mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-12 16:58:53 +00:00
fa0d4c26be
The parisc version of the perf code is sufficiently protected by its own spinlock, no need to use the BKL. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Helge Deller <deller@gmx.de> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: linux-parisc@vger.kernel.org
852 lines
23 KiB
C
852 lines
23 KiB
C
/*
|
|
* Parisc performance counters
|
|
* Copyright (C) 2001 Randolph Chung <tausq@debian.org>
|
|
*
|
|
* This code is derived, with permission, from HP/UX sources.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
/*
|
|
* Edited comment from original sources:
|
|
*
|
|
* This driver programs the PCX-U/PCX-W performance counters
|
|
* on the PA-RISC 2.0 chips. The driver keeps all images now
|
|
* internally to the kernel to hopefully eliminate the possibility
|
|
* of a bad image halting the CPU. Also, there are different
|
|
* images for the PCX-W and later chips vs the PCX-U chips.
|
|
*
|
|
* Only 1 process is allowed to access the driver at any time,
|
|
* so the only protection that is needed is at open and close.
|
|
* A variable "perf_enabled" is used to hold the state of the
|
|
* driver. The spinlock "perf_lock" is used to protect the
|
|
* modification of the state during open/close operations so
|
|
* multiple processes don't get into the driver simultaneously.
|
|
*
|
|
* This driver accesses the processor directly vs going through
|
|
* the PDC INTRIGUE calls. This is done to eliminate bugs introduced
|
|
* in various PDC revisions. The code is much more maintainable
|
|
* and reliable this way vs having to debug on every version of PDC
|
|
* on every box.
|
|
*/
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/init.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/perf.h>
|
|
#include <asm/parisc-device.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/runway.h>
|
|
#include <asm/io.h> /* for __raw_read() */
|
|
|
|
#include "perf_images.h"
|
|
|
|
#define MAX_RDR_WORDS 24
|
|
#define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
|
|
|
|
/* definition of RDR regs */
|
|
struct rdr_tbl_ent {
|
|
uint16_t width;
|
|
uint8_t num_words;
|
|
uint8_t write_control;
|
|
};
|
|
|
|
static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
|
|
static int perf_enabled __read_mostly;
|
|
static spinlock_t perf_lock;
|
|
struct parisc_device *cpu_device __read_mostly;
|
|
|
|
/* RDRs to write for PCX-W */
|
|
static const int perf_rdrs_W[] =
|
|
{ 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
|
|
|
|
/* RDRs to write for PCX-U */
|
|
static const int perf_rdrs_U[] =
|
|
{ 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
|
|
|
|
/* RDR register descriptions for PCX-W */
|
|
static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
