mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-12 16:58:53 +00:00
72fd4a35a8
A variety of (mostly) innocuous fixes to the embedded kernel-doc content in source files, including: * make multi-line initial descriptions single line * denote some function names, constants and structs as such * change erroneous opening '/*' to '/**' in a few places * reword some text for clarity Signed-off-by: Robert P. J. Day <rpjday@mindspring.com> Cc: "Randy.Dunlap" <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
819 lines
21 KiB
C
819 lines
21 KiB
C
/*
|
|
* linux/kernel/workqueue.c
|
|
*
|
|
* Generic mechanism for defining kernel helper threads for running
|
|
* arbitrary tasks in process context.
|
|
*
|
|
* Started by Ingo Molnar, Copyright (C) 2002
|
|
*
|
|
* Derived from the taskqueue/keventd code by:
|
|
*
|
|
* David Woodhouse <dwmw2@infradead.org>
|
|
* Andrew Morton <andrewm@uow.edu.au>
|
|
* Kai Petzke <wpp@marie.physik.tu-berlin.de>
|
|
* Theodore Ts'o <tytso@mit.edu>
|
|
*
|
|
* Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/debug_locks.h>
|
|
|
|
/*
|
|
* The per-CPU workqueue (if single thread, we always use the first
|
|
* possible cpu).
|
|
*
|
|
* The sequence counters are for flush_scheduled_work(). It wants to wait
|
|
* until all currently-scheduled works are completed, but it doesn't
|
|
* want to be livelocked by new, incoming ones. So it waits until
|
|
* remove_sequence is >= the insert_sequence which pertained when
|
|
* flush_scheduled_work() was called.
|
|
*/
|
|
struct cpu_workqueue_struct {
|
|
|
|
spinlock_t lock;
|
|
|
|
long remove_sequence; /* Least-recently added (next to run) */
|
|
long insert_sequence; /* Next to add */
|
|
|
|
struct list_head worklist;
|
|
wait_queue_head_t more_work;
|
|
wait_queue_head_t work_done;
|
|
|
|
struct workqueue_struct *wq;
|
|
struct task_struct *thread;
|
|
|
|
int run_depth; /* Detect run_workqueue() recursion depth */
|
|
|
|
int freezeable; /* Freeze the thread during suspend */
|
|
} ____cacheline_aligned;
|
|
|
|
/*
|
|
* The externally visible workqueue abstraction is an array of
|
|
* per-CPU workqueues:
|
|
*/
|
|
struct workqueue_struct {
|
|
struct cpu_workqueue_struct *cpu_wq;
|
|
const char *name;
|
|
struct list_head list; /* Empty if single thread */
|
|
};
|
|
|
|
/* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
|
|
threads to each one as cpus come/go. */
|
|
static DEFINE_MUTEX(workqueue_mutex);
|
|
static LIST_HEAD(workqueues);
|
|
|
|
static int singlethread_cpu;
|
|
|
|
/* If it's single threaded, it isn't in the list of workqueues. */
|
|
static inline int is_single_threaded(struct workqueue_struct *wq)
|
|
{
|
|
return list_empty(&wq->list);
|
|
}
|
|
|
|
/*
|
|
* Set the workqueue on which a work item is to be run
|
|
* - Must *only* be called if the pending flag is set
|
|
*/
|
|
static inline void set_wq_data(struct work_struct *work, void *wq)
|
|
{
|
|
unsigned long new;
|
|
|
|
BUG_ON(!work_pending(work));
|
|
|
|
new = (unsigned long) wq | (1UL << WORK_STRUCT_PENDING);
|
|
new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
|
|
atomic_long_set(&work->data, new);
|
|
}
|
|
|
|
static inline void *get_wq_data(struct work_struct *work)
|
|
{
|
|
return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
|
|
}
|
|
|
|
static int __run_work(struct cpu_workqueue_struct *cwq, struct work_struct *work)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cwq->lock, flags);
|
|
/*
|
|
* We need to re-validate the work info after we've gotten
|
|
* the cpu_workqueue lock. We can run the work now iff:
|
|
*
|
|
* - the wq_data still matches the cpu_workqueue_struct
|
|
* - AND the work is still marked pending
|
|
* - AND the work is still on a list (which will be this
|
|
* workqueue_struct list)
|
|
*
|
|
* All these conditions are important, because we
|
|
* need to protect against the work being run right
|
|
* now on another CPU (all but the last one might be
|
|
* true if it's currently running and has not been
|
|
* released yet, for example).
