linux-next/drivers/counter/stm32-lptimer-cnt.c
Uwe Kleine-König e75d678d04 counter: stm32-lptimer-cnt: Convert to new counter registration
This fixes device lifetime issues where it was possible to free a live
struct device.

Fixes: 597f55e3f36c ("counter: stm32-lptimer: add counter device")
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: William Breathitt Gray <vilhelm.gray@gmail.com>
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20211230150300.72196-22-u.kleine-koenig@pengutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-30 17:44:07 +01:00

523 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* STM32 Low-Power Timer Encoder and Counter driver
*
* Copyright (C) STMicroelectronics 2017
*
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>
*
* Inspired by 104-quad-8 and stm32-timer-trigger drivers.
*
*/
#include <linux/bitfield.h>
#include <linux/counter.h>
#include <linux/mfd/stm32-lptimer.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/types.h>
struct stm32_lptim_cnt {
struct device *dev;
struct regmap *regmap;
struct clk *clk;
u32 ceiling;
u32 polarity;
u32 quadrature_mode;
bool enabled;
};
static int stm32_lptim_is_enabled(struct stm32_lptim_cnt *priv)
{
u32 val;
int ret;
ret = regmap_read(priv->regmap, STM32_LPTIM_CR, &val);
if (ret)
return ret;
return FIELD_GET(STM32_LPTIM_ENABLE, val);
}
static int stm32_lptim_set_enable_state(struct stm32_lptim_cnt *priv,
int enable)
{
int ret;
u32 val;
val = FIELD_PREP(STM32_LPTIM_ENABLE, enable);
ret = regmap_write(priv->regmap, STM32_LPTIM_CR, val);
if (ret)
return ret;
if (!enable) {
clk_disable(priv->clk);
priv->enabled = false;
return 0;
}
/* LP timer must be enabled before writing CMP & ARR */
ret = regmap_write(priv->regmap, STM32_LPTIM_ARR, priv->ceiling);
if (ret)
return ret;
ret = regmap_write(priv->regmap, STM32_LPTIM_CMP, 0);
if (ret)
return ret;
/* ensure CMP & ARR registers are properly written */
ret = regmap_read_poll_timeout(priv->regmap, STM32_LPTIM_ISR, val,
(val & STM32_LPTIM_CMPOK_ARROK),
100, 1000);
if (ret)
return ret;
ret = regmap_write(priv->regmap, STM32_LPTIM_ICR,
STM32_LPTIM_CMPOKCF_ARROKCF);
if (ret)
return ret;
ret = clk_enable(priv->clk);
if (ret) {
regmap_write(priv->regmap, STM32_LPTIM_CR, 0);
return ret;
}
priv->enabled = true;
/* Start LP timer in continuous mode */
return regmap_update_bits(priv->regmap, STM32_LPTIM_CR,
STM32_LPTIM_CNTSTRT, STM32_LPTIM_CNTSTRT);
}
static int stm32_lptim_setup(struct stm32_lptim_cnt *priv, int enable)
{
u32 mask = STM32_LPTIM_ENC | STM32_LPTIM_COUNTMODE |
STM32_LPTIM_CKPOL | STM32_LPTIM_PRESC;
u32 val;
/* Setup LP timer encoder/counter and polarity, without prescaler */
if (priv->quadrature_mode)
val = enable ? STM32_LPTIM_ENC : 0;
else
val = enable ? STM32_LPTIM_COUNTMODE : 0;
val |= FIELD_PREP(STM32_LPTIM_CKPOL, enable ? priv->polarity : 0);
return regmap_update_bits(priv->regmap, STM32_LPTIM_CFGR, mask, val);
}
/*
* In non-quadrature mode, device counts up on active edge.