|
|
{ 19, 1, 8 }, /* RDR 0 */
|
|
{ 16, 1, 16 }, /* RDR 1 */
|
|
{ 72, 2, 0 }, /* RDR 2 */
|
|
{ 81, 2, 0 }, /* RDR 3 */
|
|
{ 328, 6, 0 }, /* RDR 4 */
|
|
{ 160, 3, 0 }, /* RDR 5 */
|
|
{ 336, 6, 0 }, /* RDR 6 */
|
|
{ 164, 3, 0 }, /* RDR 7 */
|
|
{ 0, 0, 0 }, /* RDR 8 */
|
|
{ 35, 1, 0 }, /* RDR 9 */
|
|
{ 6, 1, 0 }, /* RDR 10 */
|
|
{ 18, 1, 0 }, /* RDR 11 */
|
|
{ 13, 1, 0 }, /* RDR 12 */
|
|
{ 8, 1, 0 }, /* RDR 13 */
|
|
{ 8, 1, 0 }, /* RDR 14 */
|
|
{ 8, 1, 0 }, /* RDR 15 */
|
|
{ 1530, 24, 0 }, /* RDR 16 */
|
|
{ 16, 1, 0 }, /* RDR 17 */
|
|
{ 4, 1, 0 }, /* RDR 18 */
|
|
{ 0, 0, 0 }, /* RDR 19 */
|
|
{ 152, 3, 24 }, /* RDR 20 */
|
|
{ 152, 3, 24 }, /* RDR 21 */
|
|
{ 233, 4, 48 }, /* RDR 22 */
|
|
{ 233, 4, 48 }, /* RDR 23 */
|
|
{ 71, 2, 0 }, /* RDR 24 */
|
|
{ 71, 2, 0 }, /* RDR 25 */
|
|
{ 11, 1, 0 }, /* RDR 26 */
|
|
{ 18, 1, 0 }, /* RDR 27 */
|
|
{ 128, 2, 0 }, /* RDR 28 */
|
|
{ 0, 0, 0 }, /* RDR 29 */
|
|
{ 16, 1, 0 }, /* RDR 30 */
|
|
{ 16, 1, 0 }, /* RDR 31 */
|
|
};
|
|
|
|
/* RDR register descriptions for PCX-U */
|
|
static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
|
|
{ 19, 1, 8 }, /* RDR 0 */
|
|
{ 32, 1, 16 }, /* RDR 1 */
|
|
{ 20, 1, 0 }, /* RDR 2 */
|
|
{ 0, 0, 0 }, /* RDR 3 */
|
|
{ 344, 6, 0 }, /* RDR 4 */
|
|
{ 176, 3, 0 }, /* RDR 5 */
|
|
{ 336, 6, 0 }, /* RDR 6 */
|
|
{ 0, 0, 0 }, /* RDR 7 */
|
|
{ 0, 0, 0 }, /* RDR 8 */
|
|
{ 0, 0, 0 }, /* RDR 9 */
|
|
{ 28, 1, 0 }, /* RDR 10 */
|
|
{ 33, 1, 0 }, /* RDR 11 */
|
|
{ 0, 0, 0 }, /* RDR 12 */
|
|
{ 230, 4, 0 }, /* RDR 13 */
|
|
{ 32, 1, 0 }, /* RDR 14 */
|
|
{ 128, 2, 0 }, /* RDR 15 */
|
|
{ 1494, 24, 0 }, /* RDR 16 */
|
|
{ 18, 1, 0 }, /* RDR 17 */
|
|
{ 4, 1, 0 }, /* RDR 18 */
|
|
{ 0, 0, 0 }, /* RDR 19 */
|
|
{ 158, 3, 24 }, /* RDR 20 */
|
|
{ 158, 3, 24 }, /* RDR 21 */
|
|
{ 194, 4, 48 }, /* RDR 22 */
|
|
{ 194, 4, 48 }, /* RDR 23 */
|
|
{ 71, 2, 0 }, /* RDR 24 */
|
|
{ 71, 2, 0 }, /* RDR 25 */
|
|
{ 28, 1, 0 }, /* RDR 26 */
|
|
{ 33, 1, 0 }, /* RDR 27 */
|
|
{ 88, 2, 0 }, /* RDR 28 */
|
|
{ 32, 1, 0 }, /* RDR 29 */
|
|
{ 24, 1, 0 }, /* RDR 30 */
|
|
{ 16, 1, 0 }, /* RDR 31 */
|
|
};
|
|
|
|
/*
|
|
* A non-zero write_control in the above tables is a byte offset into
|
|
* this array.
|
|
*/
|
|
static const uint64_t perf_bitmasks[] = {
|
|
0x0000000000000000ul, /* first dbl word must be zero */
|
|
0xfdffe00000000000ul, /* RDR0 bitmask */
|
|
0x003f000000000000ul, /* RDR1 bitmask */
|
|
0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */
|
|
0xfffffffffffffffful,
|
|
0xfffffffc00000000ul,
|
|
0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */
|
|
0xfffffffffffffffful,
|
|
0xfffffffffffffffcul,
|
|
0xff00000000000000ul
|
|
};
|
|
|
|
/*
|
|
* Write control bitmasks for Pa-8700 processor given
|
|
* some things have changed slightly.
