linux-next/mm/shmem.c
2025-01-13 10:26:14 +11:00

5953 lines
157 KiB
C

/*
* Resizable virtual memory filesystem for Linux.
*
* Copyright (C) 2000 Linus Torvalds.
* 2000 Transmeta Corp.
* 2000-2001 Christoph Rohland
* 2000-2001 SAP AG
* 2002 Red Hat Inc.
* Copyright (C) 2002-2011 Hugh Dickins.
* Copyright (C) 2011 Google Inc.
* Copyright (C) 2002-2005 VERITAS Software Corporation.
* Copyright (C) 2004 Andi Kleen, SuSE Labs
*
* Extended attribute support for tmpfs:
* Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
* Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
*
* tiny-shmem:
* Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
*
* This file is released under the GPL.
*/
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/vfs.h>
#include <linux/mount.h>
#include <linux/ramfs.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/fileattr.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/sched/signal.h>
#include <linux/export.h>
#include <linux/shmem_fs.h>
#include <linux/swap.h>
#include <linux/uio.h>
#include <linux/hugetlb.h>
#include <linux/fs_parser.h>
#include <linux/swapfile.h>
#include <linux/iversion.h>
#include <linux/unicode.h>
#include "swap.h"
static struct vfsmount *shm_mnt __ro_after_init;
#ifdef CONFIG_SHMEM
/*
* This virtual memory filesystem is heavily based on the ramfs. It
* extends ramfs by the ability to use swap and honor resource limits
* which makes it a completely usable filesystem.
*/
#include <linux/xattr.h>
#include <linux/exportfs.h>
#include <linux/posix_acl.h>
#include <linux/posix_acl_xattr.h>
#include <linux/mman.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/percpu_counter.h>
#include <linux/falloc.h>
#include <linux/splice.h>
#include <linux/security.h>
#include <linux/swapops.h>
#include <linux/mempolicy.h>
#include <linux/namei.h>
#include <linux/ctype.h>
#include <linux/migrate.h>
#include <linux/highmem.h>
#include <linux/seq_file.h>
#include <linux/magic.h>
#include <linux/syscalls.h>
#include <linux/fcntl.h>
#include <uapi/linux/memfd.h>
#include <linux/rmap.h>
#include <linux/uuid.h>
#include <linux/quotaops.h>
#include <linux/rcupdate_wait.h>
#include <linux/uaccess.h>
#include "internal.h"
#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
/* Pretend that each entry is of this size in directory's i_size */
#define BOGO_DIRENT_SIZE 20
/* Pretend that one inode + its dentry occupy this much memory */
#define BOGO_INODE_SIZE 1024
/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
#define SHORT_SYMLINK_LEN 128
/*
* shmem_fallocate communicates with shmem_fault or shmem_writepage via
* inode->i_private (with i_rwsem making sure that it has only one user at
* a time): we would prefer not to enlarge the shmem inode just for that.
*/
struct shmem_falloc {
wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
pgoff_t start; /* start of range currently being fallocated */
pgoff_t next; /* the next page offset to be fallocated */
pgoff_t nr_falloced; /* how many new pages have been fallocated */
pgoff_t nr_unswapped; /* how often writepage refused to swap out */
};
struct shmem_options {
unsigned long long blocks;
unsigned long long inodes;
struct mempolicy *mpol;
kuid_t uid;
kgid_t gid;
umode_t mode;
bool full_inums;
int huge;
int seen;
bool noswap;
unsigned short quota_types;
struct shmem_quota_limits qlimits;
#if IS_ENABLED(CONFIG_UNICODE)
struct unicode_map *encoding;
bool strict_encoding;
#endif
#define SHMEM_SEEN_BLOCKS 1
#define SHMEM_SEEN_INODES 2
#define SHMEM_SEEN_HUGE 4
#define SHMEM_SEEN_INUMS 8
#define SHMEM_SEEN_NOSWAP 16
#define SHMEM_SEEN_QUOTA 32
};
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static unsigned long huge_shmem_orders_always __read_mostly;
static unsigned long huge_shmem_orders_madvise __read_mostly;
static unsigned long huge_shmem_orders_inherit __read_mostly;
static unsigned long huge_shmem_orders_within_size __read_mostly;
static bool shmem_orders_configured __initdata;
#endif
#ifdef CONFIG_TMPFS
static unsigned long shmem_default_max_blocks(void)
{
return totalram_pages() / 2;
}
static unsigned long shmem_default_max_inodes(void)
{
unsigned long nr_pages = totalram_pages();
return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
ULONG_MAX / BOGO_INODE_SIZE);
}
#endif
static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
struct vm_area_struct *vma, vm_fault_t *fault_type);
static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
{
return sb->s_fs_info;
}
/*
* shmem_file_setup pre-accounts the whole fixed size of a VM object,
* for shared memory and for shared anonymous (/dev/zero) mappings
* (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
* consistent with the pre-accounting of private mappings ...
*/
static inline int shmem_acct_size(unsigned long flags, loff_t size)
{
return (flags & VM_NORESERVE) ?
0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
}
static inline void shmem_unacct_size(unsigned long flags, loff_t size)
{
if (!(flags & VM_NORESERVE))
vm_unacct_memory(VM_ACCT(size));
}
static inline int shmem_reacct_size(unsigned long flags,
loff_t oldsize, loff_t newsize)
{
if (!(flags & VM_NORESERVE)) {
if (VM_ACCT(newsize) > VM_ACCT(oldsize))
return security_vm_enough_memory_mm(current->mm,
VM_ACCT(newsize) - VM_ACCT(oldsize));
else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
}
return 0;
}
/*
* ... whereas tmpfs objects are accounted incrementally as
* pages are allocated, in order to allow large sparse files.
* shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
* so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
*/
static inline int shmem_acct_blocks(unsigned long flags, long pages)
{
if (!(flags & VM_NORESERVE))
return 0;
return security_vm_enough_memory_mm(current->mm,
pages * VM_ACCT(PAGE_SIZE));
}
static inline void shmem_unacct_blocks(unsigned long flags, long pages)
{
if (flags & VM_NORESERVE)
vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
}
static int shmem_inode_acct_blocks(struct inode *inode, long pages)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
int err = -ENOSPC;
if (shmem_acct_blocks(info->flags, pages))
return err;
might_sleep(); /* when quotas */
if (sbinfo->max_blocks) {
if (!percpu_counter_limited_add(&sbinfo->used_blocks,
sbinfo->max_blocks, pages))
goto unacct;
err = dquot_alloc_block_nodirty(inode, pages);
if (err) {
percpu_counter_sub(&sbinfo->used_blocks, pages);
goto unacct;
}
} else {
err = dquot_alloc_block_nodirty(inode, pages);
if (err)
goto unacct;
}
return 0;
unacct:
shmem_unacct_blocks(info->flags, pages);
return err;
}
static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
might_sleep(); /* when quotas */
dquot_free_block_nodirty(inode, pages);
if (sbinfo->max_blocks)
percpu_counter_sub(&sbinfo->used_blocks, pages);
shmem_unacct_blocks(info->flags, pages);
}
static const struct super_operations shmem_ops;
static const struct address_space_operations shmem_aops;
static const struct file_operations shmem_file_operations;
static const struct inode_operations shmem_inode_operations;
static const struct inode_operations shmem_dir_inode_operations;
static const struct inode_operations shmem_special_inode_operations;
static const struct vm_operations_struct shmem_vm_ops;
static const struct vm_operations_struct shmem_anon_vm_ops;
static struct file_system_type shmem_fs_type;
bool shmem_mapping(struct address_space *mapping)
{
return mapping->a_ops == &shmem_aops;
}
EXPORT_SYMBOL_GPL(shmem_mapping);
bool vma_is_anon_shmem(struct vm_area_struct *vma)
{
return vma->vm_ops == &shmem_anon_vm_ops;
}
bool vma_is_shmem(struct vm_area_struct *vma)
{
return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
}
static LIST_HEAD(shmem_swaplist);
static DEFINE_MUTEX(shmem_swaplist_mutex);
#ifdef CONFIG_TMPFS_QUOTA
static int shmem_enable_quotas(struct super_block *sb,
unsigned short quota_types)
{
int type, err = 0;
sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
if (!(quota_types & (1 << type)))
continue;
err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
DQUOT_USAGE_ENABLED |
DQUOT_LIMITS_ENABLED);
if (err)
goto out_err;
}
return 0;
out_err:
pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
type, err);
for (type--; type >= 0; type--)
dquot_quota_off(sb, type);
return err;
}
static void shmem_disable_quotas(struct super_block *sb)
{
int type;
for (type = 0; type < SHMEM_MAXQUOTAS; type++)
dquot_quota_off(sb, type);
}
static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
{
return SHMEM_I(inode)->i_dquot;
}
#endif /* CONFIG_TMPFS_QUOTA */
/*
* shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
* produces a novel ino for the newly allocated inode.
*
* It may also be called when making a hard link to permit the space needed by
* each dentry. However, in that case, no new inode number is needed since that
* internally draws from another pool of inode numbers (currently global
* get_next_ino()). This case is indicated by passing NULL as inop.
