mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-17 22:05:08 +00:00
08273c9f61
With the tokens for all implemented RTAS functions now available via rtas_function_token(), which is optimal and safe for arbitrary contexts, there is no need to use rtas_token() or cache its result. Most conversions are trivial, but a few are worth describing in more detail: * Error injection token comparisons for lockdown purposes are consolidated into a simple predicate: token_is_restricted_errinjct(). * A couple of special cases in block_rtas_call() do not use rtas_token() but perform string comparisons against names in the function table. These are converted to compare against token values instead, which is logically equivalent but less expensive. * The lookup for the ibm,os-term token can be deferred until needed, instead of caching it at boot to avoid device tree traversal during panic. * Since rtas_function_token() accesses a read-only data structure without taking any locks, xmon's lookup of set-indicator can be performed as needed instead of cached at startup. Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20230125-b4-powerpc-rtas-queue-v3-20-26929c8cce78@linux.ibm.com
883 lines
24 KiB
C
883 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2001 Dave Engebretsen IBM Corporation
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/of.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/irq_work.h>
|
|
|
|
#include <asm/machdep.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/mce.h>
|
|
|
|
#include "pseries.h"
|
|
|
|
static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
|
|
static DEFINE_SPINLOCK(ras_log_buf_lock);
|
|
|
|
static int ras_check_exception_token;
|
|
|
|
#define EPOW_SENSOR_TOKEN 9
|
|
#define EPOW_SENSOR_INDEX 0
|
|
|
|
/* EPOW events counter variable */
|
|
static int num_epow_events;
|
|
|
|
static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
|
|
static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
|
|
static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
|
|
|
|
/* RTAS pseries MCE errorlog section. */
|
|
struct pseries_mc_errorlog {
|
|
__be32 fru_id;
|
|
__be32 proc_id;
|
|
u8 error_type;
|
|
/*
|
|
* sub_err_type (1 byte). Bit fields depends on error_type
|
|
*
|
|
* MSB0
|
|
* |
|
|
* V
|
|
* 01234567
|
|
* XXXXXXXX
|
|
*
|
|
* For error_type == MC_ERROR_TYPE_UE
|
|
* XXXXXXXX
|
|
* X 1: Permanent or Transient UE.
|
|
* X 1: Effective address provided.
|
|
* X 1: Logical address provided.
|
|
* XX 2: Reserved.
|
|
* XXX 3: Type of UE error.
|
|
*
|
|
* For error_type == MC_ERROR_TYPE_SLB/ERAT/TLB
|
|
* XXXXXXXX
|
|
* X 1: Effective address provided.
|
|
* XXXXX 5: Reserved.
|
|
* XX 2: Type of SLB/ERAT/TLB error.
|
|
*
|
|
* For error_type == MC_ERROR_TYPE_CTRL_MEM_ACCESS
|
|
* XXXXXXXX
|
|
* X 1: Error causing address provided.
|
|
* XXX 3: Type of error.
|
|
* XXXX 4: Reserved.
|
|
*/
|
|
u8 sub_err_type;
|
|
u8 reserved_1[6];
|
|
__be64 effective_address;
|
|
__be64 logical_address;
|
|
} __packed;
|
|
|
|
/* RTAS pseries MCE error types */
|
|
#define MC_ERROR_TYPE_UE 0x00
|
|
#define MC_ERROR_TYPE_SLB 0x01
|
|
#define MC_ERROR_TYPE_ERAT 0x02
|
|
#define MC_ERROR_TYPE_UNKNOWN 0x03
|
|
#define MC_ERROR_TYPE_TLB 0x04
|
|
#define MC_ERROR_TYPE_D_CACHE 0x05
|
|
#define MC_ERROR_TYPE_I_CACHE 0x07
|
|
#define MC_ERROR_TYPE_CTRL_MEM_ACCESS 0x08
|
|
|
|
/* RTAS pseries MCE error sub types */
|
|
#define MC_ERROR_UE_INDETERMINATE 0
|
|
#define MC_ERROR_UE_IFETCH 1
|
|
#define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH 2
|
|
#define MC_ERROR_UE_LOAD_STORE 3
|
|
#define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE 4
|
|
|
|
#define UE_EFFECTIVE_ADDR_PROVIDED 0x40
|
|