|
|
*/
|
|
static const uint64_t perf_bitmasks_piranha[] = {
|
|
0x0000000000000000ul, /* first dbl word must be zero */
|
|
0xfdffe00000000000ul, /* RDR0 bitmask */
|
|
0x003f000000000000ul, /* RDR1 bitmask */
|
|
0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */
|
|
0xfffffffffffffffful,
|
|
0xfffffffc00000000ul,
|
|
0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */
|
|
0xfffffffffffffffful,
|
|
0xfffffffffffffffful,
|
|
0xfffc000000000000ul
|
|
};
|
|
|
|
static const uint64_t *bitmask_array; /* array of bitmasks to use */
|
|
|
|
/******************************************************************************
|
|
* Function Prototypes
|
|
*****************************************************************************/
|
|
static int perf_config(uint32_t *image_ptr);
|
|
static int perf_release(struct inode *inode, struct file *file);
|
|
static int perf_open(struct inode *inode, struct file *file);
|
|
static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
|
|
static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
|
|
loff_t *ppos);
|
|
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
|
|
static void perf_start_counters(void);
|
|
static int perf_stop_counters(uint32_t *raddr);
|
|
static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
|
|
static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer);
|
|
static int perf_rdr_clear(uint32_t rdr_num);
|
|
static int perf_write_image(uint64_t *memaddr);
|
|
static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
|
|
|
|
/* External Assembly Routines */
|
|
extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
|
|
extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
|
|
extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
|
|
extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
|
|
extern void perf_intrigue_enable_perf_counters (void);
|
|
extern void perf_intrigue_disable_perf_counters (void);
|
|
|
|
/******************************************************************************
|
|
* Function Definitions
|
|
*****************************************************************************/
|
|
|
|
|
|
/*
|
|
* configure:
|
|
*
|
|
* Configure the cpu with a given data image. First turn off the counters,
|
|
* then download the image, then turn the counters back on.
|
|
*/
|
|
static int perf_config(uint32_t *image_ptr)
|
|
{
|
|
long error;
|
|
uint32_t raddr[4];
|
|
|
|
/* Stop the counters*/
|
|
error = perf_stop_counters(raddr);
|
|
if (error != 0) {
|
|
printk("perf_config: perf_stop_counters = %ld\n", error);
|
|
return -EINVAL;
|
|
}
|
|
|
|
printk("Preparing to write image\n");
|
|
/* Write the image to the chip */
|
|
error = perf_write_image((uint64_t *)image_ptr);
|
|
if (error != 0) {
|
|
printk("perf_config: DOWNLOAD = %ld\n", error);
|
|
return -EINVAL;
|
|
}
|
|
|
|
printk("Preparing to start counters\n");
|
|
|
|
/* Start the counters */
|
|
perf_start_counters();
|
|
|
|
return sizeof(uint32_t);
|
|
}
|
|
|
|
/*
|
|
* Open the device and initialize all of its memory. The device is only
|
|
* opened once, but can be "queried" by multiple processes that know its
|
|
* file descriptor.
|
|
*/
|
|
static int perf_open(struct inode *inode, struct file *file)
|
|
{
|
|
spin_lock(&perf_lock);
|
|
if (perf_enabled) {
|
|
spin_unlock(&perf_lock);
|
|
return -EBUSY;
|
|
}
|
|
perf_enabled = 1;
|
|
spin_unlock(&perf_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Close the device.
|
|
*/
|
|
static int perf_release(struct inode *inode, struct file *file)
|
|
{
|
|
spin_lock(&perf_lock);
|
|
perf_enabled = 0;
|
|
spin_unlock(&perf_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read does nothing for this driver
|
|
*/
|
|
static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* write:
|
|
*
|
|
* This routine downloads the image to the chip. It must be
|
|
* called on the processor that the download should happen
|
|
* on.