*/
#define SHMEM_INO_BATCH 1024
static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
ino_t ino;
if (!(sb->s_flags & SB_KERNMOUNT)) {
raw_spin_lock(&sbinfo->stat_lock);
if (sbinfo->max_inodes) {
if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
raw_spin_unlock(&sbinfo->stat_lock);
return -ENOSPC;
}
sbinfo->free_ispace -= BOGO_INODE_SIZE;
}
if (inop) {
ino = sbinfo->next_ino++;
if (unlikely(is_zero_ino(ino)))
ino = sbinfo->next_ino++;
if (unlikely(!sbinfo->full_inums &&
ino > UINT_MAX)) {
/*
* Emulate get_next_ino uint wraparound for
* compatibility
*/
if (IS_ENABLED(CONFIG_64BIT))
pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
__func__, MINOR(sb->s_dev));
sbinfo->next_ino = 1;
ino = sbinfo->next_ino++;
}
*inop = ino;
}
raw_spin_unlock(&sbinfo->stat_lock);
} else if (inop) {
/*
* __shmem_file_setup, one of our callers, is lock-free: it
* doesn't hold stat_lock in shmem_reserve_inode since
* max_inodes is always 0, and is called from potentially
* unknown contexts. As such, use a per-cpu batched allocator
* which doesn't require the per-sb stat_lock unless we are at
* the batch boundary.
*
* We don't need to worry about inode{32,64} since SB_KERNMOUNT
* shmem mounts are not exposed to userspace, so we don't need
* to worry about things like glibc compatibility.
*/
ino_t *next_ino;
next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
ino = *next_ino;
if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
raw_spin_lock(&sbinfo->stat_lock);
ino = sbinfo->next_ino;
sbinfo->next_ino += SHMEM_INO_BATCH;
raw_spin_unlock(&sbinfo->stat_lock);
if (unlikely(is_zero_ino(ino)))
ino++;
}
*inop = ino;
*next_ino = ++ino;
put_cpu();
}
return 0;
}
static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
if (sbinfo->max_inodes) {
raw_spin_lock(&sbinfo->stat_lock);
sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
raw_spin_unlock(&sbinfo->stat_lock);
}
}
/**
* shmem_recalc_inode - recalculate the block usage of an inode
* @inode: inode to recalc
* @alloced: the change in number of pages allocated to inode
* @swapped: the change in number of pages swapped from inode
*
* We have to calculate the free blocks since the mm can drop
* undirtied hole pages behind our back.
*
* But normally info->alloced == inode->i_mapping->nrpages + info->swapped
* So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
*/
static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
{
struct shmem_inode_info *info = SHMEM_I(inode);
long freed;
spin_lock(&info->lock);
info->alloced += alloced;
info->swapped += swapped;
freed = info->alloced - info->swapped -
READ_ONCE(inode->i_mapping->nrpages);
/*
* Special case: whereas normally shmem_recalc_inode() is called
* after i_mapping->nrpages has already been adjusted (up or down),
* shmem_writepage() has to raise swapped before nrpages is lowered -
* to stop a racing shmem_recalc_inode() from thinking that a page has
* been freed. Compensate here, to avoid the need for a followup call.
*/
if (swapped > 0)
freed += swapped;
if (freed > 0)
info->alloced -= freed;
spin_unlock(&info->lock);
/* The quota case may block */
if (freed > 0)
shmem_inode_unacct_blocks(inode, freed);
}
bool shmem_charge(struct inode *inode, long pages)
{
struct address_space *mapping = inode->i_mapping;
if (shmem_inode_acct_blocks(inode, pages))
return false;
/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
xa_lock_irq(&mapping->i_pages);
mapping->nrpages += pages;
xa_unlock_irq(&mapping->i_pages);
shmem_recalc_inode(inode, pages, 0);
return true;
}
void shmem_uncharge(struct inode *inode, long pages)
{
/* pages argument is currently unused: keep it to help debugging */
/* nrpages adjustment done by __filemap_remove_folio() or caller */
shmem_recalc_inode(inode, 0, 0);
}
/*
* Replace item expected in xarray by a new item, while holding xa_lock.
*/
static int shmem_replace_entry(struct address_space *mapping,
pgoff_t index, void *expected, void *replacement)
{
XA_STATE(xas, &mapping->i_pages, index);
void *item;
VM_BUG_ON(!expected);
VM_BUG_ON(!replacement);
item = xas_load(&xas);
if (item != expected)
return -ENOENT;
xas_store(&xas, replacement);
return 0;
}
/*
* Sometimes, before we decide whether to proceed or to fail, we must check
* that an entry was not already brought back from swap by a racing thread.
*
* Checking folio is not enough: by the time a swapcache folio is locked, it
* might be reused, and again be swapcache, using the same swap as before.
*/
static bool shmem_confirm_swap(struct address_space *mapping,
pgoff_t index, swp_entry_t swap)
{
return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
}
/*
* Definitions for "huge tmpfs": tmpfs mounted with the huge= option
*
* SHMEM_HUGE_NEVER:
* disables huge pages for the mount;
* SHMEM_HUGE_ALWAYS:
* enables huge pages for the mount;
* SHMEM_HUGE_WITHIN_SIZE:
* only allocate huge pages if the page will be fully within i_size,
* also respect fadvise()/madvise() hints;
* SHMEM_HUGE_ADVISE:
* only allocate huge pages if requested with fadvise()/madvise();
*/
#define SHMEM_HUGE_NEVER 0
#define SHMEM_HUGE_ALWAYS 1
#define SHMEM_HUGE_WITHIN_SIZE 2
#define SHMEM_HUGE_ADVISE 3
/*
* Special values.
* Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
*
* SHMEM_HUGE_DENY:
* disables huge on shm_mnt and all mounts, for emergency use;
* SHMEM_HUGE_FORCE:
* enables huge on shm_mnt and all mounts, w/o needing option, for testing;
*
*/
#define SHMEM_HUGE_DENY (-1)
#define SHMEM_HUGE_FORCE (-2)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/* ifdef here to avoid bloating shmem.o when not necessary */
static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER;
/**
* shmem_mapping_size_orders - Get allowable folio orders for the given file size.
* @mapping: Target address_space.
* @index: The page index.
* @write_end: end of a write, could extend inode size.
*
* This returns huge orders for folios (when supported) based on the file size
* which the mapping currently allows at the given index. The index is relevant
* due to alignment considerations the mapping might have. The returned order
* may be less than the size passed.
*
* Return: The orders.
*/
static inline unsigned int
shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end)
{
unsigned int order;
size_t size;
if (!mapping_large_folio_support(mapping) || !write_end)
return 0;
/* Calculate the write size based on the write_end */
size = write_end - (index << PAGE_SHIFT);
order = filemap_get_order(size);
if (!order)
return 0;
/* If we're not aligned, allocate a smaller folio */
if (index & ((1UL << order) - 1))
order = __ffs(index);
order = min_t(size_t, order, MAX_PAGECACHE_ORDER);
return order > 0 ? BIT(order + 1) - 1 : 0;
}
static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
loff_t write_end, bool shmem_huge_force,
struct vm_area_struct *vma,
unsigned long vm_flags)
{
unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
0 : BIT(HPAGE_PMD_ORDER);
unsigned long within_size_orders;
unsigned int order;
pgoff_t aligned_index;
loff_t i_size;
if (!S_ISREG(inode->i_mode))
return 0;
if (shmem_huge == SHMEM_HUGE_DENY)
return 0;
if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
return maybe_pmd_order;
/*
* The huge order allocation for anon shmem is controlled through
* the mTHP interface, so we still use PMD-sized huge order to
* check whether global control is enabled.
*
* For tmpfs mmap()'s huge order, we still use PMD-sized order to
* allocate huge pages due to lack of a write size hint.
*
* Otherwise, tmpfs will allow getting a highest order hint based on
* the size of write and fallocate paths, then will try each allowable
* huge orders.
*/
switch (SHMEM_SB(inode->i_sb)->huge) {
case SHMEM_HUGE_ALWAYS:
if (vma)
return maybe_pmd_order;
return shmem_mapping_size_orders(inode->i_mapping, index, write_end);
case SHMEM_HUGE_WITHIN_SIZE:
if (vma)
within_size_orders = maybe_pmd_order;
else
within_size_orders = shmem_mapping_size_orders(inode->i_mapping,
index, write_end);
order = highest_order(within_size_orders);
while (within_size_orders) {
aligned_index = round_up(index + 1, 1 << order);
i_size = max(write_end, i_size_read(inode));
i_size = round_up(i_size, PAGE_SIZE);
if (i_size >> PAGE_SHIFT >= aligned_index)
return within_size_orders;
order = next_order(&within_size_orders, order);
}
fallthrough;
case SHMEM_HUGE_ADVISE:
if (vm_flags & VM_HUGEPAGE)
return maybe_pmd_order;
fallthrough;
default:
return 0;
}
}
static int shmem_parse_huge(const char *str)
{
int huge;
if (!str)
return -EINVAL;
if (!strcmp(str, "never"))
huge = SHMEM_HUGE_NEVER;
else if (!strcmp(str, "always"))
huge = SHMEM_HUGE_ALWAYS;
else if (!strcmp(str, "within_size"))
huge = SHMEM_HUGE_WITHIN_SIZE;
else if (!strcmp(str, "advise"))
huge = SHMEM_HUGE_ADVISE;
else if (!strcmp(str, "deny"))
huge = SHMEM_HUGE_DENY;
else if (!strcmp(str, "force"))
huge = SHMEM_HUGE_FORCE;
else
return -EINVAL;
if (!has_transparent_hugepage() &&
huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
return -EINVAL;
/* Do not override huge allocation policy with non-PMD sized mTHP */
if (huge == SHMEM_HUGE_FORCE &&
huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
return -EINVAL;
return huge;
}
#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
static const char *shmem_format_huge(int huge)
{
switch (huge) {
case SHMEM_HUGE_NEVER:
return "never";
case SHMEM_HUGE_ALWAYS:
return "always";
case SHMEM_HUGE_WITHIN_SIZE:
return "within_size";
case SHMEM_HUGE_ADVISE:
return "advise";
case SHMEM_HUGE_DENY:
return "deny";
case SHMEM_HUGE_FORCE:
return "force";
default:
VM_BUG_ON(1);
return "bad_val";
}
}
#endif
static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
struct shrink_control *sc, unsigned long nr_to_free)
{
LIST_HEAD(list), *pos, *next;
struct inode *inode;
struct shmem_inode_info *info;
struct folio *folio;
unsigned long batch = sc ? sc->nr_to_scan : 128;
unsigned long split = 0, freed = 0;
if (list_empty(&sbinfo->shrinklist))
return SHRINK_STOP;
spin_lock(&sbinfo->shrinklist_lock);
list_for_each_safe(pos, next, &sbinfo->shrinklist) {
info = list_entry(pos, struct shmem_inode_info, shrinklist);
/* pin the inode */
inode = igrab(&info->vfs_inode);
/* inode is about to be evicted */
if (!inode) {
list_del_init(&info->shrinklist);
goto next;
}
list_move(&info->shrinklist, &list);
next:
sbinfo->shrinklist_len--;
if (!--batch)
break;
}
spin_unlock(&sbinfo->shrinklist_lock);
list_for_each_safe(pos, next, &list) {
pgoff_t next, end;
loff_t i_size;
int ret;
info = list_entry(pos, struct shmem_inode_info, shrinklist);
inode = &info->vfs_inode;
if (nr_to_free && freed >= nr_to_free)
goto move_back;
i_size = i_size_read(inode);
folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
if (!folio || xa_is_value(folio))
goto drop;
/* No large folio at the end of the file: nothing to split */
if (!folio_test_large(folio)) {
folio_put(folio);
goto drop;
}
/* Check if there is anything to gain from splitting */
next = folio_next_index(folio);
end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
if (end <= folio->index || end >= next) {
folio_put(folio);
goto drop;
}
/*
* Move the inode on the list back to shrinklist if we failed
* to lock the page at this time.
