIJBvs3SgMFdS/HCtJqeU5HLk+1NjfWDmnq0Z27GHzEy/Nglj2TTO1CjMz/
 tZ/LOWkdG5tMbwI8SZ/mBNMXMpYp/jnUZbrMxgZ/y+07R3jP7i1GWRjq5ZGuWaP6
 SQEs4vfss/y6WUSZZenIIigRIAiAnsNIrjUjrMKPdf0EkjB+0ljn/jLXpAsUU6fL
 07Uy+AwQb89PPWIKHdldn7/MYaR3zU+LwKwPbjULuvpo6Cj87WcIP/x7QqL//Ise
 Ix2Buy/oWoVHKG7Gtf+mF+Ott5MeFgj6pVsCN4IAYYdyai0GPM3RpFAcrIXFCjsE
 i3M5aRC46Yy8Ba6ov3Jmlh83kc9LauJrlCxIxIXTlUJIZiW7a5w083QDSaw3qQdB
 hukwfC8wOzpEsQngkBQyRSpF468lASzc4lp++tPLS/W0zxBrgrnHvgXTHnN8IxvQ
 ocuD5tVMg9gE2xT88t8BHTcw2uv03U5RoXY+nucbxA+Y/aT2t+jZhX9cPbq4+Rhe
 v7XDGMxcBYgtfwx6JT97DKqW9qLc01k8wxonCOrUop6B/+MdRbw=
 =BTB3
 -----END PGP SIGNATURE-----

Merge tag 'hwmon-for-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging

Pull hwmon updates from Guenter Roeck:
 "New drivers:
   - Amphenol ChipCap 2
   - ASPEED g6 PWM/Fan tach
   - Astera Labs PT5161L retimer
   - ASUS ROG RYUJIN II 360 AIO cooler
   - LTC4282
   - Microsoft Surface devices
   - MPS MPQ8785 Synchronous Step-Down Converter
   - NZXT Kraken X and Z series AIO CPU coolers

  Additional chip support in existing drivers:
   - Ayaneo Air Plus 7320u (oxp-sensors)
   - INA260 (ina2xx)
   - XPS 9315 (dell-smm)
   - MSI customer ID (nct6683)

  Devicetree bindings updates:
   - Common schema for hardware monitoring devices
   - Common schema for fans
   - Update chip descriptions to use common schema
   - Document regulator properties in several drivers
   - Explicit bindings for infineon buck converters

  Other improvements:
   - Replaced rbtree with maple tree register cache in several drivers
   - Added support for humidity min/max alarm and volatage fault
     attributes to hwmon core
   - Dropped non-functional I2C_CLASS_HWMON support for drivers w/o
     detect()
   - Dropped obsolete and redundant entried from MAINTAINERS
   - Cleaned up axi-fan-control and coretemp drivers
   - Minor fixes and improvements in several other drivers"

* tag 'hwmon-for-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging: (70 commits)
  hwmon: (dell-smm) Add XPS 9315 to fan control whitelist
  hwmon: (aspeed-g6-pwm-tacho): Support for ASPEED g6 PWM/Fan tach
  dt-bindings: hwmon: Support Aspeed g6 PWM TACH Control
  dt-bindings: hwmon: fan: Add fan binding to schema
  dt-bindings: hwmon: tda38640: Add interrupt & regulator properties
  hwmon: (amc6821) add of_match table
  dt-bindings: hwmon: lm75: use common hwmon schema
  hwmon: (sis5595) drop unused DIV_TO_REG function
  dt-bindings: hwmon: reference common hwmon schema
  dt-bindings: hwmon: lltc,ltc4286: use common hwmon schema
  dt-bindings: hwmon: adi,adm1275: use common hwmon schema
  dt-bindings: hwmon: ti,ina2xx: use common hwmon schema
  dt-bindings: hwmon: add common properties
  hwmon: (pmbus/ir38064) Use PMBUS_REGULATOR_ONE to declare regulator
  hwmon: (pmbus/lm25066) Use PMBUS_REGULATOR_ONE to declare regulator
  hwmon: (pmbus/tda38640) Use PMBUS_REGULATOR_ONE to declare regulator
  regulator: dt-bindings: promote infineon buck converters to their own binding
  dt-bindings: hwmon/pmbus: ti,lm25066: document regulators
  dt-bindings: hwmon: nuvoton,nct6775: Add compatible value for NCT6799
  MAINTAINERS: Drop redundant hwmon entries
  ...
