mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-12 16:58:53 +00:00
4bb3c7a020
POWER9 has hardware bugs relating to transactional memory and thread reconfiguration (changes to hardware SMT mode). Specifically, the core does not have enough storage to store a complete checkpoint of all the architected state for all four threads. The DD2.2 version of POWER9 includes hardware modifications designed to allow hypervisor software to implement workarounds for these problems. This patch implements those workarounds in KVM code so that KVM guests see a full, working transactional memory implementation. The problems center around the use of TM suspended state, where the CPU has a checkpointed state but execution is not transactional. The workaround is to implement a "fake suspend" state, which looks to the guest like suspended state but the CPU does not store a checkpoint. In this state, any instruction that would cause a transition to transactional state (rfid, rfebb, mtmsrd, tresume) or would use the checkpointed state (treclaim) causes a "soft patch" interrupt (vector 0x1500) to the hypervisor so that it can be emulated. The trechkpt instruction also causes a soft patch interrupt. On POWER9 DD2.2, we avoid returning to the guest in any state which would require a checkpoint to be present. The trechkpt in the guest entry path which would normally create that checkpoint is replaced by either a transition to fake suspend state, if the guest is in suspend state, or a rollback to the pre-transactional state if the guest is in transactional state. Fake suspend state is indicated by a flag in the PACA plus a new bit in the PSSCR. The new PSSCR bit is write-only and reads back as 0. On exit from the guest, if the guest is in fake suspend state, we still do the treclaim instruction as we would in real suspend state, in order to get into non-transactional state, but we do not save the resulting register state since there was no checkpoint. Emulation of the instructions that cause a softpatch interrupt is handled in two paths. If the guest is in real suspend mode, we call kvmhv_p9_tm_emulation_early() to handle the cases where the guest is transitioning to transactional state. This is called before we do the treclaim in the guest exit path; because we haven't done treclaim, we can get back to the guest with the transaction still active. If the instruction is a case that kvmhv_p9_tm_emulation_early() doesn't handle, or if the guest is in fake suspend state, then we proceed to do the complete guest exit path and subsequently call kvmhv_p9_tm_emulation() in host context with the MMU on. This handles all the cases including the cases that generate program interrupts (illegal instruction or TM Bad Thing) and facility unavailable interrupts. The emulation is reasonably straightforward and is mostly concerned with checking for exception conditions and updating the state of registers such as MSR and CR0. The treclaim emulation takes care to ensure that the TEXASR register gets updated as if it were the guest treclaim instruction that had done failure recording, not the treclaim done in hypervisor state in the guest exit path. With this, the KVM_CAP_PPC_HTM capability returns true (1) even if transactional memory is not available to host userspace. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
521 lines
13 KiB
C
521 lines
13 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* Copyright SUSE Linux Products GmbH 2010
|
|
*
|
|
* Authors: Alexander Graf <agraf@suse.de>
|
|
*/
|
|
|
|
#ifndef __ASM_KVM_BOOK3S_64_H__
|
|
#define __ASM_KVM_BOOK3S_64_H__
|
|
|
|
#include <linux/string.h>
|
|
#include <asm/bitops.h>
|
|
#include <asm/book3s/64/mmu-hash.h>
|
|
|
|
/* Power architecture requires HPT is at least 256kiB, at most 64TiB */
|
|
#define PPC_MIN_HPT_ORDER 18
|
|
#define PPC_MAX_HPT_ORDER 46
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
|
|
static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
return &get_paca()->shadow_vcpu;
|
|
}
|
|
|
|
static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
|
|
{
|
|
preempt_enable();
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
|
|
static inline bool kvm_is_radix(struct kvm *kvm)
|
|
{
|
|
return kvm->arch.radix;
|
|
}
|
|
|
|
#define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */
|
|
#endif
|
|
|
|
/*
|
|
* We use a lock bit in HPTE dword 0 to synchronize updates and
|
|
* accesses to each HPTE, and another bit to indicate non-present
|
|
* HPTEs.
|
|
*/
|
|
#define HPTE_V_HVLOCK 0x40UL
|
|
#define HPTE_V_ABSENT 0x20UL
|
|
|
|
/*
|
|
* We use this bit in the guest_rpte field of the revmap entry
|
|
* to indicate a modified HPTE.
|
|
*/
|
|
#define HPTE_GR_MODIFIED (1ul << 62)
|
|
|
|
/* These bits are reserved in the guest view of the HPTE */
|
|
#define HPTE_GR_RESERVED HPTE_GR_MODIFIED
|
|
|
|
static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
|
|
{
|
|
unsigned long tmp, old;
|
|
__be64 be_lockbit, be_bits;
|
|
|
|
/*
|
|
* We load/store in native endian, but the HTAB is in big endian. If
|
|
* we byte swap all data we apply on the PTE we're implicitly correct
|
|
* again.