* In quadrature mode, encoder counting scenarios are as follows:
* +---------+----------+--------------------+--------------------+
* | Active | Level on | IN1 signal | IN2 signal |
* | edge | opposite +----------+---------+----------+---------+
* | | signal | Rising | Falling | Rising | Falling |
* +---------+----------+----------+---------+----------+---------+
* | Rising | High -> | Down | - | Up | - |
* | edge | Low -> | Up | - | Down | - |
* +---------+----------+----------+---------+----------+---------+
* | Falling | High -> | - | Up | - | Down |
* | edge | Low -> | - | Down | - | Up |
* +---------+----------+----------+---------+----------+---------+
* | Both | High -> | Down | Up | Up | Down |
* | edges | Low -> | Up | Down | Down | Up |
* +---------+----------+----------+---------+----------+---------+
*/
static const enum counter_function stm32_lptim_cnt_functions[] = {
COUNTER_FUNCTION_INCREASE,
COUNTER_FUNCTION_QUADRATURE_X4,
};
static const enum counter_synapse_action stm32_lptim_cnt_synapse_actions[] = {
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
COUNTER_SYNAPSE_ACTION_FALLING_EDGE,
COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
COUNTER_SYNAPSE_ACTION_NONE,
};
static int stm32_lptim_cnt_read(struct counter_device *counter,
struct counter_count *count, u64 *val)
{
struct stm32_lptim_cnt *const priv = counter_priv(counter);
u32 cnt;
int ret;
ret = regmap_read(priv->regmap, STM32_LPTIM_CNT, &cnt);
if (ret)
return ret;
*val = cnt;
return 0;
}
static int stm32_lptim_cnt_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
struct stm32_lptim_cnt *const priv = counter_priv(counter);
if (!priv->quadrature_mode) {
*function = COUNTER_FUNCTION_INCREASE;
return 0;
}
if (priv->polarity == STM32_LPTIM_CKPOL_BOTH_EDGES) {
*function = COUNTER_FUNCTION_QUADRATURE_X4;
return 0;
}
return -EINVAL;
}
static int stm32_lptim_cnt_function_write(struct counter_device *counter,
struct counter_count *count,
enum counter_function function)
{
struct stm32_lptim_cnt *const priv = counter_priv(counter);
if (stm32_lptim_is_enabled(priv))
return -EBUSY;
switch (function) {
case COUNTER_FUNCTION_INCREASE:
priv->quadrature_mode = 0;
return 0;
case COUNTER_FUNCTION_QUADRATURE_X4:
priv->quadrature_mode = 1;
priv->polarity = STM32_LPTIM_CKPOL_BOTH_EDGES;
return 0;
default:
/* should never reach this path */
return -EINVAL;
}
}
static int stm32_lptim_cnt_enable_read(struct counter_device *counter,
struct counter_count *count,
u8 *enable)
{
struct stm32_lptim_cnt *const priv = counter_priv(counter);
int ret;
ret = stm32_lptim_is_enabled(priv);
if (ret < 0)
return ret;
*enable = ret;
return 0;
}
static int stm32_lptim_cnt_enable_write(struct counter_device *counter,
struct counter_count *count,
u8 enable)
{
struct stm32_lptim_cnt *const priv = counter_priv(counter);
int ret;
/* Check nobody uses the timer, or already disabled/enabled */
ret = stm32_lptim_is_enabled(priv);
if ((ret < 0) || (!ret && !enable))
return ret;
if (enable && ret)
return -EBUSY;
ret = stm32_lptim_setup(priv, enable);
if (ret)
return ret;
ret = stm32_lptim_set_enable_state(priv, enable);
if (ret)
return ret;
return 0;
}
static int stm32_lptim_cnt_ceiling_read(struct counter_device *counter,
struct counter_count *count,
u64 *ceiling)
{
struct stm32_lptim_cnt *const priv = counter_priv(counter);