2024-03-13 11:26:58 -07:00

842 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* coretemp.c - Linux kernel module for hardware monitoring
*
* Copyright (C) 2007 Rudolf Marek <r.marek@assembler.cz>
*
* Inspired from many hwmon drivers
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/hwmon.h>
#include <linux/sysfs.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <asm/msr.h>
#include <asm/processor.h>
#include <asm/cpu_device_id.h>
#include <linux/sched/isolation.h>
#define DRVNAME "coretemp"
/*
* force_tjmax only matters when TjMax can't be read from the CPU itself.
* When set, it replaces the driver's suboptimal heuristic.
*/
static int force_tjmax;
module_param_named(tjmax, force_tjmax, int, 0444);
MODULE_PARM_DESC(tjmax, "TjMax value in degrees Celsius");
#define NUM_REAL_CORES 512 /* Number of Real cores per cpu */
#define CORETEMP_NAME_LENGTH 28 /* String Length of attrs */
enum coretemp_attr_index {
ATTR_LABEL,
ATTR_CRIT_ALARM,
ATTR_TEMP,
ATTR_TJMAX,
ATTR_TTARGET,
MAX_CORE_ATTRS = ATTR_TJMAX + 1, /* Maximum no of basic attrs */
TOTAL_ATTRS = ATTR_TTARGET + 1 /* Maximum no of possible attrs */
};
#ifdef CONFIG_SMP
#define for_each_sibling(i, cpu) \
for_each_cpu(i, topology_sibling_cpumask(cpu))
#else
#define for_each_sibling(i, cpu) for (i = 0; false; )
#endif
/*
* Per-Core Temperature Data
* @tjmax: The static tjmax value when tjmax cannot be retrieved from
* IA32_TEMPERATURE_TARGET MSR.
* @last_updated: The time when the current temperature value was updated
* earlier (in jiffies).
* @cpu_core_id: The CPU Core from which temperature values should be read
* This value is passed as "id" field to rdmsr/wrmsr functions.
* @status_reg: One of IA32_THERM_STATUS or IA32_PACKAGE_THERM_STATUS,
* from where the temperature values should be read.
* @attr_size: Total number of pre-core attrs displayed in the sysfs.
*/
struct temp_data {
int temp;
int tjmax;
unsigned long last_updated;
unsigned int cpu;
int index;
u32 cpu_core_id;
u32 status_reg;
int attr_size;
struct device_attribute sd_attrs[TOTAL_ATTRS];
char attr_name[TOTAL_ATTRS][CORETEMP_NAME_LENGTH];
struct attribute *attrs[TOTAL_ATTRS + 1];
struct attribute_group attr_group;
struct mutex update_lock;
};
/* Platform Data per Physical CPU */
struct platform_data {
struct device *hwmon_dev;
u16 pkg_id;
int nr_cores;
struct ida ida;
struct cpumask cpumask;
struct temp_data *pkg_data;
struct temp_data **core_data;
struct device_attribute name_attr;
};
struct tjmax_pci {
unsigned int device;
int tjmax;
};
static const struct tjmax_pci tjmax_pci_table[] = {
{ 0x0708, 110000 }, /* CE41x0 (Sodaville ) */
{ 0x0c72, 102000 }, /* Atom S1240 (Centerton) */
{ 0x0c73, 95000 }, /* Atom S1220 (Centerton) */
{ 0x0c75, 95000 }, /* Atom S1260 (Centerton) */
};
struct tjmax {
char const *id;
int tjmax;
};
static const struct tjmax tjmax_table[] = {
{ "CPU 230", 100000 }, /* Model 0x1c, stepping 2 */
{ "CPU 330", 125000 }, /* Model 0x1c, stepping 2 */
};
struct tjmax_model {
u8 model;
u8 mask;
int tjmax;
};
#define ANY 0xff
static const struct tjmax_model tjmax_model_table[] = {
{ 0x1c, 10, 100000 }, /* D4xx, K4xx, N4xx, D5xx, K5xx, N5xx */
{ 0x1c, ANY, 90000 }, /* Z5xx, N2xx, possibly others
* Note: Also matches 230 and 330,
* which are covered by tjmax_table
*/
{ 0x26, ANY, 90000 }, /* Atom Tunnel Creek (Exx), Lincroft (Z6xx)
* Note: TjMax for E6xxT is 110C, but CPU type
* is undetectable by software
*/
{ 0x27, ANY, 90000 }, /* Atom Medfield (Z2460) */
{ 0x35, ANY, 90000 }, /* Atom Clover Trail/Cloverview (Z27x0) */
{ 0x36, ANY, 100000 }, /* Atom Cedar Trail/Cedarview (N2xxx, D2xxx)
* Also matches S12x0 (stepping 9), covered by
* PCI table
*/
};
static bool is_pkg_temp_data(struct temp_data *tdata)
{
return tdata->index < 0;
}
static int adjust_tjmax(struct cpuinfo_x86 *c, u32 id, struct device *dev)
{
/* The 100C is default for both mobile and non mobile CPUs */
int tjmax = 100000;
int tjmax_ee = 85000;
int usemsr_ee = 1;
int err;
u32 eax, edx;
int i;
u16 devfn = PCI_DEVFN(0, 0);
struct pci_dev *host_bridge = pci_get_domain_bus_and_slot(0, 0, devfn);
/*
* Explicit tjmax table entries override heuristics.