#define UE_LOGICAL_ADDR_PROVIDED 0x20
|
|
#define MC_EFFECTIVE_ADDR_PROVIDED 0x80
|
|
|
|
#define MC_ERROR_SLB_PARITY 0
|
|
#define MC_ERROR_SLB_MULTIHIT 1
|
|
#define MC_ERROR_SLB_INDETERMINATE 2
|
|
|
|
#define MC_ERROR_ERAT_PARITY 1
|
|
#define MC_ERROR_ERAT_MULTIHIT 2
|
|
#define MC_ERROR_ERAT_INDETERMINATE 3
|
|
|
|
#define MC_ERROR_TLB_PARITY 1
|
|
#define MC_ERROR_TLB_MULTIHIT 2
|
|
#define MC_ERROR_TLB_INDETERMINATE 3
|
|
|
|
#define MC_ERROR_CTRL_MEM_ACCESS_PTABLE_WALK 0
|
|
#define MC_ERROR_CTRL_MEM_ACCESS_OP_ACCESS 1
|
|
|
|
static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
|
|
{
|
|
switch (mlog->error_type) {
|
|
case MC_ERROR_TYPE_UE:
|
|
return (mlog->sub_err_type & 0x07);
|
|
case MC_ERROR_TYPE_SLB:
|
|
case MC_ERROR_TYPE_ERAT:
|
|
case MC_ERROR_TYPE_TLB:
|
|
return (mlog->sub_err_type & 0x03);
|
|
case MC_ERROR_TYPE_CTRL_MEM_ACCESS:
|
|
return (mlog->sub_err_type & 0x70) >> 4;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enable the hotplug interrupt late because processing them may touch other
|
|
* devices or systems (e.g. hugepages) that have not been initialized at the
|
|
* subsys stage.
|
|
*/
|
|
static int __init init_ras_hotplug_IRQ(void)
|
|
{
|
|
struct device_node *np;
|
|
|
|
/* Hotplug Events */
|
|
np = of_find_node_by_path("/event-sources/hot-plug-events");
|
|
if (np != NULL) {
|
|
if (dlpar_workqueue_init() == 0)
|
|
request_event_sources_irqs(np, ras_hotplug_interrupt,
|
|
"RAS_HOTPLUG");
|
|
of_node_put(np);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
machine_late_initcall(pseries, init_ras_hotplug_IRQ);
|
|
|
|
/*
|
|
* Initialize handlers for the set of interrupts caused by hardware errors
|
|
* and power system events.
|
|
*/
|
|
static int __init init_ras_IRQ(void)
|
|
{
|
|
struct device_node *np;
|
|
|
|
ras_check_exception_token = rtas_function_token(RTAS_FN_CHECK_EXCEPTION);
|
|
|
|
/* Internal Errors */
|
|
np = of_find_node_by_path("/event-sources/internal-errors");
|
|
if (np != NULL) {
|
|
request_event_sources_irqs(np, ras_error_interrupt,
|
|
"RAS_ERROR");
|
|
of_node_put(np);
|
|
}
|
|
|
|
/* EPOW Events */
|
|
np = of_find_node_by_path("/event-sources/epow-events");
|
|
if (np != NULL) {
|
|
request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
|
|
of_node_put(np);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
machine_subsys_initcall(pseries, init_ras_IRQ);
|
|
|
|
#define EPOW_SHUTDOWN_NORMAL 1
|
|
#define EPOW_SHUTDOWN_ON_UPS 2
|
|
#define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3
|
|
#define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4
|
|
|
|
static void handle_system_shutdown(char event_modifier)
|
|
{
|
|
switch (event_modifier) {
|
|
case EPOW_SHUTDOWN_NORMAL:
|
|
pr_emerg("Power off requested\n");
|
|
orderly_poweroff(true);
|
|
break;
|
|
|
|
case EPOW_SHUTDOWN_ON_UPS:
|
|
pr_emerg("Loss of system power detected. System is running on"
|
|
" UPS/battery. Check RTAS error log for details\n");
|
|
break;
|
|
|
|
case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
|
|
pr_emerg("Loss of system critical functions detected. Check"
|
|
" RTAS error log for details\n");
|
|
orderly_poweroff(true);
|
|
break;
|
|
|
|
case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
|
|
pr_emerg("High ambient temperature detected. Check RTAS"
|
|
" error log for details\n");
|
|
orderly_poweroff(true);
|
|
break;
|
|
|
|
default:
|
|
pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
|
|
event_modifier);
|
|
}
|
|
}
|
|
|
|
struct epow_errorlog {
|
|
unsigned char sensor_value;
|
|
unsigned char event_modifier;
|
|
unsigned char extended_modifier;
|
|
unsigned char reserved;
|
|
unsigned char platform_reason;
|
|
};
|
|
|
|
#define EPOW_RESET 0