|
|
*/
|
|
be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
|
|
be_bits = cpu_to_be64(bits);
|
|
|
|
asm volatile(" ldarx %0,0,%2\n"
|
|
" and. %1,%0,%3\n"
|
|
" bne 2f\n"
|
|
" or %0,%0,%4\n"
|
|
" stdcx. %0,0,%2\n"
|
|
" beq+ 2f\n"
|
|
" mr %1,%3\n"
|
|
"2: isync"
|
|
: "=&r" (tmp), "=&r" (old)
|
|
: "r" (hpte), "r" (be_bits), "r" (be_lockbit)
|
|
: "cc", "memory");
|
|
return old == 0;
|
|
}
|
|
|
|
static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
|
|
{
|
|
hpte_v &= ~HPTE_V_HVLOCK;
|
|
asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
|
|
hpte[0] = cpu_to_be64(hpte_v);
|
|
}
|
|
|
|
/* Without barrier */
|
|
static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
|
|
{
|
|
hpte_v &= ~HPTE_V_HVLOCK;
|
|
hpte[0] = cpu_to_be64(hpte_v);
|
|
}
|
|
|
|
/*
|
|
* These functions encode knowledge of the POWER7/8/9 hardware
|
|
* interpretations of the HPTE LP (large page size) field.
|
|
*/
|
|
static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
|
|
{
|
|
unsigned int lphi;
|
|
|
|
if (!(h & HPTE_V_LARGE))
|
|
return 12; /* 4kB */
|
|
lphi = (l >> 16) & 0xf;
|
|
switch ((l >> 12) & 0xf) {
|
|
case 0:
|
|
return !lphi ? 24 : 0; /* 16MB */
|
|
break;
|
|
case 1:
|
|
return 16; /* 64kB */
|
|
break;
|
|
case 3:
|
|
return !lphi ? 34 : 0; /* 16GB */
|
|
break;
|
|
case 7:
|
|
return (16 << 8) + 12; /* 64kB in 4kB */
|
|
break;
|
|
case 8:
|
|
if (!lphi)
|
|
return (24 << 8) + 16; /* 16MB in 64kkB */
|
|
if (lphi == 3)
|
|
return (24 << 8) + 12; /* 16MB in 4kB */
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
|
|
{
|
|
return kvmppc_hpte_page_shifts(h, l) & 0xff;
|
|
}
|
|
|
|
static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
|
|
{
|
|
int tmp = kvmppc_hpte_page_shifts(h, l);
|
|
|
|
if (tmp >= 0x100)
|
|
tmp >>= 8;
|
|
return tmp;
|
|
}
|
|
|
|
static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
|
|
{
|
|
int shift = kvmppc_hpte_actual_page_shift(v, r);
|
|
|
|
if (shift)
|
|
return 1ul << shift;
|
|
return 0;
|
|
}
|
|
|
|
static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
|
|
{
|
|
switch (base_shift) {
|
|
case 12:
|
|
switch (actual_shift) {
|
|
case 12:
|
|
return 0;
|
|
case 16:
|
|
return 7;
|
|
case 24:
|
|
return 0x38;
|
|
}
|
|
break;
|
|
case 16:
|
|
switch (actual_shift) {
|
|
case 16:
|
|
return 1;
|
|
case 24:
|
|
return 8;
|
|
}
|
|
break;
|
|
case 24:
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
|
|
unsigned long pte_index)
|
|
{
|
|
int a_pgshift, b_pgshift;
|
|
unsigned long rb = 0, va_low, sllp;
|
|
|
|
b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
|
|
if (a_pgshift >= 0x100) {
|
|
b_pgshift &= 0xff;
|
|
a_pgshift >>= 8;
|
|
}
|
|
|
|
/*
|
|
* Ignore the top 14 bits of va
|
|
* v have top two bits covering segment size, hence move
|
|
* by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
|
|
* AVA field in v also have the lower 23 bits ignored.
|
|
* For base page size 4K we need 14 .. 65 bits (so need to
|
|
* collect extra 11 bits)
|
|
* For others we need 14..14+i
|
|
*/
|
|
/* This covers 14..54 bits of va*/
|
|
rb = (v & ~0x7fUL) << 16; /* AVA field */
|
|
|
|
/*
|
|
* AVA in v had cleared lower 23 bits. We need to derive
|
|
* that from pteg index
|
|
*/
|
|
va_low = pte_index >> 3;
|
|
if (v & HPTE_V_SECONDARY)
|
|
va_low = ~va_low;
|
|
/*
|
|
* get the vpn bits from va_low using reverse of hashing.