* First try PCI host bridge IDs, followed by model ID strings
* and model/stepping information.
*/
if (host_bridge && host_bridge->vendor == PCI_VENDOR_ID_INTEL) {
for (i = 0; i < ARRAY_SIZE(tjmax_pci_table); i++) {
if (host_bridge->device == tjmax_pci_table[i].device) {
pci_dev_put(host_bridge);
return tjmax_pci_table[i].tjmax;
}
}
}
pci_dev_put(host_bridge);
for (i = 0; i < ARRAY_SIZE(tjmax_table); i++) {
if (strstr(c->x86_model_id, tjmax_table[i].id))
return tjmax_table[i].tjmax;
}
for (i = 0; i < ARRAY_SIZE(tjmax_model_table); i++) {
const struct tjmax_model *tm = &tjmax_model_table[i];
if (c->x86_model == tm->model &&
(tm->mask == ANY || c->x86_stepping == tm->mask))
return tm->tjmax;
}
/* Early chips have no MSR for TjMax */
if (c->x86_model == 0xf && c->x86_stepping < 4)
usemsr_ee = 0;
if (c->x86_model > 0xe && usemsr_ee) {
u8 platform_id;
/*
* Now we can detect the mobile CPU using Intel provided table
* http://softwarecommunity.intel.com/Wiki/Mobility/720.htm
* For Core2 cores, check MSR 0x17, bit 28 1 = Mobile CPU
*/
err = rdmsr_safe_on_cpu(id, 0x17, &eax, &edx);
if (err) {
dev_warn(dev,
"Unable to access MSR 0x17, assuming desktop"
" CPU\n");
usemsr_ee = 0;
} else if (c->x86_model < 0x17 && !(eax & 0x10000000)) {
/*
* Trust bit 28 up to Penryn, I could not find any
* documentation on that; if you happen to know
* someone at Intel please ask
*/
usemsr_ee = 0;
} else {
/* Platform ID bits 52:50 (EDX starts at bit 32) */
platform_id = (edx >> 18) & 0x7;
/*
* Mobile Penryn CPU seems to be platform ID 7 or 5
* (guesswork)
*/
if (c->x86_model == 0x17 &&
(platform_id == 5 || platform_id == 7)) {
/*
* If MSR EE bit is set, set it to 90 degrees C,
* otherwise 105 degrees C
*/
tjmax_ee = 90000;
tjmax = 105000;
}
}
}
if (usemsr_ee) {
err = rdmsr_safe_on_cpu(id, 0xee, &eax, &edx);
if (err) {
dev_warn(dev,
"Unable to access MSR 0xEE, for Tjmax, left"
" at default\n");
} else if (eax & 0x40000000) {
tjmax = tjmax_ee;
}
} else if (tjmax == 100000) {
/*
* If we don't use msr EE it means we are desktop CPU
* (with exeception of Atom)
*/
dev_warn(dev, "Using relative temperature scale!\n");
}
return tjmax;
}
static bool cpu_has_tjmax(struct cpuinfo_x86 *c)
{
u8 model = c->x86_model;
return model > 0xe &&
model != 0x1c &&
model != 0x26 &&
model != 0x27 &&
model != 0x35 &&
model != 0x36;
}
static int get_tjmax(struct temp_data *tdata, struct device *dev)
{
struct cpuinfo_x86 *c = &cpu_data(tdata->cpu);
int err;
u32 eax, edx;
u32 val;
/* use static tjmax once it is set */
if (tdata->tjmax)
return tdata->tjmax;
/*
* A new feature of current Intel(R) processors, the
* IA32_TEMPERATURE_TARGET contains the TjMax value
*/
err = rdmsr_safe_on_cpu(tdata->cpu, MSR_IA32_TEMPERATURE_TARGET, &eax, &edx);
if (err) {
if (cpu_has_tjmax(c))
dev_warn(dev, "Unable to read TjMax from CPU %u\n", tdata->cpu);
} else {
val = (eax >> 16) & 0xff;
if (val)
return val * 1000;
}
if (force_tjmax) {
dev_notice(dev, "TjMax forced to %d degrees C by user\n",
force_tjmax);
tdata->tjmax = force_tjmax * 1000;
} else {
/*
* An assumption is made for early CPUs and unreadable MSR.