|
|
*/
|
|
if (get_wq_data(work) == cwq
|
|
&& work_pending(work)
|
|
&& !list_empty(&work->entry)) {
|
|
work_func_t f = work->func;
|
|
list_del_init(&work->entry);
|
|
spin_unlock_irqrestore(&cwq->lock, flags);
|
|
|
|
if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
|
|
work_release(work);
|
|
f(work);
|
|
|
|
spin_lock_irqsave(&cwq->lock, flags);
|
|
cwq->remove_sequence++;
|
|
wake_up(&cwq->work_done);
|
|
ret = 1;
|
|
}
|
|
spin_unlock_irqrestore(&cwq->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* run_scheduled_work - run scheduled work synchronously
|
|
* @work: work to run
|
|
*
|
|
* This checks if the work was pending, and runs it
|
|
* synchronously if so. It returns a boolean to indicate
|
|
* whether it had any scheduled work to run or not.
|
|
*
|
|
* NOTE! This _only_ works for normal work_structs. You
|
|
* CANNOT use this for delayed work, because the wq data
|
|
* for delayed work will not point properly to the per-
|
|
* CPU workqueue struct, but will change!
|
|
*/
|
|
int fastcall run_scheduled_work(struct work_struct *work)
|
|
{
|
|
for (;;) {
|
|
struct cpu_workqueue_struct *cwq;
|
|
|
|
if (!work_pending(work))
|
|
return 0;
|
|
if (list_empty(&work->entry))
|
|
return 0;
|
|
/* NOTE! This depends intimately on __queue_work! */
|
|
cwq = get_wq_data(work);
|
|
if (!cwq)
|
|
return 0;
|
|
if (__run_work(cwq, work))
|
|
return 1;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(run_scheduled_work);
|
|
|
|
/* Preempt must be disabled. */
|
|
static void __queue_work(struct cpu_workqueue_struct *cwq,
|
|
struct work_struct *work)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cwq->lock, flags);
|
|
set_wq_data(work, cwq);
|
|
list_add_tail(&work->entry, &cwq->worklist);
|
|
cwq->insert_sequence++;
|
|
wake_up(&cwq->more_work);
|
|
spin_unlock_irqrestore(&cwq->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* queue_work - queue work on a workqueue
|
|
* @wq: workqueue to use
|
|
* @work: work to queue
|
|
*
|
|
* Returns 0 if @work was already on a queue, non-zero otherwise.
|
|
*
|
|
* We queue the work to the CPU it was submitted, but there is no
|
|
* guarantee that it will be processed by that CPU.
|
|
*/
|
|
int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
|
|
{
|
|
int ret = 0, cpu = get_cpu();
|
|
|
|
if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
|
|
if (unlikely(is_single_threaded(wq)))
|
|
cpu = singlethread_cpu;
|
|
BUG_ON(!list_empty(&work->entry));
|
|
__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
|
|
ret = 1;
|
|
}
|
|
put_cpu();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_work);
|
|
|
|
static void delayed_work_timer_fn(unsigned long __data)
|
|
{
|
|
struct delayed_work *dwork = (struct delayed_work *)__data;
|
|
struct workqueue_struct *wq = get_wq_data(&dwork->work);
|
|
int cpu = smp_processor_id();
|
|
|
|
if (unlikely(is_single_threaded(wq)))
|
|
cpu = singlethread_cpu;
|
|
|
|
__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
|
|
}
|
|
|
|
/**
|
|
* queue_delayed_work - queue work on a workqueue after delay
|
|
* @wq: workqueue to use
|
|
* @dwork: delayable work to queue
|
|
* @delay: number of jiffies to wait before queueing
|
|
*
|
|
* Returns 0 if @work was already on a queue, non-zero otherwise.