|
|
* In v we have va with 23 bits dropped and then left shifted
|
|
* HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
|
|
* right shift it with (SID_SHIFT - (23 - 7))
|
|
*/
|
|
if (!(v & HPTE_V_1TB_SEG))
|
|
va_low ^= v >> (SID_SHIFT - 16);
|
|
else
|
|
va_low ^= v >> (SID_SHIFT_1T - 16);
|
|
va_low &= 0x7ff;
|
|
|
|
if (b_pgshift <= 12) {
|
|
if (a_pgshift > 12) {
|
|
sllp = (a_pgshift == 16) ? 5 : 4;
|
|
rb |= sllp << 5; /* AP field */
|
|
}
|
|
rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */
|
|
} else {
|
|
int aval_shift;
|
|
/*
|
|
* remaining bits of AVA/LP fields
|
|
* Also contain the rr bits of LP
|
|
*/
|
|
rb |= (va_low << b_pgshift) & 0x7ff000;
|
|
/*
|
|
* Now clear not needed LP bits based on actual psize
|
|
*/
|
|
rb &= ~((1ul << a_pgshift) - 1);
|
|
/*
|
|
* AVAL field 58..77 - base_page_shift bits of va
|
|
* we have space for 58..64 bits, Missing bits should
|
|
* be zero filled. +1 is to take care of L bit shift
|
|
*/
|
|
aval_shift = 64 - (77 - b_pgshift) + 1;
|
|
rb |= ((va_low << aval_shift) & 0xfe);
|
|
|
|
rb |= 1; /* L field */
|
|
rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
|
|
}
|
|
rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */
|
|
return rb;
|
|
}
|
|
|
|
static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
|
|
{
|
|
return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static inline int hpte_is_writable(unsigned long ptel)
|
|
{
|
|
unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
|
|
|
|
return pp != PP_RXRX && pp != PP_RXXX;
|
|
}
|
|
|
|
static inline unsigned long hpte_make_readonly(unsigned long ptel)
|
|
{
|
|
if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
|
|
ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
|
|
else
|
|
ptel |= PP_RXRX;
|
|
return ptel;
|
|
}
|
|
|
|
static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
|
|
{
|
|
unsigned int wimg = hptel & HPTE_R_WIMG;
|
|
|
|
/* Handle SAO */
|
|
if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_206))
|
|
wimg = HPTE_R_M;
|
|
|
|
if (!is_ci)
|
|
return wimg == HPTE_R_M;
|
|
/*
|
|
* if host is mapped cache inhibited, make sure hptel also have
|
|
* cache inhibited.
|
|
*/
|
|
if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
|
|
return false;
|
|
return !!(wimg & HPTE_R_I);
|
|
}
|
|
|
|
/*
|
|
* If it's present and writable, atomically set dirty and referenced bits and
|
|
* return the PTE, otherwise return 0.
|
|
*/
|
|
static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
|
|
{
|
|
pte_t old_pte, new_pte = __pte(0);
|
|
|
|
while (1) {
|
|
/*
|
|
* Make sure we don't reload from ptep
|
|
*/
|
|
old_pte = READ_ONCE(*ptep);
|
|
/*
|
|
* wait until H_PAGE_BUSY is clear then set it atomically
|
|
*/
|
|
if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
|
|
cpu_relax();
|
|
continue;
|
|
}
|
|
/* If pte is not present return None */
|
|
if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
|
|
return __pte(0);
|
|
|
|
new_pte = pte_mkyoung(old_pte);
|
|
if (writing && pte_write(old_pte))
|
|
new_pte = pte_mkdirty(new_pte);
|
|
|
|
if (pte_xchg(ptep, old_pte, new_pte))
|
|
break;
|
|
}
|
|
return new_pte;
|
|
}
|
|
|
|
static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
|
|
{
|
|
if (key)
|
|
return PP_RWRX <= pp && pp <= PP_RXRX;
|
|
return true;
|
|
}
|
|
|
|
static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
|
|
{
|
|
if (key)
|
|
return pp == PP_RWRW;
|
|
return pp <= PP_RWRW;
|
|
}
|
|
|
|
static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
|
|
{
|
|
unsigned long skey;
|
|
|
|
skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
|
|
((hpte_r & HPTE_R_KEY_LO) >> 9);
|
|
return (amr >> (62 - 2 * skey)) & 3;
|
|
}
|
|
|
|
static inline void lock_rmap(unsigned long *rmap)
|
|
{
|
|
do {
|
|
while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
|
|
cpu_relax();
|
|
} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
|
|
}
|
|
|
|
static inline void unlock_rmap(unsigned long *rmap)
|
|
{
|
|
__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
|
|
}
|
|
|
|
static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
|
|
unsigned long pagesize)
|
|
{
|
|
unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
|
|
|
|
if (pagesize <= PAGE_SIZE)
|
|
return true;
|
|
return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
|
|
}
|
|
|
|
/*
|
|
* This works for 4k, 64k and 16M pages on POWER7,
|
|
* and 4k and 16M pages on PPC970.
