linux-next/drivers/hwmon/nzxt-smart2.c
Krzysztof Kozlowski 98ce1fc134 hwmon: nzxt: constify pointers to hwmon_channel_info
Statically allocated array of pointed to hwmon_channel_info can be made
const for safety.

Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2023-04-19 07:08:37 -07:00

839 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Reverse-engineered NZXT RGB & Fan Controller/Smart Device v2 driver.
*
* Copyright (c) 2021 Aleksandr Mezin
*/
#include <linux/hid.h>
#include <linux/hwmon.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <asm/byteorder.h>
#include <asm/unaligned.h>
/*
* The device has only 3 fan channels/connectors. But all HID reports have
* space reserved for up to 8 channels.
*/
#define FAN_CHANNELS 3
#define FAN_CHANNELS_MAX 8
#define UPDATE_INTERVAL_DEFAULT_MS 1000
/* These strings match labels on the device exactly */
static const char *const fan_label[] = {
"FAN 1",
"FAN 2",
"FAN 3",
};
static const char *const curr_label[] = {
"FAN 1 Current",
"FAN 2 Current",
"FAN 3 Current",
};
static const char *const in_label[] = {
"FAN 1 Voltage",
"FAN 2 Voltage",
"FAN 3 Voltage",
};
enum {
INPUT_REPORT_ID_FAN_CONFIG = 0x61,
INPUT_REPORT_ID_FAN_STATUS = 0x67,
};
enum {
FAN_STATUS_REPORT_SPEED = 0x02,
FAN_STATUS_REPORT_VOLTAGE = 0x04,
};
enum {
FAN_TYPE_NONE = 0,
FAN_TYPE_DC = 1,
FAN_TYPE_PWM = 2,
};
struct unknown_static_data {
/*
* Some configuration data? Stays the same after fan speed changes,
* changes in fan configuration, reboots and driver reloads.
*
* The same data in multiple report types.
*
* Byte 12 seems to be the number of fan channels, but I am not sure.
*/
u8 unknown1[14];
} __packed;
/*
* The device sends this input report in response to "detect fans" command:
* a 2-byte output report { 0x60, 0x03 }.
*/
struct fan_config_report {
/* report_id should be INPUT_REPORT_ID_FAN_CONFIG = 0x61 */
u8 report_id;
/* Always 0x03 */
u8 magic;
struct unknown_static_data unknown_data;
/* Fan type as detected by the device. See FAN_TYPE_* enum. */
u8 fan_type[FAN_CHANNELS_MAX];
} __packed;
/*
* The device sends these reports at a fixed interval (update interval) -
* one report with type = FAN_STATUS_REPORT_SPEED, and one report with type =
* FAN_STATUS_REPORT_VOLTAGE per update interval.
*/
struct fan_status_report {
/* report_id should be INPUT_REPORT_ID_STATUS = 0x67 */
u8 report_id;
/* FAN_STATUS_REPORT_SPEED = 0x02 or FAN_STATUS_REPORT_VOLTAGE = 0x04 */
u8 type;
struct unknown_static_data unknown_data;
/* Fan type as detected by the device. See FAN_TYPE_* enum. */
u8 fan_type[FAN_CHANNELS_MAX];
union {
/* When type == FAN_STATUS_REPORT_SPEED */
struct {
/*
* Fan speed, in RPM. Zero for channels without fans
* connected.
*/
__le16 fan_rpm[FAN_CHANNELS_MAX];
/*
* Fan duty cycle, in percent. Non-zero even for
* channels without fans connected.
*/
u8 duty_percent[FAN_CHANNELS_MAX];
/*
* Exactly the same values as duty_percent[], non-zero
* for disconnected fans too.
*/
u8 duty_percent_dup[FAN_CHANNELS_MAX];
/* "Case Noise" in db */
u8 noise_db;
} __packed fan_speed;
/* When type == FAN_STATUS_REPORT_VOLTAGE */
struct {
/*
* Voltage, in millivolts. Non-zero even when fan is
* not connected.