*
* Waiting for the lock may lead to deadlock in the
* reclaim path.
*/
if (!folio_trylock(folio)) {
folio_put(folio);
goto move_back;
}
ret = split_folio(folio);
folio_unlock(folio);
folio_put(folio);
/* If split failed move the inode on the list back to shrinklist */
if (ret)
goto move_back;
freed += next - end;
split++;
drop:
list_del_init(&info->shrinklist);
goto put;
move_back:
/*
* Make sure the inode is either on the global list or deleted
* from any local list before iput() since it could be deleted
* in another thread once we put the inode (then the local list
* is corrupted).
*/
spin_lock(&sbinfo->shrinklist_lock);
list_move(&info->shrinklist, &sbinfo->shrinklist);
sbinfo->shrinklist_len++;
spin_unlock(&sbinfo->shrinklist_lock);
put:
iput(inode);
}
return split;
}
static long shmem_unused_huge_scan(struct super_block *sb,
struct shrink_control *sc)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
if (!READ_ONCE(sbinfo->shrinklist_len))
return SHRINK_STOP;
return shmem_unused_huge_shrink(sbinfo, sc, 0);
}
static long shmem_unused_huge_count(struct super_block *sb,
struct shrink_control *sc)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
return READ_ONCE(sbinfo->shrinklist_len);
}
#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
#define shmem_huge SHMEM_HUGE_DENY
static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
struct shrink_control *sc, unsigned long nr_to_free)
{
return 0;
}
static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
loff_t write_end, bool shmem_huge_force,
struct vm_area_struct *vma,
unsigned long vm_flags)
{
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static void shmem_update_stats(struct folio *folio, int nr_pages)
{
if (folio_test_pmd_mappable(folio))
__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
}
/*
* Somewhat like filemap_add_folio, but error if expected item has gone.
*/
static int shmem_add_to_page_cache(struct folio *folio,
struct address_space *mapping,
pgoff_t index, void *expected, gfp_t gfp)
{
XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
long nr = folio_nr_pages(folio);
VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
folio_ref_add(folio, nr);
folio->mapping = mapping;
folio->index = index;
gfp &= GFP_RECLAIM_MASK;
folio_throttle_swaprate(folio, gfp);
do {
xas_lock_irq(&xas);
if (expected != xas_find_conflict(&xas)) {
xas_set_err(&xas, -EEXIST);
goto unlock;
}
if (expected && xas_find_conflict(&xas)) {
xas_set_err(&xas, -EEXIST);
goto unlock;
}
xas_store(&xas, folio);
if (xas_error(&xas))
goto unlock;
shmem_update_stats(folio, nr);
mapping->nrpages += nr;
unlock:
xas_unlock_irq(&xas);
} while (xas_nomem(&xas, gfp));
if (xas_error(&xas)) {
folio->mapping = NULL;
folio_ref_sub(folio, nr);
return xas_error(&xas);
}
return 0;
}
/*
* Somewhat like filemap_remove_folio, but substitutes swap for @folio.
*/
static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
{
struct address_space *mapping = folio->mapping;
long nr = folio_nr_pages(folio);
int error;
xa_lock_irq(&mapping->i_pages);
error = shmem_replace_entry(mapping, folio->index, folio, radswap);
folio->mapping = NULL;
mapping->nrpages -= nr;
shmem_update_stats(folio, -nr);
xa_unlock_irq(&mapping->i_pages);
folio_put_refs(folio, nr);
BUG_ON(error);
}
/*
* Remove swap entry from page cache, free the swap and its page cache. Returns
* the number of pages being freed. 0 means entry not found in XArray (0 pages
* being freed).
*/
static long shmem_free_swap(struct address_space *mapping,
pgoff_t index, void *radswap)
{
int order = xa_get_order(&mapping->i_pages, index);
void *old;
old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
if (old != radswap)
return 0;
free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
return 1 << order;
}
/*
* Determine (in bytes) how many of the shmem object's pages mapped by the
* given offsets are swapped out.
*
* This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
* as long as the inode doesn't go away and racy results are not a problem.
*/
unsigned long shmem_partial_swap_usage(struct address_space *mapping,
pgoff_t start, pgoff_t end)
{
XA_STATE(xas, &mapping->i_pages, start);
struct page *page;
unsigned long swapped = 0;
unsigned long max = end - 1;
rcu_read_lock();
xas_for_each(&xas, page, max) {
if (xas_retry(&xas, page))
continue;
if (xa_is_value(page))
swapped += 1 << xas_get_order(&xas);
if (xas.xa_index == max)
break;
if (need_resched()) {
xas_pause(&xas);
cond_resched_rcu();
}
}
rcu_read_unlock();
return swapped << PAGE_SHIFT;
}
/*
* Determine (in bytes) how many of the shmem object's pages mapped by the
* given vma is swapped out.
*
* This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
* as long as the inode doesn't go away and racy results are not a problem.
*/
unsigned long shmem_swap_usage(struct vm_area_struct *vma)
{
struct inode *inode = file_inode(vma->vm_file);
struct shmem_inode_info *info = SHMEM_I(inode);
struct address_space *mapping = inode->i_mapping;
unsigned long swapped;
/* Be careful as we don't hold info->lock */
swapped = READ_ONCE(info->swapped);
/*
* The easier cases are when the shmem object has nothing in swap, or
* the vma maps it whole. Then we can simply use the stats that we
* already track.
*/
if (!swapped)
return 0;
if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
return swapped << PAGE_SHIFT;
/* Here comes the more involved part */
return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
vma->vm_pgoff + vma_pages(vma));
}
/*
* SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
*/
void shmem_unlock_mapping(struct address_space *mapping)
{
struct folio_batch fbatch;
pgoff_t index = 0;
folio_batch_init(&fbatch);
/*
* Minor point, but we might as well stop if someone else SHM_LOCKs it.
*/
while (!mapping_unevictable(mapping) &&
filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
check_move_unevictable_folios(&fbatch);
folio_batch_release(&fbatch);
cond_resched();
}
}
static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
{
struct folio *folio;
/*
* At first avoid shmem_get_folio(,,,SGP_READ): that fails
* beyond i_size, and reports fallocated folios as holes.
*/
folio = filemap_get_entry(inode->i_mapping, index);
if (!folio)
return folio;
if (!xa_is_value(folio)) {
folio_lock(folio);
if (folio->mapping == inode->i_mapping)
return folio;
/* The folio has been swapped out */
folio_unlock(folio);
folio_put(folio);
}
/*
* But read a folio back from swap if any of it is within i_size
* (although in some cases this is just a waste of time).
*/
folio = NULL;
shmem_get_folio(inode, index, 0, &folio, SGP_READ);
return folio;
}
/*
* Remove range of pages and swap entries from page cache, and free them.
* If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
*/
static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
bool unfalloc)
{
struct address_space *mapping = inode->i_mapping;
struct shmem_inode_info *info = SHMEM_I(inode);
pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
pgoff_t end = (lend + 1) >> PAGE_SHIFT;
struct folio_batch fbatch;
pgoff_t indices[PAGEVEC_SIZE];
struct folio *folio;
bool same_folio;
long nr_swaps_freed = 0;
pgoff_t index;
int i;
if (lend == -1)
end = -1; /* unsigned, so actually very big */
if (info->fallocend > start && info->fallocend <= end && !unfalloc)
info->fallocend = start;
folio_batch_init(&fbatch);
index = start;
while (index < end && find_lock_entries(mapping, &index, end - 1,
&fbatch, indices)) {
for (i = 0; i < folio_batch_count(&fbatch); i++) {
folio = fbatch.folios[i];
if (xa_is_value(folio)) {
if (unfalloc)
continue;
nr_swaps_freed += shmem_free_swap(mapping,
indices[i], folio);
continue;
}
if (!unfalloc || !folio_test_uptodate(folio))
truncate_inode_folio(mapping, folio);
folio_unlock(folio);
}
folio_batch_remove_exceptionals(&fbatch);
folio_batch_release(&fbatch);
cond_resched();
}
/*
* When undoing a failed fallocate, we want none of the partial folio
* zeroing and splitting below, but shall want to truncate the whole
* folio when !uptodate indicates that it was added by this fallocate,
* even when [lstart, lend] covers only a part of the folio.