* NOTE: the calculated value may not be correct.
*/
tdata->tjmax = adjust_tjmax(c, tdata->cpu, dev);
}
return tdata->tjmax;
}
static int get_ttarget(struct temp_data *tdata, struct device *dev)
{
u32 eax, edx;
int tjmax, ttarget_offset, ret;
/*
* ttarget is valid only if tjmax can be retrieved from
* MSR_IA32_TEMPERATURE_TARGET
*/
if (tdata->tjmax)
return -ENODEV;
ret = rdmsr_safe_on_cpu(tdata->cpu, MSR_IA32_TEMPERATURE_TARGET, &eax, &edx);
if (ret)
return ret;
tjmax = (eax >> 16) & 0xff;
/* Read the still undocumented bits 8:15 of IA32_TEMPERATURE_TARGET. */
ttarget_offset = (eax >> 8) & 0xff;
return (tjmax - ttarget_offset) * 1000;
}
/* Keep track of how many zone pointers we allocated in init() */
static int max_zones __read_mostly;
/* Array of zone pointers. Serialized by cpu hotplug lock */
static struct platform_device **zone_devices;
static ssize_t show_label(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct platform_data *pdata = dev_get_drvdata(dev);
struct temp_data *tdata = container_of(devattr, struct temp_data, sd_attrs[ATTR_LABEL]);
if (is_pkg_temp_data(tdata))
return sprintf(buf, "Package id %u\n", pdata->pkg_id);
return sprintf(buf, "Core %u\n", tdata->cpu_core_id);
}
static ssize_t show_crit_alarm(struct device *dev,
struct device_attribute *devattr, char *buf)
{
u32 eax, edx;
struct temp_data *tdata = container_of(devattr, struct temp_data,
sd_attrs[ATTR_CRIT_ALARM]);
mutex_lock(&tdata->update_lock);
rdmsr_on_cpu(tdata->cpu, tdata->status_reg, &eax, &edx);
mutex_unlock(&tdata->update_lock);
return sprintf(buf, "%d\n", (eax >> 5) & 1);
}
static ssize_t show_tjmax(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct temp_data *tdata = container_of(devattr, struct temp_data, sd_attrs[ATTR_TJMAX]);
int tjmax;
mutex_lock(&tdata->update_lock);
tjmax = get_tjmax(tdata, dev);
mutex_unlock(&tdata->update_lock);
return sprintf(buf, "%d\n", tjmax);
}
static ssize_t show_ttarget(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct temp_data *tdata = container_of(devattr, struct temp_data, sd_attrs[ATTR_TTARGET]);
int ttarget;
mutex_lock(&tdata->update_lock);
ttarget = get_ttarget(tdata, dev);
mutex_unlock(&tdata->update_lock);
if (ttarget < 0)
return ttarget;
return sprintf(buf, "%d\n", ttarget);
}
static ssize_t show_temp(struct device *dev,
struct device_attribute *devattr, char *buf)
{
u32 eax, edx;
struct temp_data *tdata = container_of(devattr, struct temp_data, sd_attrs[ATTR_TEMP]);
int tjmax;
mutex_lock(&tdata->update_lock);
tjmax = get_tjmax(tdata, dev);
/* Check whether the time interval has elapsed */
if (time_after(jiffies, tdata->last_updated + HZ)) {
rdmsr_on_cpu(tdata->cpu, tdata->status_reg, &eax, &edx);
/*
* Ignore the valid bit. In all observed cases the register
* value is either low or zero if the valid bit is 0.