|
|
*/
|
|
int fastcall queue_delayed_work(struct workqueue_struct *wq,
|
|
struct delayed_work *dwork, unsigned long delay)
|
|
{
|
|
int ret = 0;
|
|
struct timer_list *timer = &dwork->timer;
|
|
struct work_struct *work = &dwork->work;
|
|
|
|
if (delay == 0)
|
|
return queue_work(wq, work);
|
|
|
|
if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
|
|
BUG_ON(timer_pending(timer));
|
|
BUG_ON(!list_empty(&work->entry));
|
|
|
|
/* This stores wq for the moment, for the timer_fn */
|
|
set_wq_data(work, wq);
|
|
timer->expires = jiffies + delay;
|
|
timer->data = (unsigned long)dwork;
|
|
timer->function = delayed_work_timer_fn;
|
|
add_timer(timer);
|
|
ret = 1;
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_delayed_work);
|
|
|
|
/**
|
|
* queue_delayed_work_on - queue work on specific CPU after delay
|
|
* @cpu: CPU number to execute work on
|
|
* @wq: workqueue to use
|
|
* @dwork: work to queue
|
|
* @delay: number of jiffies to wait before queueing
|
|
*
|
|
* Returns 0 if @work was already on a queue, non-zero otherwise.
|
|
*/
|
|
int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
|
|
struct delayed_work *dwork, unsigned long delay)
|
|
{
|
|
int ret = 0;
|
|
struct timer_list *timer = &dwork->timer;
|
|
struct work_struct *work = &dwork->work;
|
|
|
|
if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
|
|
BUG_ON(timer_pending(timer));
|
|
BUG_ON(!list_empty(&work->entry));
|
|
|
|
/* This stores wq for the moment, for the timer_fn */
|
|
set_wq_data(work, wq);
|
|
timer->expires = jiffies + delay;
|
|
timer->data = (unsigned long)dwork;
|
|
timer->function = delayed_work_timer_fn;
|
|
add_timer_on(timer, cpu);
|
|
ret = 1;
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
|
|
|
|
static void run_workqueue(struct cpu_workqueue_struct *cwq)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Keep taking off work from the queue until
|
|
* done.
|
|
*/
|
|
spin_lock_irqsave(&cwq->lock, flags);
|
|
cwq->run_depth++;
|
|
if (cwq->run_depth > 3) {
|
|
/* morton gets to eat his hat */
|
|
printk("%s: recursion depth exceeded: %d\n",
|
|
__FUNCTION__, cwq->run_depth);
|
|
dump_stack();
|
|
}
|
|
while (!list_empty(&cwq->worklist)) {
|
|
struct work_struct *work = list_entry(cwq->worklist.next,
|
|
struct work_struct, entry);
|
|
work_func_t f = work->func;
|
|
|
|
list_del_init(cwq->worklist.next);
|
|
spin_unlock_irqrestore(&cwq->lock, flags);
|
|
|
|
BUG_ON(get_wq_data(work) != cwq);
|
|
if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
|
|
work_release(work);
|
|
f(work);
|
|
|
|
if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
|
|
printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
|
|
"%s/0x%08x/%d\n",
|
|
current->comm, preempt_count(),
|
|
current->pid);
|
|
printk(KERN_ERR " last function: ");
|
|
print_symbol("%s\n", (unsigned long)f);
|
|
debug_show_held_locks(current);
|
|
dump_stack();
|
|
}
|
|
|
|
spin_lock_irqsave(&cwq->lock, flags);
|
|
cwq->remove_sequence++;
|
|
wake_up(&cwq->work_done);
|
|
}
|
|
cwq->run_depth--;
|
|
spin_unlock_irqrestore(&cwq->lock, flags);
|
|
}
|
|
|
|
static int worker_thread(void *__cwq)
|
|
{
|
|
struct cpu_workqueue_struct *cwq = __cwq;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
struct k_sigaction sa;
|
|
sigset_t blocked;
|
|
|
|
if (!cwq->freezeable)
|
|
current->flags |= PF_NOFREEZE;
|
|
|
|
set_user_nice(current, -5);
|
|
|
|
/* Block and flush all signals */
|
|
sigfillset(&blocked);
|
|
sigprocmask(SIG_BLOCK, &blocked, NULL);
|
|
flush_signals(current);
|
|
|
|
/*
|
|
* We inherited MPOL_INTERLEAVE from the booting kernel.