*/
if (unfalloc)
goto whole_folios;
same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
if (folio) {
same_folio = lend < folio_pos(folio) + folio_size(folio);
folio_mark_dirty(folio);
if (!truncate_inode_partial_folio(folio, lstart, lend)) {
start = folio_next_index(folio);
if (same_folio)
end = folio->index;
}
folio_unlock(folio);
folio_put(folio);
folio = NULL;
}
if (!same_folio)
folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
if (folio) {
folio_mark_dirty(folio);
if (!truncate_inode_partial_folio(folio, lstart, lend))
end = folio->index;
folio_unlock(folio);
folio_put(folio);
}
whole_folios:
index = start;
while (index < end) {
cond_resched();
if (!find_get_entries(mapping, &index, end - 1, &fbatch,
indices)) {
/* If all gone or hole-punch or unfalloc, we're done */
if (index == start || end != -1)
break;
/* But if truncating, restart to make sure all gone */
index = start;
continue;
}
for (i = 0; i < folio_batch_count(&fbatch); i++) {
folio = fbatch.folios[i];
if (xa_is_value(folio)) {
long swaps_freed;
if (unfalloc)
continue;
swaps_freed = shmem_free_swap(mapping, indices[i], folio);
if (!swaps_freed) {
/* Swap was replaced by page: retry */
index = indices[i];
break;
}
nr_swaps_freed += swaps_freed;
continue;
}
folio_lock(folio);
if (!unfalloc || !folio_test_uptodate(folio)) {
if (folio_mapping(folio) != mapping) {
/* Page was replaced by swap: retry */
folio_unlock(folio);
index = indices[i];
break;
}
VM_BUG_ON_FOLIO(folio_test_writeback(folio),
folio);
if (!folio_test_large(folio)) {
truncate_inode_folio(mapping, folio);
} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
/*
* If we split a page, reset the loop so
* that we pick up the new sub pages.
* Otherwise the THP was entirely
* dropped or the target range was
* zeroed, so just continue the loop as
* is.
*/
if (!folio_test_large(folio)) {
folio_unlock(folio);
index = start;
break;
}
}
}
folio_unlock(folio);
}
folio_batch_remove_exceptionals(&fbatch);
folio_batch_release(&fbatch);
}
shmem_recalc_inode(inode, 0, -nr_swaps_freed);
}
void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
{
shmem_undo_range(inode, lstart, lend, false);
inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
inode_inc_iversion(inode);
}
EXPORT_SYMBOL_GPL(shmem_truncate_range);
static int shmem_getattr(struct mnt_idmap *idmap,
const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = path->dentry->d_inode;
struct shmem_inode_info *info = SHMEM_I(inode);
if (info->alloced - info->swapped != inode->i_mapping->nrpages)
shmem_recalc_inode(inode, 0, 0);
if (info->fsflags & FS_APPEND_FL)
stat->attributes |= STATX_ATTR_APPEND;
if (info->fsflags & FS_IMMUTABLE_FL)
stat->attributes |= STATX_ATTR_IMMUTABLE;
if (info->fsflags & FS_NODUMP_FL)
stat->attributes |= STATX_ATTR_NODUMP;
stat->attributes_mask |= (STATX_ATTR_APPEND |
STATX_ATTR_IMMUTABLE |
STATX_ATTR_NODUMP);
generic_fillattr(idmap, request_mask, inode, stat);
if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
stat->blksize = HPAGE_PMD_SIZE;
if (request_mask & STATX_BTIME) {
stat->result_mask |= STATX_BTIME;
stat->btime.tv_sec = info->i_crtime.tv_sec;
stat->btime.tv_nsec = info->i_crtime.tv_nsec;
}
return 0;
}
static int shmem_setattr(struct mnt_idmap *idmap,
struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
struct shmem_inode_info *info = SHMEM_I(inode);
int error;
bool update_mtime = false;
bool update_ctime = true;
error = setattr_prepare(idmap, dentry, attr);
if (error)
return error;
if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
if ((inode->i_mode ^ attr->ia_mode) & 0111) {
return -EPERM;
}
}
if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
loff_t oldsize = inode->i_size;
loff_t newsize = attr->ia_size;
/* protected by i_rwsem */
if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
(newsize > oldsize && (info->seals & F_SEAL_GROW)))
return -EPERM;
if (newsize != oldsize) {
error = shmem_reacct_size(SHMEM_I(inode)->flags,
oldsize, newsize);
if (error)
return error;
i_size_write(inode, newsize);
update_mtime = true;
} else {
update_ctime = false;
}
if (newsize <= oldsize) {
loff_t holebegin = round_up(newsize, PAGE_SIZE);
if (oldsize > holebegin)
unmap_mapping_range(inode->i_mapping,
holebegin, 0, 1);
if (info->alloced)
shmem_truncate_range(inode,
newsize, (loff_t)-1);
/* unmap again to remove racily COWed private pages */
if (oldsize > holebegin)
unmap_mapping_range(inode->i_mapping,
holebegin, 0, 1);
}
}
if (is_quota_modification(idmap, inode, attr)) {
error = dquot_initialize(inode);
if (error)
return error;
}
/* Transfer quota accounting */
if (i_uid_needs_update(idmap, attr, inode) ||
i_gid_needs_update(idmap, attr, inode)) {
error = dquot_transfer(idmap, inode, attr);
if (error)
return error;
}
setattr_copy(idmap, inode, attr);
if (attr->ia_valid & ATTR_MODE)
error = posix_acl_chmod(idmap, dentry, inode->i_mode);
if (!error && update_ctime) {
inode_set_ctime_current(inode);
if (update_mtime)
inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
inode_inc_iversion(inode);
}
return error;
}
static void shmem_evict_inode(struct inode *inode)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
size_t freed = 0;
if (shmem_mapping(inode->i_mapping)) {
shmem_unacct_size(info->flags, inode->i_size);
inode->i_size = 0;
mapping_set_exiting(inode->i_mapping);
shmem_truncate_range(inode, 0, (loff_t)-1);
if (!list_empty(&info->shrinklist)) {
spin_lock(&sbinfo->shrinklist_lock);
if (!list_empty(&info->shrinklist)) {
list_del_init(&info->shrinklist);
sbinfo->shrinklist_len--;
}
spin_unlock(&sbinfo->shrinklist_lock);
}
while (!list_empty(&info->swaplist)) {
/* Wait while shmem_unuse() is scanning this inode... */
wait_var_event(&info->stop_eviction,
!atomic_read(&info->stop_eviction));
mutex_lock(&shmem_swaplist_mutex);
/* ...but beware of the race if we peeked too early */
if (!atomic_read(&info->stop_eviction))
list_del_init(&info->swaplist);
mutex_unlock(&shmem_swaplist_mutex);
}
}
simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
shmem_free_inode(inode->i_sb, freed);
WARN_ON(inode->i_blocks);
clear_inode(inode);
#ifdef CONFIG_TMPFS_QUOTA
dquot_free_inode(inode);
dquot_drop(inode);
#endif
}
static int shmem_find_swap_entries(struct address_space *mapping,
pgoff_t start, struct folio_batch *fbatch,
pgoff_t *indices, unsigned int type)
{
XA_STATE(xas, &mapping->i_pages, start);
struct folio *folio;
swp_entry_t entry;
rcu_read_lock();
xas_for_each(&xas, folio, ULONG_MAX) {
if (xas_retry(&xas, folio))
continue;
if (!xa_is_value(folio))
continue;
entry = radix_to_swp_entry(folio);
/*
* swapin error entries can be found in the mapping. But they're
* deliberately ignored here as we've done everything we can do.
*/
if (swp_type(entry) != type)
continue;
indices[folio_batch_count(fbatch)] = xas.xa_index;
if (!folio_batch_add(fbatch, folio))
break;
if (need_resched()) {
xas_pause(&xas);
cond_resched_rcu();
}
}
rcu_read_unlock();
return xas.xa_index;
}
/*
* Move the swapped pages for an inode to page cache. Returns the count
* of pages swapped in, or the error in case of failure.
*/
static int shmem_unuse_swap_entries(struct inode *inode,
struct folio_batch *fbatch, pgoff_t *indices)
{
int i = 0;
int ret = 0;
int error = 0;
struct address_space *mapping = inode->i_mapping;
for (i = 0; i < folio_batch_count(fbatch); i++) {
struct folio *folio = fbatch->folios[i];
if (!xa_is_value(folio))
continue;
error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
mapping_gfp_mask(mapping), NULL, NULL);
if (error == 0) {
folio_unlock(folio);
folio_put(folio);
ret++;
}
if (error == -ENOMEM)
break;
error = 0;
}
return error ? error : ret;
}
/*
* If swap found in inode, free it and move page from swapcache to filecache.
*/
static int shmem_unuse_inode(struct inode *inode, unsigned int type)
{
struct address_space *mapping = inode->i_mapping;
pgoff_t start = 0;
struct folio_batch fbatch;
pgoff_t indices[PAGEVEC_SIZE];
int ret = 0;
do {
folio_batch_init(&fbatch);
shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
if (folio_batch_count(&fbatch) == 0) {
ret = 0;
break;
}
ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
if (ret < 0)
break;
start = indices[folio_batch_count(&fbatch) - 1];
} while (true);
return ret;
}
/*
* Read all the shared memory data that resides in the swap
* device 'type' back into memory, so the swap device can be
* unused.