|
|
*/
|
|
static inline unsigned long slb_pgsize_encoding(unsigned long psize)
|
|
{
|
|
unsigned long senc = 0;
|
|
|
|
if (psize > 0x1000) {
|
|
senc = SLB_VSID_L;
|
|
if (psize == 0x10000)
|
|
senc |= SLB_VSID_LP_01;
|
|
}
|
|
return senc;
|
|
}
|
|
|
|
static inline int is_vrma_hpte(unsigned long hpte_v)
|
|
{
|
|
return (hpte_v & ~0xffffffUL) ==
|
|
(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
/*
|
|
* Note modification of an HPTE; set the HPTE modified bit
|
|
* if anyone is interested.
|
|
*/
|
|
static inline void note_hpte_modification(struct kvm *kvm,
|
|
struct revmap_entry *rev)
|
|
{
|
|
if (atomic_read(&kvm->arch.hpte_mod_interest))
|
|
rev->guest_rpte |= HPTE_GR_MODIFIED;
|
|
}
|
|
|
|
/*
|
|
* Like kvm_memslots(), but for use in real mode when we can't do
|
|
* any RCU stuff (since the secondary threads are offline from the
|
|
* kernel's point of view), and we can't print anything.
|
|
* Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
|
|
*/
|
|
static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
|
|
{
|
|
return rcu_dereference_raw_notrace(kvm->memslots[0]);
|
|
}
|
|
|
|
extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
|
|
|
|
extern void kvmhv_rm_send_ipi(int cpu);
|
|
|
|
static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
|
|
{
|
|
/* HPTEs are 2**4 bytes long */
|
|
return 1UL << (hpt->order - 4);
|
|
}
|
|
|
|
static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
|
|
{
|
|
/* 128 (2**7) bytes in each HPTEG */
|
|
return (1UL << (hpt->order - 7)) - 1;
|
|
}
|
|
|
|
/* Set bits in a dirty bitmap, which is in LE format */
|
|
static inline void set_dirty_bits(unsigned long *map, unsigned long i,
|
|
unsigned long npages)
|
|
{
|
|
|
|
if (npages >= 8)
|
|
memset((char *)map + i / 8, 0xff, npages / 8);
|
|
else
|
|
for (; npages; ++i, --npages)
|
|
__set_bit_le(i, map);
|
|
}
|
|
|
|
static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
|
|
unsigned long npages)
|
|
{
|
|
if (npages >= 8)
|
|
memset((char *)map + i / 8, 0xff, npages / 8);
|
|
else
|
|
for (; npages; ++i, --npages)
|
|
set_bit_le(i, map);
|
|
}
|
|
|
|
static inline u64 sanitize_msr(u64 msr)
|
|
{
|
|
msr &= ~MSR_HV;
|
|
msr |= MSR_ME;
|
|
return msr;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.cr = vcpu->arch.cr_tm;
|
|
vcpu->arch.xer = vcpu->arch.xer_tm;
|
|
vcpu->arch.lr = vcpu->arch.lr_tm;
|
|
vcpu->arch.ctr = vcpu->arch.ctr_tm;
|
|
vcpu->arch.amr = vcpu->arch.amr_tm;
|
|
vcpu->arch.ppr = vcpu->arch.ppr_tm;
|
|
vcpu->arch.dscr = vcpu->arch.dscr_tm;
|
|
vcpu->arch.tar = vcpu->arch.tar_tm;
|
|
memcpy(vcpu->arch.gpr, vcpu->arch.gpr_tm,
|
|
sizeof(vcpu->arch.gpr));
|
|
vcpu->arch.fp = vcpu->arch.fp_tm;
|
|
vcpu->arch.vr = vcpu->arch.vr_tm;
|
|
vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
|
|
}
|
|
|
|
static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.cr_tm = vcpu->arch.cr;
|
|
vcpu->arch.xer_tm = vcpu->arch.xer;
|
|
vcpu->arch.lr_tm = vcpu->arch.lr;
|
|
vcpu->arch.ctr_tm = vcpu->arch.ctr;
|
|
vcpu->arch.amr_tm = vcpu->arch.amr;
|
|
vcpu->arch.ppr_tm = vcpu->arch.ppr;
|
|
vcpu->arch.dscr_tm = vcpu->arch.dscr;
|
|
vcpu->arch.tar_tm = vcpu->arch.tar;
|
|
memcpy(vcpu->arch.gpr_tm, vcpu->arch.gpr,
|
|
sizeof(vcpu->arch.gpr));
|
|
vcpu->arch.fp_tm = vcpu->arch.fp;
|
|
vcpu->arch.vr_tm = vcpu->arch.vr;
|
|
vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
|
|
}
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
|
|
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
|
|
|
|
#endif /* __ASM_KVM_BOOK3S_64_H__ */
|