*/
__le16 fan_in[FAN_CHANNELS_MAX];
/*
* Current, in milliamperes. Near-zero when
* disconnected.
*/
__le16 fan_current[FAN_CHANNELS_MAX];
} __packed fan_voltage;
} __packed;
} __packed;
#define OUTPUT_REPORT_SIZE 64
enum {
OUTPUT_REPORT_ID_INIT_COMMAND = 0x60,
OUTPUT_REPORT_ID_SET_FAN_SPEED = 0x62,
};
enum {
INIT_COMMAND_SET_UPDATE_INTERVAL = 0x02,
INIT_COMMAND_DETECT_FANS = 0x03,
};
/*
* This output report sets pwm duty cycle/target fan speed for one or more
* channels.
*/
struct set_fan_speed_report {
/* report_id should be OUTPUT_REPORT_ID_SET_FAN_SPEED = 0x62 */
u8 report_id;
/* Should be 0x01 */
u8 magic;
/* To change fan speed on i-th channel, set i-th bit here */
u8 channel_bit_mask;
/*
* Fan duty cycle/target speed in percent. For voltage-controlled fans,
* the minimal voltage (duty_percent = 1) is about 9V.
* Setting duty_percent to 0 (if the channel is selected in
* channel_bit_mask) turns off the fan completely (regardless of the
* control mode).
*/
u8 duty_percent[FAN_CHANNELS_MAX];
} __packed;
struct drvdata {
struct hid_device *hid;
struct device *hwmon;
u8 fan_duty_percent[FAN_CHANNELS];
u16 fan_rpm[FAN_CHANNELS];
bool pwm_status_received;
u16 fan_in[FAN_CHANNELS];
u16 fan_curr[FAN_CHANNELS];
bool voltage_status_received;
u8 fan_type[FAN_CHANNELS];
bool fan_config_received;
/*
* wq is used to wait for *_received flags to become true.
* All accesses to *_received flags and fan_* arrays are performed with
* wq.lock held.
*/
wait_queue_head_t wq;
/*
* mutex is used to:
* 1) Prevent concurrent conflicting changes to update interval and pwm
* values (after sending an output hid report, the corresponding field
* in drvdata must be updated, and only then new output reports can be
* sent).
* 2) Synchronize access to output_buffer (well, the buffer is here,
* because synchronization is necessary anyway - so why not get rid of
* a kmalloc?).
*/
struct mutex mutex;
long update_interval;
u8 output_buffer[OUTPUT_REPORT_SIZE];
};
static long scale_pwm_value(long val, long orig_max, long new_max)
{
if (val <= 0)
return 0;
/*
* Positive values should not become zero: 0 completely turns off the
* fan.
*/
return max(1L, DIV_ROUND_CLOSEST(min(val, orig_max) * new_max, orig_max));
}
static void handle_fan_config_report(struct drvdata *drvdata, void *data, int size)
{
struct fan_config_report *report = data;
int i;
if (size < sizeof(struct fan_config_report))
return;
if (report->magic != 0x03)
return;
spin_lock(&drvdata->wq.lock);
for (i = 0; i < FAN_CHANNELS; i++)
drvdata->fan_type[i] = report->fan_type[i];
drvdata->fan_config_received = true;
wake_up_all_locked(&drvdata->wq);
spin_unlock(&drvdata->wq.lock);
}
static void handle_fan_status_report(struct drvdata *drvdata, void *data, int size)
{
struct fan_status_report *report = data;
int i;
if (size < sizeof(struct fan_status_report))
return;
spin_lock(&drvdata->wq.lock);
/*
* The device sends INPUT_REPORT_ID_FAN_CONFIG = 0x61 report in response
* to "detect fans" command. Only accept other data after getting 0x61,
* to make sure that fan detection is complete. In particular, fan
* detection resets pwm values.
*/
if (!drvdata->fan_config_received) {
spin_unlock(&drvdata->wq.lock);
return;
}
for (i = 0; i < FAN_CHANNELS; i++) {
if (drvdata->fan_type[i] == report->fan_type[i])
continue;
/*
* This should not happen (if my expectations about the device
* are correct).