*/
int shmem_unuse(unsigned int type)
{
struct shmem_inode_info *info, *next;
int error = 0;
if (list_empty(&shmem_swaplist))
return 0;
mutex_lock(&shmem_swaplist_mutex);
list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
if (!info->swapped) {
list_del_init(&info->swaplist);
continue;
}
/*
* Drop the swaplist mutex while searching the inode for swap;
* but before doing so, make sure shmem_evict_inode() will not
* remove placeholder inode from swaplist, nor let it be freed
* (igrab() would protect from unlink, but not from unmount).
*/
atomic_inc(&info->stop_eviction);
mutex_unlock(&shmem_swaplist_mutex);
error = shmem_unuse_inode(&info->vfs_inode, type);
cond_resched();
mutex_lock(&shmem_swaplist_mutex);
next = list_next_entry(info, swaplist);
if (!info->swapped)
list_del_init(&info->swaplist);
if (atomic_dec_and_test(&info->stop_eviction))
wake_up_var(&info->stop_eviction);
if (error)
break;
}
mutex_unlock(&shmem_swaplist_mutex);
return error;
}
/*
* Move the page from the page cache to the swap cache.
*/
static int shmem_writepage(struct page *page, struct writeback_control *wbc)
{
struct folio *folio = page_folio(page);
struct address_space *mapping = folio->mapping;
struct inode *inode = mapping->host;
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
swp_entry_t swap;
pgoff_t index;
int nr_pages;
bool split = false;
/*
* Our capabilities prevent regular writeback or sync from ever calling
* shmem_writepage; but a stacking filesystem might use ->writepage of
* its underlying filesystem, in which case tmpfs should write out to
* swap only in response to memory pressure, and not for the writeback
* threads or sync.
*/
if (WARN_ON_ONCE(!wbc->for_reclaim))
goto redirty;
if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
goto redirty;
if (!total_swap_pages)
goto redirty;
/*
* If CONFIG_THP_SWAP is not enabled, the large folio should be
* split when swapping.
*
* And shrinkage of pages beyond i_size does not split swap, so
* swapout of a large folio crossing i_size needs to split too
* (unless fallocate has been used to preallocate beyond EOF).
*/
if (folio_test_large(folio)) {
index = shmem_fallocend(inode,
DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
if ((index > folio->index && index < folio_next_index(folio)) ||
!IS_ENABLED(CONFIG_THP_SWAP))
split = true;
}
if (split) {
try_split:
/* Ensure the subpages are still dirty */
folio_test_set_dirty(folio);
if (split_huge_page_to_list_to_order(page, wbc->list, 0))
goto redirty;
folio = page_folio(page);
folio_clear_dirty(folio);
}
index = folio->index;
nr_pages = folio_nr_pages(folio);
/*
* This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
* value into swapfile.c, the only way we can correctly account for a
* fallocated folio arriving here is now to initialize it and write it.
*
* That's okay for a folio already fallocated earlier, but if we have
* not yet completed the fallocation, then (a) we want to keep track
* of this folio in case we have to undo it, and (b) it may not be a
* good idea to continue anyway, once we're pushing into swap. So
* reactivate the folio, and let shmem_fallocate() quit when too many.
*/
if (!folio_test_uptodate(folio)) {
if (inode->i_private) {
struct shmem_falloc *shmem_falloc;
spin_lock(&inode->i_lock);
shmem_falloc = inode->i_private;
if (shmem_falloc &&
!shmem_falloc->waitq &&
index >= shmem_falloc->start &&
index < shmem_falloc->next)
shmem_falloc->nr_unswapped += nr_pages;
else
shmem_falloc = NULL;
spin_unlock(&inode->i_lock);
if (shmem_falloc)
goto redirty;
}
folio_zero_range(folio, 0, folio_size(folio));
flush_dcache_folio(folio);
folio_mark_uptodate(folio);
}
swap = folio_alloc_swap(folio);
if (!swap.val) {
if (nr_pages > 1)
goto try_split;
goto redirty;
}
/*
* Add inode to shmem_unuse()'s list of swapped-out inodes,
* if it's not already there. Do it now before the folio is
* moved to swap cache, when its pagelock no longer protects
* the inode from eviction. But don't unlock the mutex until
* we've incremented swapped, because shmem_unuse_inode() will
* prune a !swapped inode from the swaplist under this mutex.
*/
mutex_lock(&shmem_swaplist_mutex);
if (list_empty(&info->swaplist))
list_add(&info->swaplist, &shmem_swaplist);
if (add_to_swap_cache(folio, swap,
__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
NULL) == 0) {
shmem_recalc_inode(inode, 0, nr_pages);
swap_shmem_alloc(swap, nr_pages);
shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
mutex_unlock(&shmem_swaplist_mutex);
BUG_ON(folio_mapped(folio));
return swap_writepage(&folio->page, wbc);
}
mutex_unlock(&shmem_swaplist_mutex);
put_swap_folio(folio, swap);
redirty:
folio_mark_dirty(folio);
if (wbc->for_reclaim)
return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
folio_unlock(folio);
return 0;
}
#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
{
char buffer[64];
if (!mpol || mpol->mode == MPOL_DEFAULT)
return; /* show nothing */
mpol_to_str(buffer, sizeof(buffer), mpol);
seq_printf(seq, ",mpol=%s", buffer);
}
static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
{
struct mempolicy *mpol = NULL;
if (sbinfo->mpol) {
raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
mpol = sbinfo->mpol;
mpol_get(mpol);
raw_spin_unlock(&sbinfo->stat_lock);
}
return mpol;
}
#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
{
}
static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
{
return NULL;
}
#endif /* CONFIG_NUMA && CONFIG_TMPFS */
static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
pgoff_t index, unsigned int order, pgoff_t *ilx);
static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
struct shmem_inode_info *info, pgoff_t index)
{
struct mempolicy *mpol;
pgoff_t ilx;
struct folio *folio;
mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
mpol_cond_put(mpol);
return folio;
}
/*
* Make sure huge_gfp is always more limited than limit_gfp.
* Some of the flags set permissions, while others set limitations.
*/
static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
{
gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
/* Allow allocations only from the originally specified zones. */
result |= zoneflags;
/*
* Minimize the result gfp by taking the union with the deny flags,
* and the intersection of the allow flags.
*/
result |= (limit_gfp & denyflags);
result |= (huge_gfp & limit_gfp) & allowflags;
return result;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
bool shmem_hpage_pmd_enabled(void)
{
if (shmem_huge == SHMEM_HUGE_DENY)
return false;
if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
return true;
if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
return true;
if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
return true;
if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
shmem_huge != SHMEM_HUGE_NEVER)
return true;
return false;
}
unsigned long shmem_allowable_huge_orders(struct inode *inode,
struct vm_area_struct *vma, pgoff_t index,
loff_t write_end, bool shmem_huge_force)
{
unsigned long mask = READ_ONCE(huge_shmem_orders_always);
unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
unsigned long vm_flags = vma ? vma->vm_flags : 0;
pgoff_t aligned_index;
unsigned int global_orders;
loff_t i_size;
int order;
if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
return 0;
global_orders = shmem_huge_global_enabled(inode, index, write_end,
shmem_huge_force, vma, vm_flags);
/* Tmpfs huge pages allocation */
if (!vma || !vma_is_anon_shmem(vma))
return global_orders;
/*
* Following the 'deny' semantics of the top level, force the huge
* option off from all mounts.
*/
if (shmem_huge == SHMEM_HUGE_DENY)
return 0;
/*
* Only allow inherit orders if the top-level value is 'force', which
* means non-PMD sized THP can not override 'huge' mount option now.
*/
if (shmem_huge == SHMEM_HUGE_FORCE)
return READ_ONCE(huge_shmem_orders_inherit);
/* Allow mTHP that will be fully within i_size. */
order = highest_order(within_size_orders);
while (within_size_orders) {
aligned_index = round_up(index + 1, 1 << order);
i_size = round_up(i_size_read(inode), PAGE_SIZE);
if (i_size >> PAGE_SHIFT >= aligned_index) {
mask |= within_size_orders;
break;
}
order = next_order(&within_size_orders, order);
}
if (vm_flags & VM_HUGEPAGE)
mask |= READ_ONCE(huge_shmem_orders_madvise);
if (global_orders > 0)
mask |= READ_ONCE(huge_shmem_orders_inherit);
return THP_ORDERS_ALL_FILE_DEFAULT & mask;
}
static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
struct address_space *mapping, pgoff_t index,
unsigned long orders)
{
struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
pgoff_t aligned_index;
unsigned long pages;
int order;
if (vma) {
orders = thp_vma_suitable_orders(vma, vmf->address, orders);
if (!orders)
return 0;
}
/* Find the highest order that can add into the page cache */
order = highest_order(orders);
while (orders) {
pages = 1UL << order;
aligned_index = round_down(index, pages);
/*
* Check for conflict before waiting on a huge allocation.
* Conflict might be that a huge page has just been allocated
* and added to page cache by a racing thread, or that there
* is already at least one small page in the huge extent.
* Be careful to retry when appropriate, but not forever!
* Elsewhere -EEXIST would be the right code, but not here.