|
|
#define EPOW_WARN_COOLING 1
|
|
#define EPOW_WARN_POWER 2
|
|
#define EPOW_SYSTEM_SHUTDOWN 3
|
|
#define EPOW_SYSTEM_HALT 4
|
|
#define EPOW_MAIN_ENCLOSURE 5
|
|
#define EPOW_POWER_OFF 7
|
|
|
|
static void rtas_parse_epow_errlog(struct rtas_error_log *log)
|
|
{
|
|
struct pseries_errorlog *pseries_log;
|
|
struct epow_errorlog *epow_log;
|
|
char action_code;
|
|
char modifier;
|
|
|
|
pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
|
|
if (pseries_log == NULL)
|
|
return;
|
|
|
|
epow_log = (struct epow_errorlog *)pseries_log->data;
|
|
action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */
|
|
modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */
|
|
|
|
switch (action_code) {
|
|
case EPOW_RESET:
|
|
if (num_epow_events) {
|
|
pr_info("Non critical power/cooling issue cleared\n");
|
|
num_epow_events--;
|
|
}
|
|
break;
|
|
|
|
case EPOW_WARN_COOLING:
|
|
pr_info("Non-critical cooling issue detected. Check RTAS error"
|
|
" log for details\n");
|
|
break;
|
|
|
|
case EPOW_WARN_POWER:
|
|
pr_info("Non-critical power issue detected. Check RTAS error"
|
|
" log for details\n");
|
|
break;
|
|
|
|
case EPOW_SYSTEM_SHUTDOWN:
|
|
handle_system_shutdown(modifier);
|
|
break;
|
|
|
|
case EPOW_SYSTEM_HALT:
|
|
pr_emerg("Critical power/cooling issue detected. Check RTAS"
|
|
" error log for details. Powering off.\n");
|
|
orderly_poweroff(true);
|
|
break;
|
|
|
|
case EPOW_MAIN_ENCLOSURE:
|
|
case EPOW_POWER_OFF:
|
|
pr_emerg("System about to lose power. Check RTAS error log "
|
|
" for details. Powering off immediately.\n");
|
|
emergency_sync();
|
|
kernel_power_off();
|
|
break;
|
|
|
|
default:
|
|
pr_err("Unknown power/cooling event (action code = %d)\n",
|
|
action_code);
|
|
}
|
|
|
|
/* Increment epow events counter variable */
|
|
if (action_code != EPOW_RESET)
|
|
num_epow_events++;
|
|
}
|
|
|
|
static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct pseries_errorlog *pseries_log;
|
|
struct pseries_hp_errorlog *hp_elog;
|
|
|
|
spin_lock(&ras_log_buf_lock);
|
|
|
|
rtas_call(ras_check_exception_token, 6, 1, NULL,
|
|
RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
|
|
RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
|
|
rtas_get_error_log_max());
|
|
|
|
pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
|
|
PSERIES_ELOG_SECT_ID_HOTPLUG);
|
|
hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
|
|
|
|
/*
|
|
* Since PCI hotplug is not currently supported on pseries, put PCI
|
|
* hotplug events on the ras_log_buf to be handled by rtas_errd.
|
|
*/
|
|
if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
|
|
hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
|
|
hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
|
|
queue_hotplug_event(hp_elog);
|
|
else
|
|
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
|
|
|
|
spin_unlock(&ras_log_buf_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Handle environmental and power warning (EPOW) interrupts. */
|
|
static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
|
|
{
|
|
int state;
|
|
int critical;
|
|
|
|
rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX, &state);
|
|
|
|
if (state > 3)
|
|
critical = 1; /* Time Critical */
|
|
else
|
|
critical = 0;
|
|
|
|
spin_lock(&ras_log_buf_lock);
|
|
|
|
rtas_call(ras_check_exception_token, 6, 1, NULL, RTAS_VECTOR_EXTERNAL_INTERRUPT,
|
|
virq_to_hw(irq), RTAS_EPOW_WARNING, critical, __pa(&ras_log_buf),
|
|
rtas_get_error_log_max());
|
|
|
|
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
|
|
|
|
rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
|
|
|
|
spin_unlock(&ras_log_buf_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Handle hardware error interrupts.