|
|
* Set MPOL_DEFAULT to insure node local allocations.
|
|
*/
|
|
numa_default_policy();
|
|
|
|
/* SIG_IGN makes children autoreap: see do_notify_parent(). */
|
|
sa.sa.sa_handler = SIG_IGN;
|
|
sa.sa.sa_flags = 0;
|
|
siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
|
|
do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
while (!kthread_should_stop()) {
|
|
if (cwq->freezeable)
|
|
try_to_freeze();
|
|
|
|
add_wait_queue(&cwq->more_work, &wait);
|
|
if (list_empty(&cwq->worklist))
|
|
schedule();
|
|
else
|
|
__set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&cwq->more_work, &wait);
|
|
|
|
if (!list_empty(&cwq->worklist))
|
|
run_workqueue(cwq);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
return 0;
|
|
}
|
|
|
|
static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
|
|
{
|
|
if (cwq->thread == current) {
|
|
/*
|
|
* Probably keventd trying to flush its own queue. So simply run
|
|
* it by hand rather than deadlocking.
|
|
*/
|
|
run_workqueue(cwq);
|
|
} else {
|
|
DEFINE_WAIT(wait);
|
|
long sequence_needed;
|
|
|
|
spin_lock_irq(&cwq->lock);
|
|
sequence_needed = cwq->insert_sequence;
|
|
|
|
while (sequence_needed - cwq->remove_sequence > 0) {
|
|
prepare_to_wait(&cwq->work_done, &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
spin_unlock_irq(&cwq->lock);
|
|
schedule();
|
|
spin_lock_irq(&cwq->lock);
|
|
}
|
|
finish_wait(&cwq->work_done, &wait);
|
|
spin_unlock_irq(&cwq->lock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* flush_workqueue - ensure that any scheduled work has run to completion.
|
|
* @wq: workqueue to flush
|
|
*
|
|
* Forces execution of the workqueue and blocks until its completion.
|
|
* This is typically used in driver shutdown handlers.
|
|
*
|
|
* This function will sample each workqueue's current insert_sequence number and
|
|
* will sleep until the head sequence is greater than or equal to that. This
|
|
* means that we sleep until all works which were queued on entry have been
|
|
* handled, but we are not livelocked by new incoming ones.
|
|
*
|
|
* This function used to run the workqueues itself. Now we just wait for the
|
|
* helper threads to do it.