*/
if (!xa_find(&mapping->i_pages, &aligned_index,
aligned_index + pages - 1, XA_PRESENT))
break;
order = next_order(&orders, order);
}
return orders;
}
#else
static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
struct address_space *mapping, pgoff_t index,
unsigned long orders)
{
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
struct shmem_inode_info *info, pgoff_t index)
{
struct mempolicy *mpol;
pgoff_t ilx;
struct folio *folio;
mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
mpol_cond_put(mpol);
return folio;
}
static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
gfp_t gfp, struct inode *inode, pgoff_t index,
struct mm_struct *fault_mm, unsigned long orders)
{
struct address_space *mapping = inode->i_mapping;
struct shmem_inode_info *info = SHMEM_I(inode);
unsigned long suitable_orders = 0;
struct folio *folio = NULL;
long pages;
int error, order;
if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
orders = 0;
if (orders > 0) {
suitable_orders = shmem_suitable_orders(inode, vmf,
mapping, index, orders);
order = highest_order(suitable_orders);
while (suitable_orders) {
pages = 1UL << order;
index = round_down(index, pages);
folio = shmem_alloc_folio(gfp, order, info, index);
if (folio)
goto allocated;
if (pages == HPAGE_PMD_NR)
count_vm_event(THP_FILE_FALLBACK);
count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
order = next_order(&suitable_orders, order);
}
} else {
pages = 1;
folio = shmem_alloc_folio(gfp, 0, info, index);
}
if (!folio)
return ERR_PTR(-ENOMEM);
allocated:
__folio_set_locked(folio);
__folio_set_swapbacked(folio);
gfp &= GFP_RECLAIM_MASK;
error = mem_cgroup_charge(folio, fault_mm, gfp);
if (error) {
if (xa_find(&mapping->i_pages, &index,
index + pages - 1, XA_PRESENT)) {
error = -EEXIST;
} else if (pages > 1) {
if (pages == HPAGE_PMD_NR) {
count_vm_event(THP_FILE_FALLBACK);
count_vm_event(THP_FILE_FALLBACK_CHARGE);
}
count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
}
goto unlock;
}
error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
if (error)
goto unlock;
error = shmem_inode_acct_blocks(inode, pages);
if (error) {
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
long freed;
/*
* Try to reclaim some space by splitting a few
* large folios beyond i_size on the filesystem.
*/
shmem_unused_huge_shrink(sbinfo, NULL, pages);
/*
* And do a shmem_recalc_inode() to account for freed pages:
* except our folio is there in cache, so not quite balanced.
*/
spin_lock(&info->lock);
freed = pages + info->alloced - info->swapped -
READ_ONCE(mapping->nrpages);
if (freed > 0)
info->alloced -= freed;
spin_unlock(&info->lock);
if (freed > 0)
shmem_inode_unacct_blocks(inode, freed);
error = shmem_inode_acct_blocks(inode, pages);
if (error) {
filemap_remove_folio(folio);
goto unlock;
}
}
shmem_recalc_inode(inode, pages, 0);
folio_add_lru(folio);
return folio;
unlock:
folio_unlock(folio);
folio_put(folio);
return ERR_PTR(error);
}
static struct folio *shmem_swap_alloc_folio(struct inode *inode,
struct vm_area_struct *vma, pgoff_t index,
swp_entry_t entry, int order, gfp_t gfp)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct folio *new;
void *shadow;
int nr_pages;
/*
* We have arrived here because our zones are constrained, so don't
* limit chance of success with further cpuset and node constraints.
*/
gfp &= ~GFP_CONSTRAINT_MASK;
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && order > 0) {
gfp_t huge_gfp = vma_thp_gfp_mask(vma);
gfp = limit_gfp_mask(huge_gfp, gfp);
}
new = shmem_alloc_folio(gfp, order, info, index);
if (!new)
return ERR_PTR(-ENOMEM);
nr_pages = folio_nr_pages(new);
if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
gfp, entry)) {
folio_put(new);
return ERR_PTR(-ENOMEM);
}
/*
* Prevent parallel swapin from proceeding with the swap cache flag.
*
* Of course there is another possible concurrent scenario as well,
* that is to say, the swap cache flag of a large folio has already
* been set by swapcache_prepare(), while another thread may have
* already split the large swap entry stored in the shmem mapping.
* In this case, shmem_add_to_page_cache() will help identify the
* concurrent swapin and return -EEXIST.
*/
if (swapcache_prepare(entry, nr_pages)) {
folio_put(new);
return ERR_PTR(-EEXIST);
}
__folio_set_locked(new);
__folio_set_swapbacked(new);
new->swap = entry;
mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
shadow = get_shadow_from_swap_cache(entry);
if (shadow)
workingset_refault(new, shadow);
folio_add_lru(new);
swap_read_folio(new, NULL);
return new;
}
/*
* When a page is moved from swapcache to shmem filecache (either by the
* usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
* shmem_unuse_inode()), it may have been read in earlier from swap, in
* ignorance of the mapping it belongs to. If that mapping has special
* constraints (like the gma500 GEM driver, which requires RAM below 4GB),
* we may need to copy to a suitable page before moving to filecache.
*
* In a future release, this may well be extended to respect cpuset and
* NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
* but for now it is a simple matter of zone.
*/
static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
{
return folio_zonenum(folio) > gfp_zone(gfp);
}
static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
struct shmem_inode_info *info, pgoff_t index,
struct vm_area_struct *vma)
{
struct folio *new, *old = *foliop;
swp_entry_t entry = old->swap;
struct address_space *swap_mapping = swap_address_space(entry);
pgoff_t swap_index = swap_cache_index(entry);
XA_STATE(xas, &swap_mapping->i_pages, swap_index);
int nr_pages = folio_nr_pages(old);
int error = 0, i;
/*
* We have arrived here because our zones are constrained, so don't
* limit chance of success by further cpuset and node constraints.
*/
gfp &= ~GFP_CONSTRAINT_MASK;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (nr_pages > 1) {
gfp_t huge_gfp = vma_thp_gfp_mask(vma);
gfp = limit_gfp_mask(huge_gfp, gfp);
}
#endif
new = shmem_alloc_folio(gfp, folio_order(old), info, index);
if (!new)
return -ENOMEM;
folio_ref_add(new, nr_pages);
folio_copy(new, old);
flush_dcache_folio(new);
__folio_set_locked(new);
__folio_set_swapbacked(new);
folio_mark_uptodate(new);
new->swap = entry;
folio_set_swapcache(new);
/* Swap cache still stores N entries instead of a high-order entry */
xa_lock_irq(&swap_mapping->i_pages);
for (i = 0; i < nr_pages; i++) {
void *item = xas_load(&xas);
if (item != old) {
error = -ENOENT;
break;
}
xas_store(&xas, new);
xas_next(&xas);
}
if (!error) {
mem_cgroup_replace_folio(old, new);
shmem_update_stats(new, nr_pages);
shmem_update_stats(old, -nr_pages);
}
xa_unlock_irq(&swap_mapping->i_pages);
if (unlikely(error)) {
/*
* Is this possible? I think not, now that our callers
* check both the swapcache flag and folio->private
* after getting the folio lock; but be defensive.
* Reverse old to newpage for clear and free.
*/
old = new;
} else {
folio_add_lru(new);
*foliop = new;
}
folio_clear_swapcache(old);
old->private = NULL;
folio_unlock(old);
/*
* The old folio are removed from swap cache, drop the 'nr_pages'
* reference, as well as one temporary reference getting from swap
* cache.
*/
folio_put_refs(old, nr_pages + 1);
return error;
}
static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
struct folio *folio, swp_entry_t swap,
bool skip_swapcache)
{
struct address_space *mapping = inode->i_mapping;
swp_entry_t swapin_error;
void *old;
int nr_pages;
swapin_error = make_poisoned_swp_entry();
old = xa_cmpxchg_irq(&mapping->i_pages, index,
swp_to_radix_entry(swap),
swp_to_radix_entry(swapin_error), 0);
if (old != swp_to_radix_entry(swap))
return;
nr_pages = folio_nr_pages(folio);
folio_wait_writeback(folio);
if (!skip_swapcache)
delete_from_swap_cache(folio);
/*
* Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
* won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
* in shmem_evict_inode().
*/
shmem_recalc_inode(inode, -nr_pages, -nr_pages);
swap_free_nr(swap, nr_pages);
}
static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
swp_entry_t swap, gfp_t gfp)
{
struct address_space *mapping = inode->i_mapping;
XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
void *alloced_shadow = NULL;
int alloced_order = 0, i;
/* Convert user data gfp flags to xarray node gfp flags */
gfp &= GFP_RECLAIM_MASK;
for (;;) {
int order = -1, split_order = 0;
void *old = NULL;
xas_lock_irq(&xas);
old = xas_load(&xas);
if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
xas_set_err(&xas, -EEXIST);
goto unlock;
}
order = xas_get_order(&xas);
/* Swap entry may have changed before we re-acquire the lock */
if (alloced_order &&
(old != alloced_shadow || order != alloced_order)) {
xas_destroy(&xas);
alloced_order = 0;
}
/* Try to split large swap entry in pagecache */
if (order > 0) {
if (!alloced_order) {
split_order = order;
goto unlock;
}
xas_split(&xas, old, order);
/*
* Re-set the swap entry after splitting, and the swap
* offset of the original large entry must be continuous.
*/
for (i = 0; i < 1 << order; i++) {
pgoff_t aligned_index = round_down(index, 1 << order);
swp_entry_t tmp;
tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
__xa_store(&mapping->i_pages, aligned_index + i,
swp_to_radix_entry(tmp), 0);
}
}
unlock:
xas_unlock_irq(&xas);
/* split needed, alloc here and retry. */
if (split_order) {
xas_split_alloc(&xas, old, split_order, gfp);
if (xas_error(&xas))
goto error;
alloced_shadow = old;
alloced_order = split_order;
xas_reset(&xas);
continue;
}
if (!xas_nomem(&xas, gfp))
break;
}
error:
if (xas_error(&xas))
return xas_error(&xas);
return alloced_order;
}
/*
* Swap in the folio pointed to by *foliop.