|
|
*
|
|
* RTAS check-exception is called to collect data on the exception. If
|
|
* the error is deemed recoverable, we log a warning and return.
|
|
* For nonrecoverable errors, an error is logged and we stop all processing
|
|
* as quickly as possible in order to prevent propagation of the failure.
|
|
*/
|
|
static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct rtas_error_log *rtas_elog;
|
|
int status;
|
|
int fatal;
|
|
|
|
spin_lock(&ras_log_buf_lock);
|
|
|
|
status = rtas_call(ras_check_exception_token, 6, 1, NULL,
|
|
RTAS_VECTOR_EXTERNAL_INTERRUPT,
|
|
virq_to_hw(irq),
|
|
RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
|
|
__pa(&ras_log_buf),
|
|
rtas_get_error_log_max());
|
|
|
|
rtas_elog = (struct rtas_error_log *)ras_log_buf;
|
|
|
|
if (status == 0 &&
|
|
rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
|
|
fatal = 1;
|
|
else
|
|
fatal = 0;
|
|
|
|
/* format and print the extended information */
|
|
log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
|
|
|
|
if (fatal) {
|
|
pr_emerg("Fatal hardware error detected. Check RTAS error"
|
|
" log for details. Powering off immediately\n");
|
|
emergency_sync();
|
|
kernel_power_off();
|
|
} else {
|
|
pr_err("Recoverable hardware error detected\n");
|
|
}
|
|
|
|
spin_unlock(&ras_log_buf_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Some versions of FWNMI place the buffer inside the 4kB page starting at
|
|
* 0x7000. Other versions place it inside the rtas buffer. We check both.
|
|
* Minimum size of the buffer is 16 bytes.
|
|
*/
|
|
#define VALID_FWNMI_BUFFER(A) \
|
|
((((A) >= 0x7000) && ((A) <= 0x8000 - 16)) || \
|
|
(((A) >= rtas.base) && ((A) <= (rtas.base + rtas.size - 16))))
|
|
|
|
static inline struct rtas_error_log *fwnmi_get_errlog(void)
|
|
{
|
|
return (struct rtas_error_log *)local_paca->mce_data_buf;
|
|
}
|
|
|
|
static __be64 *fwnmi_get_savep(struct pt_regs *regs)
|
|
{
|
|
unsigned long savep_ra;
|
|
|
|
/* Mask top two bits */
|
|
savep_ra = regs->gpr[3] & ~(0x3UL << 62);
|
|
if (!VALID_FWNMI_BUFFER(savep_ra)) {
|
|
printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
|
|
return NULL;
|
|
}
|
|
|
|
return __va(savep_ra);
|
|
}
|
|
|
|
/*
|
|
* Get the error information for errors coming through the
|
|
* FWNMI vectors. The pt_regs' r3 will be updated to reflect
|
|
* the actual r3 if possible, and a ptr to the error log entry
|
|
* will be returned if found.
|
|
*
|
|
* Use one buffer mce_data_buf per cpu to store RTAS error.
|
|
*
|
|
* The mce_data_buf does not have any locks or protection around it,
|
|
* if a second machine check comes in, or a system reset is done
|
|
* before we have logged the error, then we will get corruption in the
|
|
* error log. This is preferable over holding off on calling
|
|
* ibm,nmi-interlock which would result in us checkstopping if a
|
|
* second machine check did come in.
|
|
*/
|
|
static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
|
|
{
|
|
struct rtas_error_log *h;
|
|
__be64 *savep;
|
|
|
|
savep = fwnmi_get_savep(regs);
|
|
if (!savep)
|
|
return NULL;
|
|
|
|
regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
|
|
|
|
h = (struct rtas_error_log *)&savep[1];
|
|
/* Use the per cpu buffer from paca to store rtas error log */
|
|
memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
|
|
if (!rtas_error_extended(h)) {
|
|
memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
|
|
} else {
|
|
int len, error_log_length;
|
|
|
|
error_log_length = 8 + rtas_error_extended_log_length(h);
|
|
len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
|
|
memcpy(local_paca->mce_data_buf, h, len);
|
|
}
|
|
|
|
return (struct rtas_error_log *)local_paca->mce_data_buf;
|
|
}
|
|
|
|
/* Call this when done with the data returned by FWNMI_get_errinfo.
