linux-next/kernel/workqueue.c
David Howells 65f27f3844 WorkStruct: Pass the work_struct pointer instead of context data
Pass the work_struct pointer to the work function rather than context data.
The work function can use container_of() to work out the data.

For the cases where the container of the work_struct may go away the moment the
pending bit is cleared, it is made possible to defer the release of the
structure by deferring the clearing of the pending bit.

To make this work, an extra flag is introduced into the management side of the
work_struct.  This governs auto-release of the structure upon execution.

Ordinarily, the work queue executor would release the work_struct for further
scheduling or deallocation by clearing the pending bit prior to jumping to the
work function.  This means that, unless the driver makes some guarantee itself
that the work_struct won't go away, the work function may not access anything
else in the work_struct or its container lest they be deallocated..  This is a
problem if the auxiliary data is taken away (as done by the last patch).

However, if the pending bit is *not* cleared before jumping to the work
function, then the work function *may* access the work_struct and its container
with no problems.  But then the work function must itself release the
work_struct by calling work_release().

In most cases, automatic release is fine, so this is the default.  Special
initiators exist for the non-auto-release case (ending in _NAR).


Signed-Off-By: David Howells <dhowells@redhat.com>
2006-11-22 14:55:48 +00:00

730 lines
18 KiB
C

/*
* linux/kernel/workqueue.c
*
* Generic mechanism for defining kernel helper threads for running
* arbitrary tasks in process context.
*
* Started by Ingo Molnar, Copyright (C) 2002
*
* Derived from the taskqueue/keventd code by:
*
* David Woodhouse <dwmw2@infradead.org>
* Andrew Morton <andrewm@uow.edu.au>
* Kai Petzke <wpp@marie.physik.tu-berlin.de>
* Theodore Ts'o <tytso@mit.edu>
*
* Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
#include <linux/hardirq.h>
#include <linux/mempolicy.h>
/*
* The per-CPU workqueue (if single thread, we always use the first
* possible cpu).
*
* The sequence counters are for flush_scheduled_work(). It wants to wait
* until all currently-scheduled works are completed, but it doesn't
* want to be livelocked by new, incoming ones. So it waits until
* remove_sequence is >= the insert_sequence which pertained when
* flush_scheduled_work() was called.
*/
struct cpu_workqueue_struct {
spinlock_t lock;
long remove_sequence; /* Least-recently added (next to run) */
long insert_sequence; /* Next to add */
struct list_head worklist;
wait_queue_head_t more_work;
wait_queue_head_t work_done;
struct workqueue_struct *wq;
struct task_struct *thread;
int run_depth; /* Detect run_workqueue() recursion depth */
} ____cacheline_aligned;
/*
* The externally visible workqueue abstraction is an array of
* per-CPU workqueues:
*/
struct workqueue_struct {
struct cpu_workqueue_struct *cpu_wq;
const char *name;
struct list_head list; /* Empty if single thread */
};
/* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
threads to each one as cpus come/go. */
static DEFINE_MUTEX(workqueue_mutex);
static LIST_HEAD(workqueues);
static int singlethread_cpu;
/* If it's single threaded, it isn't in the list of workqueues. */
static inline int is_single_threaded(struct workqueue_struct *wq)
{
return list_empty(&wq->list);
}
static inline void set_wq_data(struct work_struct *work, void *wq)
{
unsigned long new, old, res;
/* assume the pending flag is already set and that the task has already
* been queued on this workqueue */
new = (unsigned long) wq | (1UL << WORK_STRUCT_PENDING);
res = work->management;
if (res != new) {
do {
old = res;
new = (unsigned long) wq;
new |= (old & WORK_STRUCT_FLAG_MASK);
res = cmpxchg(&work->management, old, new);
} while (res != old);
}
}
static inline void *get_wq_data(struct work_struct *work)
{
return (void *) (work->management & WORK_STRUCT_WQ_DATA_MASK);
}
/* Preempt must be disabled. */
static void __queue_work(struct cpu_workqueue_struct *cwq,
struct work_struct *work)
{
unsigned long flags;
spin_lock_irqsave(&cwq->lock, flags);
set_wq_data(work, cwq);
list_add_tail(&work->entry, &cwq->worklist);
cwq->insert_sequence++;
wake_up(&cwq->more_work);
spin_unlock_irqrestore(&cwq->lock, flags);
}
/**
* queue_work - queue work on a workqueue
* @wq: workqueue to use
* @work: work to queue
*
* Returns 0 if @work was already on a queue, non-zero otherwise.