*
* Even if the userspace sends fan detect command through
* hidraw, fan config report should arrive first.
*/
hid_warn_once(drvdata->hid,
"Fan %d type changed unexpectedly from %d to %d",
i, drvdata->fan_type[i], report->fan_type[i]);
drvdata->fan_type[i] = report->fan_type[i];
}
switch (report->type) {
case FAN_STATUS_REPORT_SPEED:
for (i = 0; i < FAN_CHANNELS; i++) {
drvdata->fan_rpm[i] =
get_unaligned_le16(&report->fan_speed.fan_rpm[i]);
drvdata->fan_duty_percent[i] =
report->fan_speed.duty_percent[i];
}
drvdata->pwm_status_received = true;
wake_up_all_locked(&drvdata->wq);
break;
case FAN_STATUS_REPORT_VOLTAGE:
for (i = 0; i < FAN_CHANNELS; i++) {
drvdata->fan_in[i] =
get_unaligned_le16(&report->fan_voltage.fan_in[i]);
drvdata->fan_curr[i] =
get_unaligned_le16(&report->fan_voltage.fan_current[i]);
}
drvdata->voltage_status_received = true;
wake_up_all_locked(&drvdata->wq);
break;
}
spin_unlock(&drvdata->wq.lock);
}
static umode_t nzxt_smart2_hwmon_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_pwm:
switch (attr) {
case hwmon_pwm_input:
case hwmon_pwm_enable:
return 0644;
default:
return 0444;
}
case hwmon_chip:
switch (attr) {
case hwmon_chip_update_interval:
return 0644;
default:
return 0444;
}
default:
return 0444;
}
}
static int nzxt_smart2_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct drvdata *drvdata = dev_get_drvdata(dev);
int res = -EINVAL;
if (type == hwmon_chip) {
switch (attr) {
case hwmon_chip_update_interval:
*val = drvdata->update_interval;
return 0;
default:
return -EINVAL;
}
}
spin_lock_irq(&drvdata->wq.lock);
switch (type) {
case hwmon_pwm:
/*
* fancontrol:
* 1) remembers pwm* values when it starts
* 2) needs pwm*_enable to be 1 on controlled fans
* So make sure we have correct data before allowing pwm* reads.
* Returning errors for pwm of fan speed read can even cause
* fancontrol to shut down. So the wait is unavoidable.
*/
switch (attr) {
case hwmon_pwm_enable:
res = wait_event_interruptible_locked_irq(drvdata->wq,
drvdata->fan_config_received);
if (res)
goto unlock;
*val = drvdata->fan_type[channel] != FAN_TYPE_NONE;
break;
case hwmon_pwm_mode:
res = wait_event_interruptible_locked_irq(drvdata->wq,
drvdata->fan_config_received);
if (res)
goto unlock;
*val = drvdata->fan_type[channel] == FAN_TYPE_PWM;
break;
case hwmon_pwm_input:
res = wait_event_interruptible_locked_irq(drvdata->wq,
drvdata->pwm_status_received);
if (res)
goto unlock;
*val = scale_pwm_value(drvdata->fan_duty_percent[channel],
100, 255);
break;
}
break;
case hwmon_fan:
/*
* It's not strictly necessary to wait for *_received in the
* remaining cases (fancontrol doesn't care about them). But I'm
* doing it to have consistent behavior.