|
|
* It will release the saved data area for other CPUs in the
|
|
* partition to receive FWNMI errors.
|
|
*/
|
|
static void fwnmi_release_errinfo(void)
|
|
{
|
|
struct rtas_args rtas_args;
|
|
int ret;
|
|
|
|
/*
|
|
* On pseries, the machine check stack is limited to under 4GB, so
|
|
* args can be on-stack.
|
|
*/
|
|
rtas_call_unlocked(&rtas_args, ibm_nmi_interlock_token, 0, 1, NULL);
|
|
ret = be32_to_cpu(rtas_args.rets[0]);
|
|
if (ret != 0)
|
|
printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
|
|
}
|
|
|
|
int pSeries_system_reset_exception(struct pt_regs *regs)
|
|
{
|
|
#ifdef __LITTLE_ENDIAN__
|
|
/*
|
|
* Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
|
|
* to detect the bad SRR1 pattern here. Flip the NIP back to correct
|
|
* endian for reporting purposes. Unfortunately the MSR can't be fixed,
|
|
* so clear it. It will be missing MSR_RI so we won't try to recover.
|
|
*/
|
|
if ((be64_to_cpu(regs->msr) &
|
|
(MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
|
|
MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
|
|
regs_set_return_ip(regs, be64_to_cpu((__be64)regs->nip));
|
|
regs_set_return_msr(regs, 0);
|
|
}
|
|
#endif
|
|
|
|
if (fwnmi_active) {
|
|
__be64 *savep;
|
|
|
|
/*
|
|
* Firmware (PowerVM and KVM) saves r3 to a save area like
|
|
* machine check, which is not exactly what PAPR (2.9)
|
|
* suggests but there is no way to detect otherwise, so this
|
|
* is the interface now.
|
|
*
|
|
* System resets do not save any error log or require an
|
|
* "ibm,nmi-interlock" rtas call to release.
|
|
*/
|
|
|
|
savep = fwnmi_get_savep(regs);
|
|
if (savep)
|
|
regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
|
|
}
|
|
|
|
if (smp_handle_nmi_ipi(regs))
|
|
return 1;
|
|
|
|
return 0; /* need to perform reset */
|
|
}
|
|
|
|
static int mce_handle_err_realmode(int disposition, u8 error_type)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (disposition == RTAS_DISP_NOT_RECOVERED) {
|
|
switch (error_type) {
|
|
case MC_ERROR_TYPE_ERAT:
|
|
flush_erat();
|
|
disposition = RTAS_DISP_FULLY_RECOVERED;
|
|
break;
|
|
case MC_ERROR_TYPE_SLB:
|
|
#ifdef CONFIG_PPC_64S_HASH_MMU
|
|
/*
|
|
* Store the old slb content in paca before flushing.
|
|
* Print this when we go to virtual mode.
|
|
* There are chances that we may hit MCE again if there
|
|
* is a parity error on the SLB entry we trying to read
|
|
* for saving. Hence limit the slb saving to single
|
|
* level of recursion.