*ceiling = priv->ceiling;
return 0;
}
static int stm32_lptim_cnt_ceiling_write(struct counter_device *counter,
struct counter_count *count,
u64 ceiling)
{
struct stm32_lptim_cnt *const priv = counter_priv(counter);
if (stm32_lptim_is_enabled(priv))
return -EBUSY;
if (ceiling > STM32_LPTIM_MAX_ARR)
return -ERANGE;
priv->ceiling = ceiling;
return 0;
}
static struct counter_comp stm32_lptim_cnt_ext[] = {
COUNTER_COMP_ENABLE(stm32_lptim_cnt_enable_read,
stm32_lptim_cnt_enable_write),
COUNTER_COMP_CEILING(stm32_lptim_cnt_ceiling_read,
stm32_lptim_cnt_ceiling_write),
};
static int stm32_lptim_cnt_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
struct stm32_lptim_cnt *const priv = counter_priv(counter);
enum counter_function function;
int err;
err = stm32_lptim_cnt_function_read(counter, count, &function);
if (err)
return err;
switch (function) {
case COUNTER_FUNCTION_INCREASE:
/* LP Timer acts as up-counter on input 1 */
if (synapse->signal->id != count->synapses[0].signal->id) {
*action = COUNTER_SYNAPSE_ACTION_NONE;
return 0;
}
switch (priv->polarity) {
case STM32_LPTIM_CKPOL_RISING_EDGE:
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
return 0;
case STM32_LPTIM_CKPOL_FALLING_EDGE:
*action = COUNTER_SYNAPSE_ACTION_FALLING_EDGE;
return 0;
case STM32_LPTIM_CKPOL_BOTH_EDGES:
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
default:
/* should never reach this path */
return -EINVAL;
}
case COUNTER_FUNCTION_QUADRATURE_X4:
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
default:
/* should never reach this path */
return -EINVAL;
}
}
static int stm32_lptim_cnt_action_write(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action action)
{
struct stm32_lptim_cnt *const priv = counter_priv(counter);
enum counter_function function;
int err;
if (stm32_lptim_is_enabled(priv))
return -EBUSY;
err = stm32_lptim_cnt_function_read(counter, count, &function);
if (err)
return err;
/* only set polarity when in counter mode (on input 1) */
if (function != COUNTER_FUNCTION_INCREASE
|| synapse->signal->id != count->synapses[0].signal->id)
return -EINVAL;
switch (action) {
case COUNTER_SYNAPSE_ACTION_RISING_EDGE:
priv->polarity = STM32_LPTIM_CKPOL_RISING_EDGE;
return 0;
case COUNTER_SYNAPSE_ACTION_FALLING_EDGE:
priv->polarity = STM32_LPTIM_CKPOL_FALLING_EDGE;
return 0;
case COUNTER_SYNAPSE_ACTION_BOTH_EDGES:
priv->polarity = STM32_LPTIM_CKPOL_BOTH_EDGES;
return 0;
default:
return -EINVAL;
}
}
static const struct counter_ops stm32_lptim_cnt_ops = {
.count_read = stm32_lptim_cnt_read,
.function_read = stm32_lptim_cnt_function_read,
.function_write = stm32_lptim_cnt_function_write,
.action_read = stm32_lptim_cnt_action_read,
.action_write = stm32_lptim_cnt_action_write,
};
static struct counter_signal stm32_lptim_cnt_signals[] = {
{
.id = 0,
.name = "Channel 1 Quadrature A"
},
{
.id = 1,
.name = "Channel 1 Quadrature B"
}
};
static struct counter_synapse stm32_lptim_cnt_synapses[] = {
{
.actions_list = stm32_lptim_cnt_synapse_actions,
.num_actions = ARRAY_SIZE(stm32_lptim_cnt_synapse_actions),
.signal = &stm32_lptim_cnt_signals[0]
},
{
.actions_list = stm32_lptim_cnt_synapse_actions,
.num_actions = ARRAY_SIZE(stm32_lptim_cnt_synapse_actions),
.signal = &stm32_lptim_cnt_signals[1]
}
};
/* LP timer with encoder */