*/
if (attr == hwmon_fan_input) {
res = wait_event_interruptible_locked_irq(drvdata->wq,
drvdata->pwm_status_received);
if (res)
goto unlock;
*val = drvdata->fan_rpm[channel];
}
break;
case hwmon_in:
if (attr == hwmon_in_input) {
res = wait_event_interruptible_locked_irq(drvdata->wq,
drvdata->voltage_status_received);
if (res)
goto unlock;
*val = drvdata->fan_in[channel];
}
break;
case hwmon_curr:
if (attr == hwmon_curr_input) {
res = wait_event_interruptible_locked_irq(drvdata->wq,
drvdata->voltage_status_received);
if (res)
goto unlock;
*val = drvdata->fan_curr[channel];
}
break;
default:
break;
}
unlock:
spin_unlock_irq(&drvdata->wq.lock);
return res;
}
static int send_output_report(struct drvdata *drvdata, const void *data,
size_t data_size)
{
int ret;
if (data_size > sizeof(drvdata->output_buffer))
return -EINVAL;
memcpy(drvdata->output_buffer, data, data_size);
if (data_size < sizeof(drvdata->output_buffer))
memset(drvdata->output_buffer + data_size, 0,
sizeof(drvdata->output_buffer) - data_size);
ret = hid_hw_output_report(drvdata->hid, drvdata->output_buffer,
sizeof(drvdata->output_buffer));
return ret < 0 ? ret : 0;
}
static int set_pwm(struct drvdata *drvdata, int channel, long val)
{
int ret;
u8 duty_percent = scale_pwm_value(val, 255, 100);
struct set_fan_speed_report report = {
.report_id = OUTPUT_REPORT_ID_SET_FAN_SPEED,
.magic = 1,
.channel_bit_mask = 1 << channel
};
ret = mutex_lock_interruptible(&drvdata->mutex);
if (ret)
return ret;
report.duty_percent[channel] = duty_percent;
ret = send_output_report(drvdata, &report, sizeof(report));
if (ret)
goto unlock;
/*
* pwmconfig and fancontrol scripts expect pwm writes to take effect
* immediately (i. e. read from pwm* sysfs should return the value
* written into it). The device seems to always accept pwm values - even
* when there is no fan connected - so update pwm status without waiting
* for a report, to make pwmconfig and fancontrol happy. Worst case -
* if the device didn't accept new pwm value for some reason (never seen
* this in practice) - it will be reported incorrectly only until next
* update. This avoids "fan stuck" messages from pwmconfig, and
* fancontrol setting fan speed to 100% during shutdown.
*/
spin_lock_bh(&drvdata->wq.lock);
drvdata->fan_duty_percent[channel] = duty_percent;
spin_unlock_bh(&drvdata->wq.lock);
unlock:
mutex_unlock(&drvdata->mutex);
return ret;
}
/*
* Workaround for fancontrol/pwmconfig trying to write to pwm*_enable even if it
* already is 1 and read-only. Otherwise, fancontrol won't restore pwm on
* shutdown properly.
*/
static int set_pwm_enable(struct drvdata *drvdata, int channel, long val)
{
long expected_val;
int res;
spin_lock_irq(&drvdata->wq.lock);
res = wait_event_interruptible_locked_irq(drvdata->wq,
drvdata->fan_config_received);
if (res) {
spin_unlock_irq(&drvdata->wq.lock);
return res;
}
expected_val = drvdata->fan_type[channel] != FAN_TYPE_NONE;
spin_unlock_irq(&drvdata->wq.lock);
return (val == expected_val) ? 0 : -EOPNOTSUPP;
}
/*
* Control byte | Actual update interval in seconds
* 0xff | 65.5
* 0xf7 | 63.46
* 0x7f | 32.74
* 0x3f | 16.36
* 0x1f | 8.17
* 0x0f | 4.07
* 0x07 | 2.02
* 0x03 | 1.00
* 0x02 | 0.744
* 0x01 | 0.488
* 0x00 | 0.25
*/
static u8 update_interval_to_control_byte(long interval)
{
if (interval <= 250)
return 0;
return clamp_val(1 + DIV_ROUND_CLOSEST(interval - 488, 256), 0, 255);
}
static long control_byte_to_update_interval(u8 control_byte)