|
|
*/
|
|
if (local_paca->in_mce == 1)
|
|
slb_save_contents(local_paca->mce_faulty_slbs);
|
|
flush_and_reload_slb();
|
|
disposition = RTAS_DISP_FULLY_RECOVERED;
|
|
#endif
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
|
|
/* Platform corrected itself but could be degraded */
|
|
pr_err("MCE: limited recovery, system may be degraded\n");
|
|
disposition = RTAS_DISP_FULLY_RECOVERED;
|
|
}
|
|
#endif
|
|
return disposition;
|
|
}
|
|
|
|
static int mce_handle_err_virtmode(struct pt_regs *regs,
|
|
struct rtas_error_log *errp,
|
|
struct pseries_mc_errorlog *mce_log,
|
|
int disposition)
|
|
{
|
|
struct mce_error_info mce_err = { 0 };
|
|
int initiator = rtas_error_initiator(errp);
|
|
int severity = rtas_error_severity(errp);
|
|
unsigned long eaddr = 0, paddr = 0;
|
|
u8 error_type, err_sub_type;
|
|
|
|
if (!mce_log)
|
|
goto out;
|
|
|
|
error_type = mce_log->error_type;
|
|
err_sub_type = rtas_mc_error_sub_type(mce_log);
|
|
|
|
if (initiator == RTAS_INITIATOR_UNKNOWN)
|
|
mce_err.initiator = MCE_INITIATOR_UNKNOWN;
|
|
else if (initiator == RTAS_INITIATOR_CPU)
|
|
mce_err.initiator = MCE_INITIATOR_CPU;
|
|
else if (initiator == RTAS_INITIATOR_PCI)
|
|
mce_err.initiator = MCE_INITIATOR_PCI;
|
|
else if (initiator == RTAS_INITIATOR_ISA)
|
|
mce_err.initiator = MCE_INITIATOR_ISA;
|
|
else if (initiator == RTAS_INITIATOR_MEMORY)
|
|
mce_err.initiator = MCE_INITIATOR_MEMORY;
|
|
else if (initiator == RTAS_INITIATOR_POWERMGM)
|
|
mce_err.initiator = MCE_INITIATOR_POWERMGM;
|
|
else
|
|
mce_err.initiator = MCE_INITIATOR_UNKNOWN;
|
|
|
|
if (severity == RTAS_SEVERITY_NO_ERROR)
|
|
mce_err.severity = MCE_SEV_NO_ERROR;
|
|
else if (severity == RTAS_SEVERITY_EVENT)
|
|
mce_err.severity = MCE_SEV_WARNING;
|
|
else if (severity == RTAS_SEVERITY_WARNING)
|
|
mce_err.severity = MCE_SEV_WARNING;
|
|
else if (severity == RTAS_SEVERITY_ERROR_SYNC)
|
|
mce_err.severity = MCE_SEV_SEVERE;
|
|
else if (severity == RTAS_SEVERITY_ERROR)
|
|
mce_err.severity = MCE_SEV_SEVERE;
|
|
else
|
|
mce_err.severity = MCE_SEV_FATAL;
|
|
|
|
if (severity <= RTAS_SEVERITY_ERROR_SYNC)
|
|
mce_err.sync_error = true;
|
|
else
|
|
mce_err.sync_error = false;
|
|
|
|
mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
|
|
mce_err.error_class = MCE_ECLASS_UNKNOWN;
|
|
|
|
switch (error_type) {
|
|
case MC_ERROR_TYPE_UE:
|
|
mce_err.error_type = MCE_ERROR_TYPE_UE;
|
|
mce_common_process_ue(regs, &mce_err);
|
|
if (mce_err.ignore_event)
|
|
disposition = RTAS_DISP_FULLY_RECOVERED;
|
|
switch (err_sub_type) {
|
|
case MC_ERROR_UE_IFETCH:
|
|
mce_err.u.ue_error_type = MCE_UE_ERROR_IFETCH;
|
|
break;
|
|
case MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH:
|
|
mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH;
|
|
break;
|
|
case MC_ERROR_UE_LOAD_STORE:
|
|
mce_err.u.ue_error_type = MCE_UE_ERROR_LOAD_STORE;
|
|
break;
|
|
case MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE:
|
|
mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE;
|
|
break;
|
|
case MC_ERROR_UE_INDETERMINATE:
|
|
default:
|
|
mce_err.u.ue_error_type = MCE_UE_ERROR_INDETERMINATE;
|
|
break;
|
|
}
|
|
if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED)
|
|
eaddr = be64_to_cpu(mce_log->effective_address);
|
|
|
|
if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
|
|
paddr = be64_to_cpu(mce_log->logical_address);
|
|
} else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
|
|
unsigned long pfn;
|
|
|
|
pfn = addr_to_pfn(regs, eaddr);