static struct counter_count stm32_lptim_enc_counts = {
.id = 0,
.name = "LPTimer Count",
.functions_list = stm32_lptim_cnt_functions,
.num_functions = ARRAY_SIZE(stm32_lptim_cnt_functions),
.synapses = stm32_lptim_cnt_synapses,
.num_synapses = ARRAY_SIZE(stm32_lptim_cnt_synapses),
.ext = stm32_lptim_cnt_ext,
.num_ext = ARRAY_SIZE(stm32_lptim_cnt_ext)
};
/* LP timer without encoder (counter only) */
static struct counter_count stm32_lptim_in1_counts = {
.id = 0,
.name = "LPTimer Count",
.functions_list = stm32_lptim_cnt_functions,
.num_functions = 1,
.synapses = stm32_lptim_cnt_synapses,
.num_synapses = 1,
.ext = stm32_lptim_cnt_ext,
.num_ext = ARRAY_SIZE(stm32_lptim_cnt_ext)
};
static int stm32_lptim_cnt_probe(struct platform_device *pdev)
{
struct stm32_lptimer *ddata = dev_get_drvdata(pdev->dev.parent);
struct counter_device *counter;
struct stm32_lptim_cnt *priv;
int ret;
if (IS_ERR_OR_NULL(ddata))
return -EINVAL;
counter = devm_counter_alloc(&pdev->dev, sizeof(*priv));
if (!counter)
return -ENOMEM;
priv = counter_priv(counter);
priv->dev = &pdev->dev;
priv->regmap = ddata->regmap;
priv->clk = ddata->clk;
priv->ceiling = STM32_LPTIM_MAX_ARR;
/* Initialize Counter device */
counter->name = dev_name(&pdev->dev);
counter->parent = &pdev->dev;
counter->ops = &stm32_lptim_cnt_ops;
if (ddata->has_encoder) {
counter->counts = &stm32_lptim_enc_counts;
counter->num_signals = ARRAY_SIZE(stm32_lptim_cnt_signals);
} else {
counter->counts = &stm32_lptim_in1_counts;
counter->num_signals = 1;
}
counter->num_counts = 1;
counter->signals = stm32_lptim_cnt_signals;
platform_set_drvdata(pdev, priv);
ret = devm_counter_add(&pdev->dev, counter);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret, "Failed to add counter\n");
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int stm32_lptim_cnt_suspend(struct device *dev)
{
struct stm32_lptim_cnt *priv = dev_get_drvdata(dev);
int ret;
/* Only take care of enabled counter: don't disturb other MFD child */
if (priv->enabled) {
ret = stm32_lptim_setup(priv, 0);
if (ret)
return ret;
ret = stm32_lptim_set_enable_state(priv, 0);
if (ret)
return ret;
/* Force enable state for later resume */
priv->enabled = true;
}
return pinctrl_pm_select_sleep_state(dev);
}
static int stm32_lptim_cnt_resume(struct device *dev)
{
struct stm32_lptim_cnt *priv = dev_get_drvdata(dev);
int ret;
ret = pinctrl_pm_select_default_state(dev);
if (ret)
return ret;
if (priv->enabled) {
priv->enabled = false;
ret = stm32_lptim_setup(priv, 1);
if (ret)
return ret;
ret = stm32_lptim_set_enable_state(priv, 1);
if (ret)
return ret;
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(stm32_lptim_cnt_pm_ops, stm32_lptim_cnt_suspend,
stm32_lptim_cnt_resume);
static const struct of_device_id stm32_lptim_cnt_of_match[] = {
{ .compatible = "st,stm32-lptimer-counter", },
{},
};
MODULE_DEVICE_TABLE(of, stm32_lptim_cnt_of_match);
static struct platform_driver stm32_lptim_cnt_driver = {
.probe = stm32_lptim_cnt_probe,
.driver = {
.name = "stm32-lptimer-counter",
.of_match_table = stm32_lptim_cnt_of_match,
.pm = &stm32_lptim_cnt_pm_ops,
},
};
module_platform_driver(stm32_lptim_cnt_driver);
MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_ALIAS("platform:stm32-lptimer-counter");
MODULE_DESCRIPTION("STMicroelectronics STM32 LPTIM counter driver");
MODULE_LICENSE("GPL v2");