* Return it instead of reporting an error which doesn't
* really help at all.
*/
tdata->temp = tjmax - ((eax >> 16) & 0x7f) * 1000;
tdata->last_updated = jiffies;
}
mutex_unlock(&tdata->update_lock);
return sprintf(buf, "%d\n", tdata->temp);
}
static int create_core_attrs(struct temp_data *tdata, struct device *dev)
{
int i;
static ssize_t (*const rd_ptr[TOTAL_ATTRS]) (struct device *dev,
struct device_attribute *devattr, char *buf) = {
show_label, show_crit_alarm, show_temp, show_tjmax,
show_ttarget };
static const char *const suffixes[TOTAL_ATTRS] = {
"label", "crit_alarm", "input", "crit", "max"
};
for (i = 0; i < tdata->attr_size; i++) {
/*
* We map the attr number to core id of the CPU
* The attr number is always core id + 2
* The Pkgtemp will always show up as temp1_*, if available
*/
int attr_no = is_pkg_temp_data(tdata) ? 1 : tdata->cpu_core_id + 2;
snprintf(tdata->attr_name[i], CORETEMP_NAME_LENGTH,
"temp%d_%s", attr_no, suffixes[i]);
sysfs_attr_init(&tdata->sd_attrs[i].attr);
tdata->sd_attrs[i].attr.name = tdata->attr_name[i];
tdata->sd_attrs[i].attr.mode = 0444;
tdata->sd_attrs[i].show = rd_ptr[i];
tdata->attrs[i] = &tdata->sd_attrs[i].attr;
}
tdata->attr_group.attrs = tdata->attrs;
return sysfs_create_group(&dev->kobj, &tdata->attr_group);
}
static int chk_ucode_version(unsigned int cpu)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
/*
* Check if we have problem with errata AE18 of Core processors:
* Readings might stop update when processor visited too deep sleep,
* fixed for stepping D0 (6EC).
*/
if (c->x86_model == 0xe && c->x86_stepping < 0xc && c->microcode < 0x39) {
pr_err("Errata AE18 not fixed, update BIOS or microcode of the CPU!\n");
return -ENODEV;
}
return 0;
}
static struct platform_device *coretemp_get_pdev(unsigned int cpu)
{
int id = topology_logical_die_id(cpu);
if (id >= 0 && id < max_zones)
return zone_devices[id];
return NULL;
}
static struct temp_data *
init_temp_data(struct platform_data *pdata, unsigned int cpu, int pkg_flag)
{
struct temp_data *tdata;
if (!pdata->core_data) {
/*
* TODO:
* The information of actual possible cores in a package is broken for now.
* Will replace hardcoded NUM_REAL_CORES with actual per package core count
* when this information becomes available.
*/
pdata->nr_cores = NUM_REAL_CORES;
pdata->core_data = kcalloc(pdata->nr_cores, sizeof(struct temp_data *),
GFP_KERNEL);
if (!pdata->core_data)
return NULL;
}
tdata = kzalloc(sizeof(struct temp_data), GFP_KERNEL);
if (!tdata)
return NULL;
if (pkg_flag) {
pdata->pkg_data = tdata;
/* Use tdata->index as indicator of package temp data */
tdata->index = -1;
} else {
tdata->index = ida_alloc_max(&pdata->ida, pdata->nr_cores - 1, GFP_KERNEL);
if (tdata->index < 0) {
kfree(tdata);
return NULL;
}
pdata->core_data[tdata->index] = tdata;
}
tdata->status_reg = pkg_flag ? MSR_IA32_PACKAGE_THERM_STATUS :
MSR_IA32_THERM_STATUS;
tdata->cpu = cpu;
tdata->cpu_core_id = topology_core_id(cpu);
tdata->attr_size = MAX_CORE_ATTRS;
mutex_init(&tdata->update_lock);
return tdata;
}
static void destroy_temp_data(struct platform_data *pdata, struct temp_data *tdata)
{
if (is_pkg_temp_data(tdata)) {
pdata->pkg_data = NULL;
kfree(pdata->core_data);
pdata->core_data = NULL;
pdata->nr_cores = 0;
} else {
pdata->core_data[tdata->index] = NULL;
ida_free(&pdata->ida, tdata->index);
}
kfree(tdata);
}