|
|
*/
|
|
void fastcall flush_workqueue(struct workqueue_struct *wq)
|
|
{
|
|
might_sleep();
|
|
|
|
if (is_single_threaded(wq)) {
|
|
/* Always use first cpu's area. */
|
|
flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
|
|
} else {
|
|
int cpu;
|
|
|
|
mutex_lock(&workqueue_mutex);
|
|
for_each_online_cpu(cpu)
|
|
flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
|
|
mutex_unlock(&workqueue_mutex);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(flush_workqueue);
|
|
|
|
static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
|
|
int cpu, int freezeable)
|
|
{
|
|
struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
|
|
struct task_struct *p;
|
|
|
|
spin_lock_init(&cwq->lock);
|
|
cwq->wq = wq;
|
|
cwq->thread = NULL;
|
|
cwq->insert_sequence = 0;
|
|
cwq->remove_sequence = 0;
|
|
cwq->freezeable = freezeable;
|
|
INIT_LIST_HEAD(&cwq->worklist);
|
|
init_waitqueue_head(&cwq->more_work);
|
|
init_waitqueue_head(&cwq->work_done);
|
|
|
|
if (is_single_threaded(wq))
|
|
p = kthread_create(worker_thread, cwq, "%s", wq->name);
|
|
else
|
|
p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
|
|
if (IS_ERR(p))
|
|
return NULL;
|
|
cwq->thread = p;
|
|
return p;
|
|
}
|
|
|
|
struct workqueue_struct *__create_workqueue(const char *name,
|
|
int singlethread, int freezeable)
|
|
{
|
|
int cpu, destroy = 0;
|
|
struct workqueue_struct *wq;
|
|
struct task_struct *p;
|
|
|
|
wq = kzalloc(sizeof(*wq), GFP_KERNEL);
|
|
if (!wq)
|
|
return NULL;
|
|
|
|
wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
|
|
if (!wq->cpu_wq) {
|
|
kfree(wq);
|
|
return NULL;
|
|
}
|
|
|
|
wq->name = name;
|
|
mutex_lock(&workqueue_mutex);
|
|
if (singlethread) {
|
|
INIT_LIST_HEAD(&wq->list);
|
|
p = create_workqueue_thread(wq, singlethread_cpu, freezeable);
|
|
if (!p)
|
|
destroy = 1;
|
|
else
|
|
wake_up_process(p);
|
|
} else {
|
|
list_add(&wq->list, &workqueues);
|
|
for_each_online_cpu(cpu) {
|
|
p = create_workqueue_thread(wq, cpu, freezeable);
|
|
if (p) {
|
|
kthread_bind(p, cpu);
|
|
wake_up_process(p);
|
|
} else
|
|
destroy = 1;
|
|
}
|
|
}
|
|
mutex_unlock(&workqueue_mutex);
|
|
|
|
/*
|
|
* Was there any error during startup? If yes then clean up:
|
|
*/
|
|
if (destroy) {
|
|
destroy_workqueue(wq);
|
|
wq = NULL;
|
|
}
|
|
return wq;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__create_workqueue);
|
|
|
|
static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
|
|
{
|
|
struct cpu_workqueue_struct *cwq;
|
|
unsigned long flags;
|
|
struct task_struct *p;
|
|
|
|
cwq = per_cpu_ptr(wq->cpu_wq, cpu);
|
|
spin_lock_irqsave(&cwq->lock, flags);
|
|
p = cwq->thread;
|
|
cwq->thread = NULL;
|
|
spin_unlock_irqrestore(&cwq->lock, flags);
|
|
if (p)
|
|
kthread_stop(p);
|
|
}
|
|
|
|
/**
|
|
* destroy_workqueue - safely terminate a workqueue
|
|
* @wq: target workqueue
|
|
*
|
|
* Safely destroy a workqueue. All work currently pending will be done first.
|
|
*/
|
|
void destroy_workqueue(struct workqueue_struct *wq)
|
|
{
|
|
int cpu;
|
|
|
|
flush_workqueue(wq);
|
|
|
|
/* We don't need the distraction of CPUs appearing and vanishing. */
|
|
mutex_lock(&workqueue_mutex);
|
|
if (is_single_threaded(wq))
|
|
cleanup_workqueue_thread(wq, singlethread_cpu);
|
|
else {
|
|
for_each_online_cpu(cpu)
|
|
cleanup_workqueue_thread(wq, cpu);
|
|
list_del(&wq->list);
|
|
}
|
|
mutex_unlock(&workqueue_mutex);
|
|
free_percpu(wq->cpu_wq);
|
|
kfree(wq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(destroy_workqueue);
|
|
|
|
static struct workqueue_struct *keventd_wq;
|
|
|
|
/**
|
|
* schedule_work - put work task in global workqueue
|
|
* @work: job to be done
|
|
*
|
|
* This puts a job in the kernel-global workqueue.