{
if (control_byte == 0)
return 250;
return 488 + (control_byte - 1) * 256;
}
static int set_update_interval(struct drvdata *drvdata, long val)
{
u8 control = update_interval_to_control_byte(val);
u8 report[] = {
OUTPUT_REPORT_ID_INIT_COMMAND,
INIT_COMMAND_SET_UPDATE_INTERVAL,
0x01,
0xe8,
control,
0x01,
0xe8,
control,
};
int ret;
ret = send_output_report(drvdata, report, sizeof(report));
if (ret)
return ret;
drvdata->update_interval = control_byte_to_update_interval(control);
return 0;
}
static int init_device(struct drvdata *drvdata, long update_interval)
{
int ret;
static const u8 detect_fans_report[] = {
OUTPUT_REPORT_ID_INIT_COMMAND,
INIT_COMMAND_DETECT_FANS,
};
ret = send_output_report(drvdata, detect_fans_report,
sizeof(detect_fans_report));
if (ret)
return ret;
return set_update_interval(drvdata, update_interval);
}
static int nzxt_smart2_hwmon_write(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, long val)
{
struct drvdata *drvdata = dev_get_drvdata(dev);
int ret;
switch (type) {
case hwmon_pwm:
switch (attr) {
case hwmon_pwm_enable:
return set_pwm_enable(drvdata, channel, val);
case hwmon_pwm_input:
return set_pwm(drvdata, channel, val);
default:
return -EINVAL;
}
case hwmon_chip:
switch (attr) {
case hwmon_chip_update_interval:
ret = mutex_lock_interruptible(&drvdata->mutex);
if (ret)
return ret;
ret = set_update_interval(drvdata, val);
mutex_unlock(&drvdata->mutex);
return ret;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int nzxt_smart2_hwmon_read_string(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, const char **str)
{
switch (type) {
case hwmon_fan:
*str = fan_label[channel];
return 0;
case hwmon_curr:
*str = curr_label[channel];
return 0;
case hwmon_in:
*str = in_label[channel];
return 0;
default:
return -EINVAL;
}
}
static const struct hwmon_ops nzxt_smart2_hwmon_ops = {
.is_visible = nzxt_smart2_hwmon_is_visible,
.read = nzxt_smart2_hwmon_read,
.read_string = nzxt_smart2_hwmon_read_string,
.write = nzxt_smart2_hwmon_write,
};
static const struct hwmon_channel_info * const nzxt_smart2_channel_info[] = {
HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT | HWMON_F_LABEL,
HWMON_F_INPUT | HWMON_F_LABEL,
HWMON_F_INPUT | HWMON_F_LABEL),
HWMON_CHANNEL_INFO(pwm, HWMON_PWM_INPUT | HWMON_PWM_MODE | HWMON_PWM_ENABLE,
HWMON_PWM_INPUT | HWMON_PWM_MODE | HWMON_PWM_ENABLE,
HWMON_PWM_INPUT | HWMON_PWM_MODE | HWMON_PWM_ENABLE),
HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL),
HWMON_CHANNEL_INFO(curr, HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL),
HWMON_CHANNEL_INFO(chip, HWMON_C_UPDATE_INTERVAL),
NULL
};
static const struct hwmon_chip_info nzxt_smart2_chip_info = {
.ops = &nzxt_smart2_hwmon_ops,
.info = nzxt_smart2_channel_info,
};
static int nzxt_smart2_hid_raw_event(struct hid_device *hdev,
struct hid_report *report, u8 *data, int size)
{
struct drvdata *drvdata = hid_get_drvdata(hdev);
u8 report_id = *data;
switch (report_id) {
case INPUT_REPORT_ID_FAN_CONFIG:
handle_fan_config_report(drvdata, data, size);
break;
case INPUT_REPORT_ID_FAN_STATUS:
handle_fan_status_report(drvdata, data, size);
break;
}
return 0;
}
static int __maybe_unused nzxt_smart2_hid_reset_resume(struct hid_device *hdev)
{
struct drvdata *drvdata = hid_get_drvdata(hdev);
/*
* Userspace is still frozen (so no concurrent sysfs attribute access
* is possible), but raw_event can already be called concurrently.