*
* We queue the work to the CPU it was submitted, but there is no
* guarantee that it will be processed by that CPU.
*/
int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
{
int ret = 0, cpu = get_cpu();
if (!test_and_set_bit(WORK_STRUCT_PENDING, &work->management)) {
if (unlikely(is_single_threaded(wq)))
cpu = singlethread_cpu;
BUG_ON(!list_empty(&work->entry));
__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
ret = 1;
}
put_cpu();
return ret;
}
EXPORT_SYMBOL_GPL(queue_work);
static void delayed_work_timer_fn(unsigned long __data)
{
struct delayed_work *dwork = (struct delayed_work *)__data;
struct workqueue_struct *wq = get_wq_data(&dwork->work);
int cpu = smp_processor_id();
if (unlikely(is_single_threaded(wq)))
cpu = singlethread_cpu;
__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
}
/**
* queue_delayed_work - queue work on a workqueue after delay
* @wq: workqueue to use
* @work: delayable work to queue
* @delay: number of jiffies to wait before queueing
*
* Returns 0 if @work was already on a queue, non-zero otherwise.
*/
int fastcall queue_delayed_work(struct workqueue_struct *wq,
struct delayed_work *dwork, unsigned long delay)
{
int ret = 0;
struct timer_list *timer = &dwork->timer;
struct work_struct *work = &dwork->work;
if (delay == 0)
return queue_work(wq, work);
if (!test_and_set_bit(WORK_STRUCT_PENDING, &work->management)) {
BUG_ON(timer_pending(timer));
BUG_ON(!list_empty(&work->entry));
/* This stores wq for the moment, for the timer_fn */
set_wq_data(work, wq);
timer->expires = jiffies + delay;
timer->data = (unsigned long)dwork;
timer->function = delayed_work_timer_fn;
add_timer(timer);
ret = 1;
}
return ret;
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
/**
* queue_delayed_work_on - queue work on specific CPU after delay
* @cpu: CPU number to execute work on
* @wq: workqueue to use
* @work: work to queue
* @delay: number of jiffies to wait before queueing
*
* Returns 0 if @work was already on a queue, non-zero otherwise.
*/
int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
struct delayed_work *dwork, unsigned long delay)
{
int ret = 0;
struct timer_list *timer = &dwork->timer;
struct work_struct *work = &dwork->work;
if (!test_and_set_bit(WORK_STRUCT_PENDING, &work->management)) {
BUG_ON(timer_pending(timer));
BUG_ON(!list_empty(&work->entry));
/* This stores wq for the moment, for the timer_fn */
set_wq_data(work, wq);
timer->expires = jiffies + delay;
timer->data = (unsigned long)dwork;
timer->function = delayed_work_timer_fn;
add_timer_on(timer, cpu);
ret = 1;
}
return ret;
}
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
static void run_workqueue(struct cpu_workqueue_struct *cwq)
{
unsigned long flags;
/*
* Keep taking off work from the queue until
* done.