static struct temp_data *get_temp_data(struct platform_data *pdata, int cpu)
{
int i;
/* cpu < 0 means get pkg temp_data */
if (cpu < 0)
return pdata->pkg_data;
for (i = 0; i < pdata->nr_cores; i++) {
if (pdata->core_data[i] &&
pdata->core_data[i]->cpu_core_id == topology_core_id(cpu))
return pdata->core_data[i];
}
return NULL;
}
static int create_core_data(struct platform_device *pdev, unsigned int cpu,
int pkg_flag)
{
struct temp_data *tdata;
struct platform_data *pdata = platform_get_drvdata(pdev);
struct cpuinfo_x86 *c = &cpu_data(cpu);
u32 eax, edx;
int err;
if (!housekeeping_cpu(cpu, HK_TYPE_MISC))
return 0;
tdata = init_temp_data(pdata, cpu, pkg_flag);
if (!tdata)
return -ENOMEM;
/* Test if we can access the status register */
err = rdmsr_safe_on_cpu(cpu, tdata->status_reg, &eax, &edx);
if (err)
goto err;
/* Make sure tdata->tjmax is a valid indicator for dynamic/static tjmax */
get_tjmax(tdata, &pdev->dev);
/*
* The target temperature is available on older CPUs but not in the
* MSR_IA32_TEMPERATURE_TARGET register. Atoms don't have the register
* at all.
*/
if (c->x86_model > 0xe && c->x86_model != 0x1c)
if (get_ttarget(tdata, &pdev->dev) >= 0)
tdata->attr_size++;
/* Create sysfs interfaces */
err = create_core_attrs(tdata, pdata->hwmon_dev);
if (err)
goto err;
return 0;
err:
destroy_temp_data(pdata, tdata);
return err;
}
static void
coretemp_add_core(struct platform_device *pdev, unsigned int cpu, int pkg_flag)
{
if (create_core_data(pdev, cpu, pkg_flag))
dev_err(&pdev->dev, "Adding Core %u failed\n", cpu);
}
static void coretemp_remove_core(struct platform_data *pdata, struct temp_data *tdata)
{
/* if we errored on add then this is already gone */
if (!tdata)
return;
/* Remove the sysfs attributes */
sysfs_remove_group(&pdata->hwmon_dev->kobj, &tdata->attr_group);
destroy_temp_data(pdata, tdata);
}
static int coretemp_device_add(int zoneid)
{
struct platform_device *pdev;
struct platform_data *pdata;
int err;
/* Initialize the per-zone data structures */
pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
pdata->pkg_id = zoneid;
ida_init(&pdata->ida);
pdev = platform_device_alloc(DRVNAME, zoneid);
if (!pdev) {
err = -ENOMEM;
goto err_free_pdata;
}
err = platform_device_add(pdev);
if (err)
goto err_put_dev;
platform_set_drvdata(pdev, pdata);
zone_devices[zoneid] = pdev;
return 0;
err_put_dev:
platform_device_put(pdev);
err_free_pdata:
kfree(pdata);
return err;
}
static void coretemp_device_remove(int zoneid)
{
struct platform_device *pdev = zone_devices[zoneid];
struct platform_data *pdata = platform_get_drvdata(pdev);
ida_destroy(&pdata->ida);
kfree(pdata);
platform_device_unregister(pdev);
}
static int coretemp_cpu_online(unsigned int cpu)
{
struct platform_device *pdev = coretemp_get_pdev(cpu);
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct platform_data *pdata;
/*
* Don't execute this on resume as the offline callback did
* not get executed on suspend.
*/
if (cpuhp_tasks_frozen)
return 0;
/*
* CPUID.06H.EAX[0] indicates whether the CPU has thermal
* sensors. We check this bit only, all the early CPUs
* without thermal sensors will be filtered out.
*/
if (!cpu_has(c, X86_FEATURE_DTHERM))
return -ENODEV;
pdata = platform_get_drvdata(pdev);
if (!pdata->hwmon_dev) {
struct device *hwmon;
/* Check the microcode version of the CPU */
if (chk_ucode_version(cpu))
return -EINVAL;
/*
* Alright, we have DTS support.