*/
spin_lock_bh(&drvdata->wq.lock);
drvdata->fan_config_received = false;
drvdata->pwm_status_received = false;
drvdata->voltage_status_received = false;
spin_unlock_bh(&drvdata->wq.lock);
return init_device(drvdata, drvdata->update_interval);
}
static void mutex_fini(void *lock)
{
mutex_destroy(lock);
}
static int nzxt_smart2_hid_probe(struct hid_device *hdev,
const struct hid_device_id *id)
{
struct drvdata *drvdata;
int ret;
drvdata = devm_kzalloc(&hdev->dev, sizeof(struct drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
drvdata->hid = hdev;
hid_set_drvdata(hdev, drvdata);
init_waitqueue_head(&drvdata->wq);
mutex_init(&drvdata->mutex);
ret = devm_add_action_or_reset(&hdev->dev, mutex_fini, &drvdata->mutex);
if (ret)
return ret;
ret = hid_parse(hdev);
if (ret)
return ret;
ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
if (ret)
return ret;
ret = hid_hw_open(hdev);
if (ret)
goto out_hw_stop;
hid_device_io_start(hdev);
init_device(drvdata, UPDATE_INTERVAL_DEFAULT_MS);
drvdata->hwmon =
hwmon_device_register_with_info(&hdev->dev, "nzxtsmart2", drvdata,
&nzxt_smart2_chip_info, NULL);
if (IS_ERR(drvdata->hwmon)) {
ret = PTR_ERR(drvdata->hwmon);
goto out_hw_close;
}
return 0;
out_hw_close:
hid_hw_close(hdev);
out_hw_stop:
hid_hw_stop(hdev);
return ret;
}
static void nzxt_smart2_hid_remove(struct hid_device *hdev)
{
struct drvdata *drvdata = hid_get_drvdata(hdev);
hwmon_device_unregister(drvdata->hwmon);
hid_hw_close(hdev);
hid_hw_stop(hdev);
}
static const struct hid_device_id nzxt_smart2_hid_id_table[] = {
{ HID_USB_DEVICE(0x1e71, 0x2006) }, /* NZXT Smart Device V2 */
{ HID_USB_DEVICE(0x1e71, 0x200d) }, /* NZXT Smart Device V2 */
{ HID_USB_DEVICE(0x1e71, 0x200f) }, /* NZXT Smart Device V2 */
{ HID_USB_DEVICE(0x1e71, 0x2009) }, /* NZXT RGB & Fan Controller */
{ HID_USB_DEVICE(0x1e71, 0x200e) }, /* NZXT RGB & Fan Controller */
{ HID_USB_DEVICE(0x1e71, 0x2010) }, /* NZXT RGB & Fan Controller */
{ HID_USB_DEVICE(0x1e71, 0x2011) }, /* NZXT RGB & Fan Controller (6 RGB) */
{ HID_USB_DEVICE(0x1e71, 0x2019) }, /* NZXT RGB & Fan Controller (6 RGB) */
{},
};
static struct hid_driver nzxt_smart2_hid_driver = {
.name = "nzxt-smart2",
.id_table = nzxt_smart2_hid_id_table,
.probe = nzxt_smart2_hid_probe,
.remove = nzxt_smart2_hid_remove,
.raw_event = nzxt_smart2_hid_raw_event,
#ifdef CONFIG_PM
.reset_resume = nzxt_smart2_hid_reset_resume,
#endif
};
static int __init nzxt_smart2_init(void)
{
return hid_register_driver(&nzxt_smart2_hid_driver);
}
static void __exit nzxt_smart2_exit(void)
{
hid_unregister_driver(&nzxt_smart2_hid_driver);
}
MODULE_DEVICE_TABLE(hid, nzxt_smart2_hid_id_table);
MODULE_AUTHOR("Aleksandr Mezin <mezin.alexander@gmail.com>");
MODULE_DESCRIPTION("Driver for NZXT RGB & Fan Controller/Smart Device V2");
MODULE_LICENSE("GPL");
/*
* With module_init()/module_hid_driver() and the driver built into the kernel:
*
* Driver 'nzxt_smart2' was unable to register with bus_type 'hid' because the
* bus was not initialized.
*/
late_initcall(nzxt_smart2_init);
module_exit(nzxt_smart2_exit);