|
|
if (pfn != ULONG_MAX)
|
|
paddr = pfn << PAGE_SHIFT;
|
|
}
|
|
|
|
break;
|
|
case MC_ERROR_TYPE_SLB:
|
|
mce_err.error_type = MCE_ERROR_TYPE_SLB;
|
|
switch (err_sub_type) {
|
|
case MC_ERROR_SLB_PARITY:
|
|
mce_err.u.slb_error_type = MCE_SLB_ERROR_PARITY;
|
|
break;
|
|
case MC_ERROR_SLB_MULTIHIT:
|
|
mce_err.u.slb_error_type = MCE_SLB_ERROR_MULTIHIT;
|
|
break;
|
|
case MC_ERROR_SLB_INDETERMINATE:
|
|
default:
|
|
mce_err.u.slb_error_type = MCE_SLB_ERROR_INDETERMINATE;
|
|
break;
|
|
}
|
|
if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
|
|
eaddr = be64_to_cpu(mce_log->effective_address);
|
|
break;
|
|
case MC_ERROR_TYPE_ERAT:
|
|
mce_err.error_type = MCE_ERROR_TYPE_ERAT;
|
|
switch (err_sub_type) {
|
|
case MC_ERROR_ERAT_PARITY:
|
|
mce_err.u.erat_error_type = MCE_ERAT_ERROR_PARITY;
|
|
break;
|
|
case MC_ERROR_ERAT_MULTIHIT:
|
|
mce_err.u.erat_error_type = MCE_ERAT_ERROR_MULTIHIT;
|
|
break;
|
|
case MC_ERROR_ERAT_INDETERMINATE:
|
|
default:
|
|
mce_err.u.erat_error_type = MCE_ERAT_ERROR_INDETERMINATE;
|
|
break;
|
|
}
|
|
if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
|
|
eaddr = be64_to_cpu(mce_log->effective_address);
|
|
break;
|
|
case MC_ERROR_TYPE_TLB:
|
|
mce_err.error_type = MCE_ERROR_TYPE_TLB;
|
|
switch (err_sub_type) {
|
|
case MC_ERROR_TLB_PARITY:
|
|
mce_err.u.tlb_error_type = MCE_TLB_ERROR_PARITY;
|
|
break;
|
|
case MC_ERROR_TLB_MULTIHIT:
|
|
mce_err.u.tlb_error_type = MCE_TLB_ERROR_MULTIHIT;
|
|
break;
|
|
case MC_ERROR_TLB_INDETERMINATE:
|
|
default:
|
|
mce_err.u.tlb_error_type = MCE_TLB_ERROR_INDETERMINATE;
|
|
break;
|
|
}
|
|
if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
|
|
eaddr = be64_to_cpu(mce_log->effective_address);
|
|
break;
|
|
case MC_ERROR_TYPE_D_CACHE:
|
|
mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
|
|
break;
|
|
case MC_ERROR_TYPE_I_CACHE:
|
|
mce_err.error_type = MCE_ERROR_TYPE_ICACHE;
|
|
break;
|
|
case MC_ERROR_TYPE_CTRL_MEM_ACCESS:
|
|
mce_err.error_type = MCE_ERROR_TYPE_RA;
|
|
switch (err_sub_type) {
|
|
case MC_ERROR_CTRL_MEM_ACCESS_PTABLE_WALK:
|
|
mce_err.u.ra_error_type =
|
|
MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN;
|
|
break;
|
|
case MC_ERROR_CTRL_MEM_ACCESS_OP_ACCESS:
|
|
mce_err.u.ra_error_type =
|
|
MCE_RA_ERROR_LOAD_STORE_FOREIGN;
|
|
break;
|
|
}
|
|
if (mce_log->sub_err_type & MC_EFFECTIVE_ADDR_PROVIDED)
|
|
eaddr = be64_to_cpu(mce_log->effective_address);
|
|
break;
|
|
case MC_ERROR_TYPE_UNKNOWN:
|
|
default:
|
|
mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
|
|
break;
|
|
}
|
|
out:
|
|
save_mce_event(regs, disposition == RTAS_DISP_FULLY_RECOVERED,
|
|
&mce_err, regs->nip, eaddr, paddr);
|
|
return disposition;
|
|
}
|
|
|
|
static int mce_handle_error(struct pt_regs *regs, struct rtas_error_log *errp)
|
|
{
|
|
struct pseries_errorlog *pseries_log;
|
|
struct pseries_mc_errorlog *mce_log = NULL;
|
|
int disposition = rtas_error_disposition(errp);
|
|
u8 error_type;
|
|
|
|
if (!rtas_error_extended(errp))
|
|
goto out;
|
|
|
|
pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
|
|
if (!pseries_log)
|
|
goto out;
|
|
|
|
mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
|
|
error_type = mce_log->error_type;
|
|
|
|
disposition = mce_handle_err_realmode(disposition, error_type);
|
|
out:
|
|
disposition = mce_handle_err_virtmode(regs, errp, mce_log,
|
|
disposition);
|
|
return disposition;
|
|
}
|
|
|
|
/*
|
|
* Process MCE rtas errlog event.