|
|
*/
|
|
static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
|
|
loff_t *ppos)
|
|
{
|
|
int err;
|
|
size_t image_size;
|
|
uint32_t image_type;
|
|
uint32_t interface_type;
|
|
uint32_t test;
|
|
|
|
if (perf_processor_interface == ONYX_INTF)
|
|
image_size = PCXU_IMAGE_SIZE;
|
|
else if (perf_processor_interface == CUDA_INTF)
|
|
image_size = PCXW_IMAGE_SIZE;
|
|
else
|
|
return -EFAULT;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
if (count != sizeof(uint32_t))
|
|
return -EIO;
|
|
|
|
if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0)
|
|
return err;
|
|
|
|
/* Get the interface type and test type */
|
|
interface_type = (image_type >> 16) & 0xffff;
|
|
test = (image_type & 0xffff);
|
|
|
|
/* Make sure everything makes sense */
|
|
|
|
/* First check the machine type is correct for
|
|
the requested image */
|
|
if (((perf_processor_interface == CUDA_INTF) &&
|
|
(interface_type != CUDA_INTF)) ||
|
|
((perf_processor_interface == ONYX_INTF) &&
|
|
(interface_type != ONYX_INTF)))
|
|
return -EINVAL;
|
|
|
|
/* Next check to make sure the requested image
|
|
is valid */
|
|
if (((interface_type == CUDA_INTF) &&
|
|
(test >= MAX_CUDA_IMAGES)) ||
|
|
((interface_type == ONYX_INTF) &&
|
|
(test >= MAX_ONYX_IMAGES)))
|
|
return -EINVAL;
|
|
|
|
/* Copy the image into the processor */
|
|
if (interface_type == CUDA_INTF)
|
|
return perf_config(cuda_images[test]);
|
|
else
|
|
return perf_config(onyx_images[test]);
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Patch the images that need to know the IVA addresses.
|
|
*/
|
|
static void perf_patch_images(void)
|
|
{
|
|
#if 0 /* FIXME!! */
|
|
/*
|
|
* NOTE: this routine is VERY specific to the current TLB image.
|
|
* If the image is changed, this routine might also need to be changed.
|
|
*/
|
|
extern void $i_itlb_miss_2_0();
|
|
extern void $i_dtlb_miss_2_0();
|
|
extern void PA2_0_iva();
|
|
|
|
/*
|
|
* We can only use the lower 32-bits, the upper 32-bits should be 0
|
|
* anyway given this is in the kernel
|
|
*/
|
|
uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0);
|
|
uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0);
|
|
uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
|
|
|
|
if (perf_processor_interface == ONYX_INTF) {
|
|
/* clear last 2 bytes */
|
|
onyx_images[TLBMISS][15] &= 0xffffff00;
|
|
/* set 2 bytes */
|
|
onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
|
|
onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
|
|
onyx_images[TLBMISS][17] = itlb_addr;
|
|
|
|
/* clear last 2 bytes */
|
|
onyx_images[TLBHANDMISS][15] &= 0xffffff00;
|
|
/* set 2 bytes */
|
|
onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
|
|
onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
|
|
onyx_images[TLBHANDMISS][17] = itlb_addr;
|
|
|
|
/* clear last 2 bytes */
|
|
onyx_images[BIG_CPI][15] &= 0xffffff00;
|
|
/* set 2 bytes */
|
|
onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
|
|
onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
|
|
onyx_images[BIG_CPI][17] = itlb_addr;
|
|
|
|
onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */
|
|
onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
|
|
onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
|
|
|
|
|
|
} else if (perf_processor_interface == CUDA_INTF) {
|
|
/* Cuda interface */
|
|
cuda_images[TLBMISS][16] =
|
|
(cuda_images[TLBMISS][16]&0xffff0000) |
|
|
((dtlb_addr >> 8)&0x0000ffff);
|
|
cuda_images[TLBMISS][17] =
|
|
((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
|
|
cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
|
|
|
|
cuda_images[TLBHANDMISS][16] =
|
|
(cuda_images[TLBHANDMISS][16]&0xffff0000) |
|
|
((dtlb_addr >> 8)&0x0000ffff);
|
|
cuda_images[TLBHANDMISS][17] =
|
|
((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
|
|
cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
|
|
|
|
cuda_images[BIG_CPI][16] =
|
|
(cuda_images[BIG_CPI][16]&0xffff0000) |
|
|
((dtlb_addr >> 8)&0x0000ffff);
|
|
cuda_images[BIG_CPI][17] =
|
|
((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
|
|
cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
|
|
} else {
|
|
/* Unknown type */
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* ioctl routine
|
|
* All routines effect the processor that they are executed on. Thus you
|
|
* must be running on the processor that you wish to change.