|
|
*/
|
|
int fastcall schedule_work(struct work_struct *work)
|
|
{
|
|
return queue_work(keventd_wq, work);
|
|
}
|
|
EXPORT_SYMBOL(schedule_work);
|
|
|
|
/**
|
|
* schedule_delayed_work - put work task in global workqueue after delay
|
|
* @dwork: job to be done
|
|
* @delay: number of jiffies to wait or 0 for immediate execution
|
|
*
|
|
* After waiting for a given time this puts a job in the kernel-global
|
|
* workqueue.
|
|
*/
|
|
int fastcall schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
|
|
{
|
|
return queue_delayed_work(keventd_wq, dwork, delay);
|
|
}
|
|
EXPORT_SYMBOL(schedule_delayed_work);
|
|
|
|
/**
|
|
* schedule_delayed_work_on - queue work in global workqueue on CPU after delay
|
|
* @cpu: cpu to use
|
|
* @dwork: job to be done
|
|
* @delay: number of jiffies to wait
|
|
*
|
|
* After waiting for a given time this puts a job in the kernel-global
|
|
* workqueue on the specified CPU.
|
|
*/
|
|
int schedule_delayed_work_on(int cpu,
|
|
struct delayed_work *dwork, unsigned long delay)
|
|
{
|
|
return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
|
|
}
|
|
EXPORT_SYMBOL(schedule_delayed_work_on);
|
|
|
|
/**
|
|
* schedule_on_each_cpu - call a function on each online CPU from keventd
|
|
* @func: the function to call
|
|
*
|
|
* Returns zero on success.
|
|
* Returns -ve errno on failure.
|
|
*
|
|
* Appears to be racy against CPU hotplug.
|
|
*
|
|
* schedule_on_each_cpu() is very slow.
|
|
*/
|
|
int schedule_on_each_cpu(work_func_t func)
|
|
{
|
|
int cpu;
|
|
struct work_struct *works;
|
|
|
|
works = alloc_percpu(struct work_struct);
|
|
if (!works)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&workqueue_mutex);
|
|
for_each_online_cpu(cpu) {
|
|
struct work_struct *work = per_cpu_ptr(works, cpu);
|
|
|
|
INIT_WORK(work, func);
|
|
set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
|
|
__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
|
|
}
|
|
mutex_unlock(&workqueue_mutex);
|
|
flush_workqueue(keventd_wq);
|
|
free_percpu(works);
|
|
return 0;
|
|
}
|
|
|
|
void flush_scheduled_work(void)
|
|
{
|
|
flush_workqueue(keventd_wq);
|
|
}
|
|
EXPORT_SYMBOL(flush_scheduled_work);
|
|
|
|
/**
|
|
* cancel_rearming_delayed_workqueue - reliably kill off a delayed work whose handler rearms the delayed work.
|
|
* @wq: the controlling workqueue structure
|
|
* @dwork: the delayed work struct
|
|
*/
|
|
void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
|
|
struct delayed_work *dwork)
|
|
{
|
|
while (!cancel_delayed_work(dwork))
|
|
flush_workqueue(wq);
|
|
}
|
|
EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
|
|
|
|
/**
|
|
* cancel_rearming_delayed_work - reliably kill off a delayed keventd work whose handler rearms the delayed work.
|
|
* @dwork: the delayed work struct
|
|
*/
|
|
void cancel_rearming_delayed_work(struct delayed_work *dwork)
|
|
{
|
|
cancel_rearming_delayed_workqueue(keventd_wq, dwork);
|
|
}
|
|
EXPORT_SYMBOL(cancel_rearming_delayed_work);
|
|
|
|
/**
|
|
* execute_in_process_context - reliably execute the routine with user context
|
|
* @fn: the function to execute
|
|
* @ew: guaranteed storage for the execute work structure (must
|
|
* be available when the work executes)
|
|
*
|
|
* Executes the function immediately if process context is available,
|
|
* otherwise schedules the function for delayed execution.