* Caller has to make sure that *foliop contains a valid swapped folio.
* Returns 0 and the folio in foliop if success. On failure, returns the
* error code and NULL in *foliop.
*/
static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
struct folio **foliop, enum sgp_type sgp,
gfp_t gfp, struct vm_area_struct *vma,
vm_fault_t *fault_type)
{
struct address_space *mapping = inode->i_mapping;
struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
struct shmem_inode_info *info = SHMEM_I(inode);
struct swap_info_struct *si;
struct folio *folio = NULL;
bool skip_swapcache = false;
swp_entry_t swap;
int error, nr_pages;
VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
swap = radix_to_swp_entry(*foliop);
*foliop = NULL;
if (is_poisoned_swp_entry(swap))
return -EIO;
si = get_swap_device(swap);
if (!si) {
if (!shmem_confirm_swap(mapping, index, swap))
return -EEXIST;
else
return -EINVAL;
}
/* Look it up and read it in.. */
folio = swap_cache_get_folio(swap, NULL, 0);
if (!folio) {
int order = xa_get_order(&mapping->i_pages, index);
bool fallback_order0 = false;
int split_order;
/* Or update major stats only when swapin succeeds?? */
if (fault_type) {
*fault_type |= VM_FAULT_MAJOR;
count_vm_event(PGMAJFAULT);
count_memcg_event_mm(fault_mm, PGMAJFAULT);
}
/*
* If uffd is active for the vma, we need per-page fault
* fidelity to maintain the uffd semantics, then fallback
* to swapin order-0 folio, as well as for zswap case.
*/
if (order > 0 && ((vma && unlikely(userfaultfd_armed(vma))) ||
!zswap_never_enabled()))
fallback_order0 = true;
/* Skip swapcache for synchronous device. */
if (!fallback_order0 && data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
folio = shmem_swap_alloc_folio(inode, vma, index, swap, order, gfp);
if (!IS_ERR(folio)) {
skip_swapcache = true;
goto alloced;
}
/*
* Fallback to swapin order-0 folio unless the swap entry
* already exists.
*/
error = PTR_ERR(folio);
folio = NULL;
if (error == -EEXIST)
goto failed;
}
/*
* Now swap device can only swap in order 0 folio, then we
* should split the large swap entry stored in the pagecache
* if necessary.
*/
split_order = shmem_split_large_entry(inode, index, swap, gfp);
if (split_order < 0) {
error = split_order;
goto failed;
}
/*
* If the large swap entry has already been split, it is
* necessary to recalculate the new swap entry based on
* the old order alignment.
*/
if (split_order > 0) {
pgoff_t offset = index - round_down(index, 1 << split_order);
swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
}
/* Here we actually start the io */
folio = shmem_swapin_cluster(swap, gfp, info, index);
if (!folio) {
error = -ENOMEM;
goto failed;
}
}
alloced:
/* We have to do this with folio locked to prevent races */
folio_lock(folio);
if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
folio->swap.val != swap.val ||
!shmem_confirm_swap(mapping, index, swap)) {
error = -EEXIST;
goto unlock;
}
if (!folio_test_uptodate(folio)) {
error = -EIO;
goto failed;
}
folio_wait_writeback(folio);
nr_pages = folio_nr_pages(folio);
/*
* Some architectures may have to restore extra metadata to the
* folio after reading from swap.
*/
arch_swap_restore(folio_swap(swap, folio), folio);
if (shmem_should_replace_folio(folio, gfp)) {
error = shmem_replace_folio(&folio, gfp, info, index, vma);
if (error)
goto failed;
}
error = shmem_add_to_page_cache(folio, mapping,
round_down(index, nr_pages),
swp_to_radix_entry(swap), gfp);
if (error)
goto failed;
shmem_recalc_inode(inode, 0, -nr_pages);
if (sgp == SGP_WRITE)
folio_mark_accessed(folio);
if (skip_swapcache) {
folio->swap.val = 0;
swapcache_clear(si, swap, nr_pages);
} else {
delete_from_swap_cache(folio);
}
folio_mark_dirty(folio);
swap_free_nr(swap, nr_pages);
put_swap_device(si);
*foliop = folio;
return 0;
failed:
if (!shmem_confirm_swap(mapping, index, swap))
error = -EEXIST;
if (error == -EIO)
shmem_set_folio_swapin_error(inode, index, folio, swap,
skip_swapcache);
unlock:
if (skip_swapcache)
swapcache_clear(si, swap, folio_nr_pages(folio));
if (folio) {
folio_unlock(folio);
folio_put(folio);
}
put_swap_device(si);
return error;
}
/*
* shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
*
* If we allocate a new one we do not mark it dirty. That's up to the
* vm. If we swap it in we mark it dirty since we also free the swap
* entry since a page cannot live in both the swap and page cache.
*
* vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
*/
static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
loff_t write_end, struct folio **foliop, enum sgp_type sgp,
gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
{
struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
struct mm_struct *fault_mm;
struct folio *folio;
int error;
bool alloced;
unsigned long orders = 0;
if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
return -EINVAL;
if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
return -EFBIG;
repeat:
if (sgp <= SGP_CACHE &&
((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
return -EINVAL;
alloced = false;
fault_mm = vma ? vma->vm_mm : NULL;
folio = filemap_get_entry(inode->i_mapping, index);
if (folio && vma && userfaultfd_minor(vma)) {
if (!xa_is_value(folio))
folio_put(folio);
*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
return 0;
}
if (xa_is_value(folio)) {
error = shmem_swapin_folio(inode, index, &folio,
sgp, gfp, vma, fault_type);
if (error == -EEXIST)
goto repeat;
*foliop = folio;
return error;
}
if (folio) {
folio_lock(folio);
/* Has the folio been truncated or swapped out? */
if (unlikely(folio->mapping != inode->i_mapping)) {
folio_unlock(folio);
folio_put(folio);
goto repeat;
}
if (sgp == SGP_WRITE)
folio_mark_accessed(folio);
if (folio_test_uptodate(folio))
goto out;
/* fallocated folio */
if (sgp != SGP_READ)
goto clear;
folio_unlock(folio);
folio_put(folio);
}
/*
* SGP_READ: succeed on hole, with NULL folio, letting caller zero.
* SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
*/
*foliop = NULL;
if (sgp == SGP_READ)
return 0;
if (sgp == SGP_NOALLOC)
return -ENOENT;
/*
* Fast cache lookup and swap lookup did not find it: allocate.
*/
if (vma && userfaultfd_missing(vma)) {
*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
return 0;
}
/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
if (orders > 0) {
gfp_t huge_gfp;
huge_gfp = vma_thp_gfp_mask(vma);
huge_gfp = limit_gfp_mask(huge_gfp, gfp);
folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
inode, index, fault_mm, orders);
if (!IS_ERR(folio)) {
if (folio_test_pmd_mappable(folio))
count_vm_event(THP_FILE_ALLOC);
count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
goto alloced;
}
if (PTR_ERR(folio) == -EEXIST)
goto repeat;
}
folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
if (IS_ERR(folio)) {
error = PTR_ERR(folio);
if (error == -EEXIST)
goto repeat;
folio = NULL;
goto unlock;
}
alloced:
alloced = true;
if (folio_test_large(folio) &&
DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
folio_next_index(folio)) {
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
struct shmem_inode_info *info = SHMEM_I(inode);
/*
* Part of the large folio is beyond i_size: subject
* to shrink under memory pressure.
*/
spin_lock(&sbinfo->shrinklist_lock);
/*
* _careful to defend against unlocked access to
* ->shrink_list in shmem_unused_huge_shrink()
*/
if (list_empty_careful(&info->shrinklist)) {
list_add_tail(&info->shrinklist,
&sbinfo->shrinklist);
sbinfo->shrinklist_len++;
}
spin_unlock(&sbinfo->shrinklist_lock);
}
if (sgp == SGP_WRITE)
folio_set_referenced(folio);
/*
* Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
*/
if (sgp == SGP_FALLOC)
sgp = SGP_WRITE;
clear:
/*
* Let SGP_WRITE caller clear ends if write does not fill folio;
* but SGP_FALLOC on a folio fallocated earlier must initialize
* it now, lest undo on failure cancel our earlier guarantee.
*/
if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
long i, n = folio_nr_pages(folio);
for (i = 0; i < n; i++)
clear_highpage(folio_page(folio, i));
flush_dcache_folio(folio);
folio_mark_uptodate(folio);
}
/* Perhaps the file has been truncated since we checked */
if (sgp <= SGP_CACHE &&
((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
error = -EINVAL;
goto unlock;
}
out:
*foliop = folio;
return 0;
/*
* Error recovery.
*/
unlock:
if (alloced)
filemap_remove_folio(folio);
shmem_recalc_inode(inode, 0, 0);
if (folio) {
folio_unlock(folio);
folio_put(folio);
}
return error;
}
/**
* shmem_get_folio - find, and lock a shmem folio.
* @inode: inode to search
* @index: the page index.
* @write_end: end of a write, could extend inode size
* @foliop: pointer to the folio if found
* @sgp: SGP_* flags to control behavior
*
* Looks up the page cache entry at @inode & @index. If a folio is
* present, it is returned locked with an increased refcount.
*
* If the caller modifies data in the folio, it must call folio_mark_dirty()
* before unlocking the folio to ensure that the folio is not reclaimed.