|
|
*/
|
|
|
|
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
long error_start;
|
|
uint32_t raddr[4];
|
|
int error = 0;
|
|
|
|
switch (cmd) {
|
|
|
|
case PA_PERF_ON:
|
|
/* Start the counters */
|
|
perf_start_counters();
|
|
break;
|
|
|
|
case PA_PERF_OFF:
|
|
error_start = perf_stop_counters(raddr);
|
|
if (error_start != 0) {
|
|
printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
|
|
error = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
/* copy out the Counters */
|
|
if (copy_to_user((void __user *)arg, raddr,
|
|
sizeof (raddr)) != 0) {
|
|
error = -EFAULT;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case PA_PERF_VERSION:
|
|
/* Return the version # */
|
|
error = put_user(PERF_VERSION, (int *)arg);
|
|
break;
|
|
|
|
default:
|
|
error = -ENOTTY;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static const struct file_operations perf_fops = {
|
|
.llseek = no_llseek,
|
|
.read = perf_read,
|
|
.write = perf_write,
|
|
.unlocked_ioctl = perf_ioctl,
|
|
.compat_ioctl = perf_ioctl,
|
|
.open = perf_open,
|
|
.release = perf_release
|
|
};
|
|
|
|
static struct miscdevice perf_dev = {
|
|
MISC_DYNAMIC_MINOR,
|
|
PA_PERF_DEV,
|
|
&perf_fops
|
|
};
|
|
|
|
/*
|
|
* Initialize the module
|
|
*/
|
|
static int __init perf_init(void)
|
|
{
|
|
int ret;
|
|
|
|
/* Determine correct processor interface to use */
|
|
bitmask_array = perf_bitmasks;
|
|
|
|
if (boot_cpu_data.cpu_type == pcxu ||
|
|
boot_cpu_data.cpu_type == pcxu_) {
|
|
perf_processor_interface = ONYX_INTF;
|
|
} else if (boot_cpu_data.cpu_type == pcxw ||
|
|
boot_cpu_data.cpu_type == pcxw_ ||
|
|
boot_cpu_data.cpu_type == pcxw2 ||
|
|
boot_cpu_data.cpu_type == mako ||
|
|
boot_cpu_data.cpu_type == mako2) {
|
|
perf_processor_interface = CUDA_INTF;
|
|
if (boot_cpu_data.cpu_type == pcxw2 ||
|
|
boot_cpu_data.cpu_type == mako ||
|
|
boot_cpu_data.cpu_type == mako2)
|
|
bitmask_array = perf_bitmasks_piranha;
|
|
} else {
|
|
perf_processor_interface = UNKNOWN_INTF;
|
|
printk("Performance monitoring counters not supported on this processor\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = misc_register(&perf_dev);
|
|
if (ret) {
|
|
printk(KERN_ERR "Performance monitoring counters: "
|
|
"cannot register misc device.\n");
|
|
return ret;
|
|
}
|
|
|
|
/* Patch the images to match the system */
|
|
perf_patch_images();
|
|
|
|
spin_lock_init(&perf_lock);
|
|
|
|
/* TODO: this only lets us access the first cpu.. what to do for SMP? */
|
|
cpu_device = per_cpu(cpu_data, 0).dev;
|
|
printk("Performance monitoring counters enabled for %s\n",
|
|
per_cpu(cpu_data, 0).dev->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* perf_start_counters(void)
|
|
*
|
|
* Start the counters.
|
|
*/
|
|
static void perf_start_counters(void)
|
|
{
|
|
/* Enable performance monitor counters */
|
|
perf_intrigue_enable_perf_counters();
|
|
}
|
|
|
|
/*
|
|
* perf_stop_counters
|
|
*
|
|
* Stop the performance counters and save counts
|
|
* in a per_processor array.