|
|
*
|
|
* Returns: 0 - function was executed
|
|
* 1 - function was scheduled for execution
|
|
*/
|
|
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
|
|
{
|
|
if (!in_interrupt()) {
|
|
fn(&ew->work);
|
|
return 0;
|
|
}
|
|
|
|
INIT_WORK(&ew->work, fn);
|
|
schedule_work(&ew->work);
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(execute_in_process_context);
|
|
|
|
int keventd_up(void)
|
|
{
|
|
return keventd_wq != NULL;
|
|
}
|
|
|
|
int current_is_keventd(void)
|
|
{
|
|
struct cpu_workqueue_struct *cwq;
|
|
int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
|
|
int ret = 0;
|
|
|
|
BUG_ON(!keventd_wq);
|
|
|
|
cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
|
|
if (current == cwq->thread)
|
|
ret = 1;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
/* Take the work from this (downed) CPU. */
|
|
static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
|
|
{
|
|
struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
|
|
struct list_head list;
|
|
struct work_struct *work;
|
|
|
|
spin_lock_irq(&cwq->lock);
|
|
list_replace_init(&cwq->worklist, &list);
|
|
|
|
while (!list_empty(&list)) {
|
|
printk("Taking work for %s\n", wq->name);
|
|
work = list_entry(list.next,struct work_struct,entry);
|
|
list_del(&work->entry);
|
|
__queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
|
|
}
|
|
spin_unlock_irq(&cwq->lock);
|
|
}
|
|
|
|
/* We're holding the cpucontrol mutex here */
|
|
static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
|
|
unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
unsigned int hotcpu = (unsigned long)hcpu;
|
|
struct workqueue_struct *wq;
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
mutex_lock(&workqueue_mutex);
|
|
/* Create a new workqueue thread for it. */
|
|
list_for_each_entry(wq, &workqueues, list) {
|
|
if (!create_workqueue_thread(wq, hotcpu, 0)) {
|
|
printk("workqueue for %i failed\n", hotcpu);
|
|
return NOTIFY_BAD;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CPU_ONLINE:
|
|
/* Kick off worker threads. */
|
|
list_for_each_entry(wq, &workqueues, list) {
|
|
struct cpu_workqueue_struct *cwq;
|
|
|
|
cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
|
|
kthread_bind(cwq->thread, hotcpu);
|
|
wake_up_process(cwq->thread);
|
|
}
|
|
mutex_unlock(&workqueue_mutex);
|
|
break;
|
|
|
|
case CPU_UP_CANCELED:
|
|
list_for_each_entry(wq, &workqueues, list) {
|
|
if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
|
|
continue;
|
|
/* Unbind so it can run. */
|
|
kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
|
|
any_online_cpu(cpu_online_map));
|
|
cleanup_workqueue_thread(wq, hotcpu);
|
|
}
|
|
mutex_unlock(&workqueue_mutex);
|
|
break;
|
|
|
|
case CPU_DOWN_PREPARE:
|
|
mutex_lock(&workqueue_mutex);
|
|
break;
|
|
|
|
case CPU_DOWN_FAILED:
|
|
mutex_unlock(&workqueue_mutex);
|
|
break;
|
|
|
|
case CPU_DEAD:
|
|
list_for_each_entry(wq, &workqueues, list)
|
|
cleanup_workqueue_thread(wq, hotcpu);
|
|
list_for_each_entry(wq, &workqueues, list)
|
|
take_over_work(wq, hotcpu);
|
|
mutex_unlock(&workqueue_mutex);
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
void init_workqueues(void)
|
|
{
|
|
singlethread_cpu = first_cpu(cpu_possible_map);
|
|
hotcpu_notifier(workqueue_cpu_callback, 0);
|
|
keventd_wq = create_workqueue("events");
|
|
BUG_ON(!keventd_wq);
|
|
}
|
|
|