*/
spin_lock_irqsave(&cwq->lock, flags);
cwq->run_depth++;
if (cwq->run_depth > 3) {
/* morton gets to eat his hat */
printk("%s: recursion depth exceeded: %d\n",
__FUNCTION__, cwq->run_depth);
dump_stack();
}
while (!list_empty(&cwq->worklist)) {
struct work_struct *work = list_entry(cwq->worklist.next,
struct work_struct, entry);
work_func_t f = work->func;
list_del_init(cwq->worklist.next);
spin_unlock_irqrestore(&cwq->lock, flags);
BUG_ON(get_wq_data(work) != cwq);
if (!test_bit(WORK_STRUCT_NOAUTOREL, &work->management))
work_release(work);
f(work);
spin_lock_irqsave(&cwq->lock, flags);
cwq->remove_sequence++;
wake_up(&cwq->work_done);
}
cwq->run_depth--;
spin_unlock_irqrestore(&cwq->lock, flags);
}
static int worker_thread(void *__cwq)
{
struct cpu_workqueue_struct *cwq = __cwq;
DECLARE_WAITQUEUE(wait, current);
struct k_sigaction sa;
sigset_t blocked;
current->flags |= PF_NOFREEZE;
set_user_nice(current, -5);
/* Block and flush all signals */
sigfillset(&blocked);
sigprocmask(SIG_BLOCK, &blocked, NULL);
flush_signals(current);
/*
* We inherited MPOL_INTERLEAVE from the booting kernel.
* Set MPOL_DEFAULT to insure node local allocations.
*/
numa_default_policy();
/* SIG_IGN makes children autoreap: see do_notify_parent(). */
sa.sa.sa_handler = SIG_IGN;
sa.sa.sa_flags = 0;
siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
add_wait_queue(&cwq->more_work, &wait);
if (list_empty(&cwq->worklist))
schedule();
else
__set_current_state(TASK_RUNNING);
remove_wait_queue(&cwq->more_work, &wait);
if (!list_empty(&cwq->worklist))
run_workqueue(cwq);
set_current_state(TASK_INTERRUPTIBLE);
}
__set_current_state(TASK_RUNNING);
return 0;
}
static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
{
if (cwq->thread == current) {
/*
* Probably keventd trying to flush its own queue. So simply run
* it by hand rather than deadlocking.
*/
run_workqueue(cwq);
} else {
DEFINE_WAIT(wait);
long sequence_needed;
spin_lock_irq(&cwq->lock);
sequence_needed = cwq->insert_sequence;
while (sequence_needed - cwq->remove_sequence > 0) {
prepare_to_wait(&cwq->work_done, &wait,
TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&cwq->lock);
schedule();
spin_lock_irq(&cwq->lock);
}
finish_wait(&cwq->work_done, &wait);
spin_unlock_irq(&cwq->lock);
}
}
/**
* flush_workqueue - ensure that any scheduled work has run to completion.
* @wq: workqueue to flush
*
* Forces execution of the workqueue and blocks until its completion.
* This is typically used in driver shutdown handlers.
*
* This function will sample each workqueue's current insert_sequence number and
* will sleep until the head sequence is greater than or equal to that. This
* means that we sleep until all works which were queued on entry have been
* handled, but we are not livelocked by new incoming ones.
*
* This function used to run the workqueues itself. Now we just wait for the
* helper threads to do it.
*/
void fastcall flush_workqueue(struct workqueue_struct *wq)
{
might_sleep();
if (is_single_threaded(wq)) {
/* Always use first cpu's area. */
flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
} else {
int cpu;
mutex_lock(&workqueue_mutex);
for_each_online_cpu(cpu)
flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
mutex_unlock(&workqueue_mutex);
}
}
EXPORT_SYMBOL_GPL(flush_workqueue);
static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
int cpu)
{
struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
struct task_struct *p;
spin_lock_init(&cwq->lock);
cwq->wq = wq;
cwq->thread = NULL;
cwq->insert_sequence = 0;
cwq->remove_sequence = 0;
INIT_LIST_HEAD(&cwq->worklist);
init_waitqueue_head(&cwq->more_work);
init_waitqueue_head(&cwq->work_done);
if (is_single_threaded(wq))
p = kthread_create(worker_thread, cwq, "%s", wq->name);
else
p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
if (IS_ERR(p))
return NULL;
cwq->thread = p;
return p;
}