|
|
*/
|
|
static int perf_stop_counters(uint32_t *raddr)
|
|
{
|
|
uint64_t userbuf[MAX_RDR_WORDS];
|
|
|
|
/* Disable performance counters */
|
|
perf_intrigue_disable_perf_counters();
|
|
|
|
if (perf_processor_interface == ONYX_INTF) {
|
|
uint64_t tmp64;
|
|
/*
|
|
* Read the counters
|
|
*/
|
|
if (!perf_rdr_read_ubuf(16, userbuf))
|
|
return -13;
|
|
|
|
/* Counter0 is bits 1398 to 1429 */
|
|
tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000;
|
|
tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
|
|
/* OR sticky0 (bit 1430) to counter0 bit 32 */
|
|
tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
|
|
raddr[0] = (uint32_t)tmp64;
|
|
|
|
/* Counter1 is bits 1431 to 1462 */
|
|
tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff;
|
|
/* OR sticky1 (bit 1463) to counter1 bit 32 */
|
|
tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
|
|
raddr[1] = (uint32_t)tmp64;
|
|
|
|
/* Counter2 is bits 1464 to 1495 */
|
|
tmp64 = (userbuf[22] << 24) & 0x00000000ff000000;
|
|
tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
|
|
/* OR sticky2 (bit 1496) to counter2 bit 32 */
|
|
tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
|
|
raddr[2] = (uint32_t)tmp64;
|
|
|
|
/* Counter3 is bits 1497 to 1528 */
|
|
tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff;
|
|
/* OR sticky3 (bit 1529) to counter3 bit 32 */
|
|
tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
|
|
raddr[3] = (uint32_t)tmp64;
|
|
|
|
/*
|
|
* Zero out the counters
|
|
*/
|
|
|
|
/*
|
|
* The counters and sticky-bits comprise the last 132 bits
|
|
* (1398 - 1529) of RDR16 on a U chip. We'll zero these
|
|
* out the easy way: zero out last 10 bits of dword 21,
|
|
* all of dword 22 and 58 bits (plus 6 don't care bits) of
|
|
* dword 23.
|
|
*/
|
|
userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */
|
|
userbuf[22] = 0;
|
|
userbuf[23] = 0;
|
|
|
|
/*
|
|
* Write back the zeroed bytes + the image given
|
|
* the read was destructive.
|
|
*/
|
|
perf_rdr_write(16, userbuf);
|
|
} else {
|
|
|
|
/*
|
|
* Read RDR-15 which contains the counters and sticky bits
|
|
*/
|
|
if (!perf_rdr_read_ubuf(15, userbuf)) {
|
|
return -13;
|
|
}
|
|
|
|
/*
|
|
* Clear out the counters
|
|
*/
|
|
perf_rdr_clear(15);
|
|
|
|
/*
|
|
* Copy the counters
|
|
*/
|
|
raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
|
|
raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
|
|
raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
|
|
raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* perf_rdr_get_entry
|
|
*
|
|
* Retrieve a pointer to the description of what this
|
|
* RDR contains.
|
|
*/
|
|
static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
|
|
{
|
|
if (perf_processor_interface == ONYX_INTF) {
|
|
return &perf_rdr_tbl_U[rdr_num];
|
|
} else {
|
|
return &perf_rdr_tbl_W[rdr_num];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* perf_rdr_read_ubuf
|
|
*
|
|
* Read the RDR value into the buffer specified.
|
|
*/
|
|
static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer)
|
|
{
|
|
uint64_t data, data_mask = 0;
|
|
uint32_t width, xbits, i;
|
|
const struct rdr_tbl_ent *tentry;
|
|
|
|
tentry = perf_rdr_get_entry(rdr_num);
|
|
if ((width = tentry->width) == 0)
|
|
return 0;
|
|
|
|
/* Clear out buffer */
|
|
i = tentry->num_words;
|
|
while (i--) {
|
|
buffer[i] = 0;
|
|
}
|
|
|
|
/* Check for bits an even number of 64 */
|
|
if ((xbits = width & 0x03f) != 0) {
|
|
data_mask = 1;
|
|
data_mask <<= (64 - xbits);
|
|
data_mask--;
|
|
}
|
|
|
|