* We are bringing the _first_ core in this pkg
* online. So, initialize per-pkg data structures and
* then bring this core online.
*/
hwmon = hwmon_device_register_with_groups(&pdev->dev, DRVNAME,
pdata, NULL);
if (IS_ERR(hwmon))
return PTR_ERR(hwmon);
pdata->hwmon_dev = hwmon;
/*
* Check whether pkgtemp support is available.
* If so, add interfaces for pkgtemp.
*/
if (cpu_has(c, X86_FEATURE_PTS))
coretemp_add_core(pdev, cpu, 1);
}
/*
* Check whether a thread sibling is already online. If not add the
* interface for this CPU core.
*/
if (!cpumask_intersects(&pdata->cpumask, topology_sibling_cpumask(cpu)))
coretemp_add_core(pdev, cpu, 0);
cpumask_set_cpu(cpu, &pdata->cpumask);
return 0;
}
static int coretemp_cpu_offline(unsigned int cpu)
{
struct platform_device *pdev = coretemp_get_pdev(cpu);
struct platform_data *pd;
struct temp_data *tdata;
int target;
/* No need to tear down any interfaces for suspend */
if (cpuhp_tasks_frozen)
return 0;
/* If the physical CPU device does not exist, just return */
pd = platform_get_drvdata(pdev);
if (!pd->hwmon_dev)
return 0;
tdata = get_temp_data(pd, cpu);
cpumask_clear_cpu(cpu, &pd->cpumask);
/*
* If this is the last thread sibling, remove the CPU core
* interface, If there is still a sibling online, transfer the
* target cpu of that core interface to it.
*/
target = cpumask_any_and(&pd->cpumask, topology_sibling_cpumask(cpu));
if (target >= nr_cpu_ids) {
coretemp_remove_core(pd, tdata);
} else if (tdata && tdata->cpu == cpu) {
mutex_lock(&tdata->update_lock);
tdata->cpu = target;
mutex_unlock(&tdata->update_lock);
}
/*
* If all cores in this pkg are offline, remove the interface.
*/
tdata = get_temp_data(pd, -1);
if (cpumask_empty(&pd->cpumask)) {
if (tdata)
coretemp_remove_core(pd, tdata);
hwmon_device_unregister(pd->hwmon_dev);
pd->hwmon_dev = NULL;
return 0;
}
/*
* Check whether this core is the target for the package
* interface. We need to assign it to some other cpu.
*/
if (tdata && tdata->cpu == cpu) {
target = cpumask_first(&pd->cpumask);
mutex_lock(&tdata->update_lock);
tdata->cpu = target;
mutex_unlock(&tdata->update_lock);
}
return 0;
}
static const struct x86_cpu_id __initconst coretemp_ids[] = {
X86_MATCH_VENDOR_FEATURE(INTEL, X86_FEATURE_DTHERM, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, coretemp_ids);
static enum cpuhp_state coretemp_hp_online;
static int __init coretemp_init(void)
{
int i, err;
/*
* CPUID.06H.EAX[0] indicates whether the CPU has thermal
* sensors. We check this bit only, all the early CPUs
* without thermal sensors will be filtered out.
*/
if (!x86_match_cpu(coretemp_ids))
return -ENODEV;
max_zones = topology_max_packages() * topology_max_dies_per_package();
zone_devices = kcalloc(max_zones, sizeof(struct platform_device *),
GFP_KERNEL);
if (!zone_devices)
return -ENOMEM;
for (i = 0; i < max_zones; i++) {
err = coretemp_device_add(i);
if (err)
goto outzone;
}
err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hwmon/coretemp:online",
coretemp_cpu_online, coretemp_cpu_offline);
if (err < 0)
goto outzone;
coretemp_hp_online = err;
return 0;
outzone:
while (i--)
coretemp_device_remove(i);
kfree(zone_devices);
return err;
}
module_init(coretemp_init)
static void __exit coretemp_exit(void)
{
int i;
cpuhp_remove_state(coretemp_hp_online);
for (i = 0; i < max_zones; i++)
coretemp_device_remove(i);
kfree(zone_devices);
}
module_exit(coretemp_exit)
MODULE_AUTHOR("Rudolf Marek <r.marek@assembler.cz>");
MODULE_DESCRIPTION("Intel Core temperature monitor");
MODULE_LICENSE("GPL");