struct workqueue_struct *__create_workqueue(const char *name,
int singlethread)
{
int cpu, destroy = 0;
struct workqueue_struct *wq;
struct task_struct *p;
wq = kzalloc(sizeof(*wq), GFP_KERNEL);
if (!wq)
return NULL;
wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
if (!wq->cpu_wq) {
kfree(wq);
return NULL;
}
wq->name = name;
mutex_lock(&workqueue_mutex);
if (singlethread) {
INIT_LIST_HEAD(&wq->list);
p = create_workqueue_thread(wq, singlethread_cpu);
if (!p)
destroy = 1;
else
wake_up_process(p);
} else {
list_add(&wq->list, &workqueues);
for_each_online_cpu(cpu) {
p = create_workqueue_thread(wq, cpu);
if (p) {
kthread_bind(p, cpu);
wake_up_process(p);
} else
destroy = 1;
}
}
mutex_unlock(&workqueue_mutex);
/*
* Was there any error during startup? If yes then clean up:
*/
if (destroy) {
destroy_workqueue(wq);
wq = NULL;
}
return wq;
}
EXPORT_SYMBOL_GPL(__create_workqueue);
static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
{
struct cpu_workqueue_struct *cwq;
unsigned long flags;
struct task_struct *p;
cwq = per_cpu_ptr(wq->cpu_wq, cpu);
spin_lock_irqsave(&cwq->lock, flags);
p = cwq->thread;
cwq->thread = NULL;
spin_unlock_irqrestore(&cwq->lock, flags);
if (p)
kthread_stop(p);
}
/**
* destroy_workqueue - safely terminate a workqueue
* @wq: target workqueue
*
* Safely destroy a workqueue. All work currently pending will be done first.
*/
void destroy_workqueue(struct workqueue_struct *wq)
{
int cpu;
flush_workqueue(wq);
/* We don't need the distraction of CPUs appearing and vanishing. */
mutex_lock(&workqueue_mutex);
if (is_single_threaded(wq))
cleanup_workqueue_thread(wq, singlethread_cpu);
else {
for_each_online_cpu(cpu)
cleanup_workqueue_thread(wq, cpu);
list_del(&wq->list);
}
mutex_unlock(&workqueue_mutex);
free_percpu(wq->cpu_wq);
kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);
static struct workqueue_struct *keventd_wq;
/**
* schedule_work - put work task in global workqueue
* @work: job to be done
*
* This puts a job in the kernel-global workqueue.
*/
int fastcall schedule_work(struct work_struct *work)
{
return queue_work(keventd_wq, work);
}
EXPORT_SYMBOL(schedule_work);
/**
* schedule_delayed_work - put work task in global workqueue after delay
* @dwork: job to be done
* @delay: number of jiffies to wait or 0 for immediate execution
*
* After waiting for a given time this puts a job in the kernel-global
* workqueue.
*/
int fastcall schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
{
return queue_delayed_work(keventd_wq, dwork, delay);
}
EXPORT_SYMBOL(schedule_delayed_work);
/**
* schedule_delayed_work_on - queue work in global workqueue on CPU after delay
* @cpu: cpu to use
* @dwork: job to be done
* @delay: number of jiffies to wait
*
* After waiting for a given time this puts a job in the kernel-global
* workqueue on the specified CPU.
*/
int schedule_delayed_work_on(int cpu,
struct delayed_work *dwork, unsigned long delay)
{
return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
}
EXPORT_SYMBOL(schedule_delayed_work_on);
/**
* schedule_on_each_cpu - call a function on each online CPU from keventd
* @func: the function to call
*
* Returns zero on success.
* Returns -ve errno on failure.
*
* Appears to be racy against CPU hotplug.
*
* schedule_on_each_cpu() is very slow.
*/
int schedule_on_each_cpu(work_func_t func)
{
int cpu;
struct work_struct *works;
works = alloc_percpu(struct work_struct);
if (!works)
return -ENOMEM;
mutex_lock(&workqueue_mutex);
for_each_online_cpu(cpu) {
INIT_WORK(per_cpu_ptr(works, cpu), func);
__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu),
per_cpu_ptr(works, cpu));
}
mutex_unlock(&workqueue_mutex);
flush_workqueue(keventd_wq);
free_percpu(works);
return 0;
}
void flush_scheduled_work(void)
{
flush_workqueue(keventd_wq);
}
EXPORT_SYMBOL(flush_scheduled_work);
/**
* cancel_rearming_delayed_workqueue - reliably kill off a delayed
* work whose handler rearms the delayed work.