/* Grab all of the data */
|
|
i = tentry->num_words;
|
|
while (i--) {
|
|
|
|
if (perf_processor_interface == ONYX_INTF) {
|
|
data = perf_rdr_shift_in_U(rdr_num, width);
|
|
} else {
|
|
data = perf_rdr_shift_in_W(rdr_num, width);
|
|
}
|
|
if (xbits) {
|
|
buffer[i] |= (data << (64 - xbits));
|
|
if (i) {
|
|
buffer[i-1] |= ((data >> xbits) & data_mask);
|
|
}
|
|
} else {
|
|
buffer[i] = data;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* perf_rdr_clear
|
|
*
|
|
* Zero out the given RDR register
|
|
*/
|
|
static int perf_rdr_clear(uint32_t rdr_num)
|
|
{
|
|
const struct rdr_tbl_ent *tentry;
|
|
int32_t i;
|
|
|
|
tentry = perf_rdr_get_entry(rdr_num);
|
|
|
|
if (tentry->width == 0) {
|
|
return -1;
|
|
}
|
|
|
|
i = tentry->num_words;
|
|
while (i--) {
|
|
if (perf_processor_interface == ONYX_INTF) {
|
|
perf_rdr_shift_out_U(rdr_num, 0UL);
|
|
} else {
|
|
perf_rdr_shift_out_W(rdr_num, 0UL);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* perf_write_image
|
|
*
|
|
* Write the given image out to the processor
|
|
*/
|
|
static int perf_write_image(uint64_t *memaddr)
|
|
{
|
|
uint64_t buffer[MAX_RDR_WORDS];
|
|
uint64_t *bptr;
|
|
uint32_t dwords;
|
|
const uint32_t *intrigue_rdr;
|
|
const uint64_t *intrigue_bitmask;
|
|
uint64_t tmp64;
|
|
void __iomem *runway;
|
|
const struct rdr_tbl_ent *tentry;
|
|
int i;
|
|
|
|
/* Clear out counters */
|
|
if (perf_processor_interface == ONYX_INTF) {
|
|
|
|
perf_rdr_clear(16);
|
|
|
|
/* Toggle performance monitor */
|
|
perf_intrigue_enable_perf_counters();
|
|
perf_intrigue_disable_perf_counters();
|
|
|
|
intrigue_rdr = perf_rdrs_U;
|
|
} else {
|
|
perf_rdr_clear(15);
|
|
intrigue_rdr = perf_rdrs_W;
|
|
}
|
|
|
|
/* Write all RDRs */
|
|
while (*intrigue_rdr != -1) {
|
|
tentry = perf_rdr_get_entry(*intrigue_rdr);
|
|
perf_rdr_read_ubuf(*intrigue_rdr, buffer);
|
|
bptr = &buffer[0];
|
|
dwords = tentry->num_words;
|
|
if (tentry->write_control) {
|
|
intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
|
|
while (dwords--) {
|
|
tmp64 = *intrigue_bitmask & *memaddr++;
|
|
tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
|
|
*bptr++ = tmp64;
|
|
}
|
|
} else {
|
|
while (dwords--) {
|
|
*bptr++ = *memaddr++;
|
|
}
|
|
}
|
|
|
|
perf_rdr_write(*intrigue_rdr, buffer);
|
|
intrigue_rdr++;
|
|
}
|
|
|
|
/*
|
|
* Now copy out the Runway stuff which is not in RDRs
|
|
*/
|
|
|
|
if (cpu_device == NULL)
|
|
{
|
|
printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
|
|
return -1;
|
|
}
|
|
|
|
runway = ioremap_nocache(cpu_device->hpa.start, 4096);
|
|
|
|
/* Merge intrigue bits into Runway STATUS 0 */
|
|
tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
|
|
__raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
|
|
runway + RUNWAY_STATUS);
|
|
|
|
/* Write RUNWAY DEBUG registers */
|
|
for (i = 0; i < 8; i++) {
|
|
__raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* perf_rdr_write
|
|
*
|
|
* Write the given RDR register with the contents
|
|
* of the given buffer.
|
|
*/
|
|
static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
|
|
{
|
|
const struct rdr_tbl_ent *tentry;
|
|
int32_t i;
|
|
|
|
printk("perf_rdr_write\n");
|
|
tentry = perf_rdr_get_entry(rdr_num);
|
|
if (tentry->width == 0) { return; }
|
|
|
|
i = tentry->num_words;
|
|
while (i--) {
|
|
if (perf_processor_interface == ONYX_INTF) {
|
|
perf_rdr_shift_out_U(rdr_num, buffer[i]);
|
|
} else {
|
|
perf_rdr_shift_out_W(rdr_num, buffer[i]);
|
|
}
|
|
}
|
|
printk("perf_rdr_write done\n");
|
|
}
|
|
|
|
module_init(perf_init);
|