|
|
*/
|
|
void pSeries_machine_check_log_err(void)
|
|
{
|
|
struct rtas_error_log *err;
|
|
|
|
err = fwnmi_get_errlog();
|
|
log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
|
|
}
|
|
|
|
/*
|
|
* See if we can recover from a machine check exception.
|
|
* This is only called on power4 (or above) and only via
|
|
* the Firmware Non-Maskable Interrupts (fwnmi) handler
|
|
* which provides the error analysis for us.
|
|
*
|
|
* Return 1 if corrected (or delivered a signal).
|
|
* Return 0 if there is nothing we can do.
|
|
*/
|
|
static int recover_mce(struct pt_regs *regs, struct machine_check_event *evt)
|
|
{
|
|
int recovered = 0;
|
|
|
|
if (regs_is_unrecoverable(regs)) {
|
|
/* If MSR_RI isn't set, we cannot recover */
|
|
pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
|
|
recovered = 0;
|
|
} else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
|
|
/* Platform corrected itself */
|
|
recovered = 1;
|
|
} else if (evt->severity == MCE_SEV_FATAL) {
|
|
/* Fatal machine check */
|
|
pr_err("Machine check interrupt is fatal\n");
|
|
recovered = 0;
|
|
}
|
|
|
|
if (!recovered && evt->sync_error) {
|
|
/*
|
|
* Try to kill processes if we get a synchronous machine check
|
|
* (e.g., one caused by execution of this instruction). This
|
|
* will devolve into a panic if we try to kill init or are in
|
|
* an interrupt etc.
|
|
*
|
|
* TODO: Queue up this address for hwpoisioning later.
|
|
* TODO: This is not quite right for d-side machine
|
|
* checks ->nip is not necessarily the important
|
|
* address.
|
|
*/
|
|
if ((user_mode(regs))) {
|
|
_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
|
|
recovered = 1;
|
|
} else if (die_will_crash()) {
|
|
/*
|
|
* die() would kill the kernel, so better to go via
|
|
* the platform reboot code that will log the
|
|
* machine check.
|
|
*/
|
|
recovered = 0;
|
|
} else {
|
|
die_mce("Machine check", regs, SIGBUS);
|
|
recovered = 1;
|
|
}
|
|
}
|
|
|
|
return recovered;
|
|
}
|
|
|
|
/*
|
|
* Handle a machine check.
|
|
*
|
|
* Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
|
|
* should be present. If so the handler which called us tells us if the
|
|
* error was recovered (never true if RI=0).
|
|
*
|
|
* On hardware prior to Power 4 these exceptions were asynchronous which
|
|
* means we can't tell exactly where it occurred and so we can't recover.
|
|
*/
|
|
int pSeries_machine_check_exception(struct pt_regs *regs)
|
|
{
|
|
struct machine_check_event evt;
|
|
|
|
if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
|
|
return 0;
|
|
|
|
/* Print things out */
|
|
if (evt.version != MCE_V1) {
|
|
pr_err("Machine Check Exception, Unknown event version %d !\n",
|
|
evt.version);
|
|
return 0;
|
|
}
|
|
machine_check_print_event_info(&evt, user_mode(regs), false);
|
|
|
|
if (recover_mce(regs, &evt))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
long pseries_machine_check_realmode(struct pt_regs *regs)
|
|
{
|
|
struct rtas_error_log *errp;
|
|
int disposition;
|
|
|
|
if (fwnmi_active) {
|
|
errp = fwnmi_get_errinfo(regs);
|
|
/*
|
|
* Call to fwnmi_release_errinfo() in real mode causes kernel
|
|
* to panic. Hence we will call it as soon as we go into
|
|
* virtual mode.
|
|
*/
|
|
disposition = mce_handle_error(regs, errp);
|
|
|
|
fwnmi_release_errinfo();
|
|
|
|
if (disposition == RTAS_DISP_FULLY_RECOVERED)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|