* @wq: the controlling workqueue structure
* @dwork: the delayed work struct
*/
void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
struct delayed_work *dwork)
{
while (!cancel_delayed_work(dwork))
flush_workqueue(wq);
}
EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
/**
* cancel_rearming_delayed_work - reliably kill off a delayed keventd
* work whose handler rearms the delayed work.
* @dwork: the delayed work struct
*/
void cancel_rearming_delayed_work(struct delayed_work *dwork)
{
cancel_rearming_delayed_workqueue(keventd_wq, dwork);
}
EXPORT_SYMBOL(cancel_rearming_delayed_work);
/**
* execute_in_process_context - reliably execute the routine with user context
* @fn: the function to execute
* @ew: guaranteed storage for the execute work structure (must
* be available when the work executes)
*
* Executes the function immediately if process context is available,
* otherwise schedules the function for delayed execution.
*
* Returns: 0 - function was executed
* 1 - function was scheduled for execution
*/
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
{
if (!in_interrupt()) {
fn(&ew->work);
return 0;
}
INIT_WORK(&ew->work, fn);
schedule_work(&ew->work);
return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);
int keventd_up(void)
{
return keventd_wq != NULL;
}
int current_is_keventd(void)
{
struct cpu_workqueue_struct *cwq;
int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
int ret = 0;
BUG_ON(!keventd_wq);
cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
if (current == cwq->thread)
ret = 1;
return ret;
}
#ifdef CONFIG_HOTPLUG_CPU
/* Take the work from this (downed) CPU. */
static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
{
struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
struct list_head list;
struct work_struct *work;
spin_lock_irq(&cwq->lock);
list_replace_init(&cwq->worklist, &list);
while (!list_empty(&list)) {
printk("Taking work for %s\n", wq->name);
work = list_entry(list.next,struct work_struct,entry);
list_del(&work->entry);
__queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
}
spin_unlock_irq(&cwq->lock);
}
/* We're holding the cpucontrol mutex here */
static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
unsigned int hotcpu = (unsigned long)hcpu;
struct workqueue_struct *wq;
switch (action) {
case CPU_UP_PREPARE:
mutex_lock(&workqueue_mutex);
/* Create a new workqueue thread for it. */
list_for_each_entry(wq, &workqueues, list) {
if (!create_workqueue_thread(wq, hotcpu)) {
printk("workqueue for %i failed\n", hotcpu);
return NOTIFY_BAD;
}
}
break;
case CPU_ONLINE:
/* Kick off worker threads. */
list_for_each_entry(wq, &workqueues, list) {
struct cpu_workqueue_struct *cwq;
cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
kthread_bind(cwq->thread, hotcpu);
wake_up_process(cwq->thread);
}
mutex_unlock(&workqueue_mutex);
break;
case CPU_UP_CANCELED:
list_for_each_entry(wq, &workqueues, list) {
if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
continue;
/* Unbind so it can run. */
kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
any_online_cpu(cpu_online_map));
cleanup_workqueue_thread(wq, hotcpu);
}
mutex_unlock(&workqueue_mutex);
break;
case CPU_DOWN_PREPARE:
mutex_lock(&workqueue_mutex);
break;
case CPU_DOWN_FAILED:
mutex_unlock(&workqueue_mutex);
break;
case CPU_DEAD:
list_for_each_entry(wq, &workqueues, list)
cleanup_workqueue_thread(wq, hotcpu);
list_for_each_entry(wq, &workqueues, list)
take_over_work(wq, hotcpu);
mutex_unlock(&workqueue_mutex);
break;
}
return NOTIFY_OK;
}
#endif
void init_workqueues(void)
{
singlethread_cpu = first_cpu(cpu_possible_map);
hotcpu_notifier(workqueue_cpu_callback, 0);
keventd_wq = create_workqueue("events");
BUG_ON(!keventd_wq);
}