* There is no need to reserve space before calling folio_mark_dirty().
*
* When no folio is found, the behavior depends on @sgp:
* - for SGP_READ, *@foliop is %NULL and 0 is returned
* - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
* - for all other flags a new folio is allocated, inserted into the
* page cache and returned locked in @foliop.
*
* Context: May sleep.
* Return: 0 if successful, else a negative error code.
*/
int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
struct folio **foliop, enum sgp_type sgp)
{
return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
mapping_gfp_mask(inode->i_mapping), NULL, NULL);
}
EXPORT_SYMBOL_GPL(shmem_get_folio);
/*
* This is like autoremove_wake_function, but it removes the wait queue
* entry unconditionally - even if something else had already woken the
* target.
*/
static int synchronous_wake_function(wait_queue_entry_t *wait,
unsigned int mode, int sync, void *key)
{
int ret = default_wake_function(wait, mode, sync, key);
list_del_init(&wait->entry);
return ret;
}
/*
* Trinity finds that probing a hole which tmpfs is punching can
* prevent the hole-punch from ever completing: which in turn
* locks writers out with its hold on i_rwsem. So refrain from
* faulting pages into the hole while it's being punched. Although
* shmem_undo_range() does remove the additions, it may be unable to
* keep up, as each new page needs its own unmap_mapping_range() call,
* and the i_mmap tree grows ever slower to scan if new vmas are added.
*
* It does not matter if we sometimes reach this check just before the
* hole-punch begins, so that one fault then races with the punch:
* we just need to make racing faults a rare case.
*
* The implementation below would be much simpler if we just used a
* standard mutex or completion: but we cannot take i_rwsem in fault,
* and bloating every shmem inode for this unlikely case would be sad.
*/
static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
{
struct shmem_falloc *shmem_falloc;
struct file *fpin = NULL;
vm_fault_t ret = 0;
spin_lock(&inode->i_lock);
shmem_falloc = inode->i_private;
if (shmem_falloc &&
shmem_falloc->waitq &&
vmf->pgoff >= shmem_falloc->start &&
vmf->pgoff < shmem_falloc->next) {
wait_queue_head_t *shmem_falloc_waitq;
DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
ret = VM_FAULT_NOPAGE;
fpin = maybe_unlock_mmap_for_io(vmf, NULL);
shmem_falloc_waitq = shmem_falloc->waitq;
prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
TASK_UNINTERRUPTIBLE);
spin_unlock(&inode->i_lock);
schedule();
/*
* shmem_falloc_waitq points into the shmem_fallocate()
* stack of the hole-punching task: shmem_falloc_waitq
* is usually invalid by the time we reach here, but
* finish_wait() does not dereference it in that case;
* though i_lock needed lest racing with wake_up_all().
*/
spin_lock(&inode->i_lock);
finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
}
spin_unlock(&inode->i_lock);
if (fpin) {
fput(fpin);
ret = VM_FAULT_RETRY;
}
return ret;
}
static vm_fault_t shmem_fault(struct vm_fault *vmf)
{
struct inode *inode = file_inode(vmf->vma->vm_file);
gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
struct folio *folio = NULL;
vm_fault_t ret = 0;
int err;
/*
* Trinity finds that probing a hole which tmpfs is punching can
* prevent the hole-punch from ever completing: noted in i_private.
*/
if (unlikely(inode->i_private)) {
ret = shmem_falloc_wait(vmf, inode);
if (ret)
return ret;
}
WARN_ON_ONCE(vmf->page != NULL);
err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
gfp, vmf, &ret);
if (err)
return vmf_error(err);
if (folio) {
vmf->page = folio_file_page(folio, vmf->pgoff);
ret |= VM_FAULT_LOCKED;
}
return ret;
}
unsigned long shmem_get_unmapped_area(struct file *file,
unsigned long uaddr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
unsigned long addr;
unsigned long offset;
unsigned long inflated_len;
unsigned long inflated_addr;
unsigned long inflated_offset;
unsigned long hpage_size;
if (len > TASK_SIZE)
return -ENOMEM;
addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
flags);
if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
return addr;
if (IS_ERR_VALUE(addr))
return addr;
if (addr & ~PAGE_MASK)
return addr;
if (addr > TASK_SIZE - len)
return addr;
if (shmem_huge == SHMEM_HUGE_DENY)
return addr;
if (flags & MAP_FIXED)
return addr;
/*
* Our priority is to support MAP_SHARED mapped hugely;
* and support MAP_PRIVATE mapped hugely too, until it is COWed.
* But if caller specified an address hint and we allocated area there
* successfully, respect that as before.
*/
if (uaddr == addr)
return addr;
hpage_size = HPAGE_PMD_SIZE;
if (shmem_huge != SHMEM_HUGE_FORCE) {
struct super_block *sb;
unsigned long __maybe_unused hpage_orders;
int order = 0;
if (file) {
VM_BUG_ON(file->f_op != &shmem_file_operations);
sb = file_inode(file)->i_sb;
} else {
/*
* Called directly from mm/mmap.c, or drivers/char/mem.c
* for "/dev/zero", to create a shared anonymous object.
*/
if (IS_ERR(shm_mnt))
return addr;
sb = shm_mnt->mnt_sb;
/*
* Find the highest mTHP order used for anonymous shmem to
* provide a suitable alignment address.
*/
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
hpage_orders = READ_ONCE(huge_shmem_orders_always);
hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
if (hpage_orders > 0) {
order = highest_order(hpage_orders);
hpage_size = PAGE_SIZE << order;
}
#endif
}
if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
return addr;
}
if (len < hpage_size)
return addr;
offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
if (offset && offset + len < 2 * hpage_size)
return addr;
if ((addr & (hpage_size - 1)) == offset)
return addr;
inflated_len = len + hpage_size - PAGE_SIZE;
if (inflated_len > TASK_SIZE)
return addr;
if (inflated_len < len)
return addr;
inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
inflated_len, 0, flags);
if (IS_ERR_VALUE(inflated_addr))
return addr;
if (inflated_addr & ~PAGE_MASK)
return addr;
inflated_offset = inflated_addr & (hpage_size - 1);
inflated_addr += offset - inflated_offset;
if (inflated_offset > offset)
inflated_addr += hpage_size;
if (inflated_addr > TASK_SIZE - len)
return addr;
return inflated_addr;
}
#ifdef CONFIG_NUMA
static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
{
struct inode *inode = file_inode(vma->vm_file);
return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
}
static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
unsigned long addr, pgoff_t *ilx)
{
struct inode *inode = file_inode(vma->vm_file);
pgoff_t index;
/*
* Bias interleave by inode number to distribute better across nodes;
* but this interface is independent of which page order is used, so
* supplies only that bias, letting caller apply the offset (adjusted
* by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
*/
*ilx = inode->i_ino;
index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
}
static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
pgoff_t index, unsigned int order, pgoff_t *ilx)
{
struct mempolicy *mpol;
/* Bias interleave by inode number to distribute better across nodes */
*ilx = info->vfs_inode.i_ino + (index >> order);
mpol = mpol_shared_policy_lookup(&info->policy, index);
return mpol ? mpol : get_task_policy(current);
}
#else
static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
pgoff_t index, unsigned int order, pgoff_t *ilx)
{
*ilx = 0;
return NULL;
}
#endif /* CONFIG_NUMA */
int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
{
struct inode *inode = file_inode(file);
struct shmem_inode_info *info = SHMEM_I(inode);
int retval = -ENOMEM;
/*
* What serializes the accesses to info->flags?
* ipc_lock_object() when called from shmctl_do_lock(),
* no serialization needed when called from shm_destroy().
*/
if (lock && !(info->flags & VM_LOCKED)) {
if (!user_shm_lock(inode->i_size, ucounts))
goto out_nomem;
info->flags |= VM_LOCKED;
mapping_set_unevictable(file->f_mapping);
}
if (!lock && (info->flags & VM_LOCKED) && ucounts) {
user_shm_unlock(inode->i_size, ucounts);
info->flags &= ~VM_LOCKED;
mapping_clear_unevictable(file->f_mapping);
}
retval = 0;
out_nomem:
return retval;
}
static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
{
struct inode *inode = file_inode(file);
file_accessed(file);
/* This is anonymous shared memory if it is unlinked at the time of mmap */
if (inode->i_nlink)
vma->vm_ops = &shmem_vm_ops;
else
vma->vm_ops = &shmem_anon_vm_ops;
return 0;
}
static int shmem_file_open(struct inode *inode, struct file *file)
{
file->f_mode |= FMODE_CAN_ODIRECT;
return generic_file_open(inode, file);
}
#ifdef CONFIG_TMPFS_XATTR
static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
#if IS_ENABLED(CONFIG_UNICODE)
/*
* shmem_inode_casefold_flags - Deal with casefold file attribute flag
*
* The casefold file attribute needs some special checks. I can just be added to
* an empty dir, and can't be removed from a non-empty dir.
*/
static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
struct dentry *dentry, unsigned int *i_flags)
{
unsigned int old = inode->i_flags;
struct super_block *sb = inode->i_sb;
if (fsflags & FS_CASEFOLD_FL) {
if (!(old & S_CASEFOLD)) {
if (!sb->s_encoding)
return -EOPNOTSUPP;
if (!S_ISDIR(inode->i_mode))
return -ENOTDIR;
if (dentry && !simple_empty(dentry))
return -ENOTEMPTY;
}
*i_flags = *i_flags | S_CASEFOLD;
} else if (old & S_CASEFOLD) {
if (dentry && !simple_empty(dentry))
return -ENOTEMPTY;
}
return 0;
}
#else
static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
struct dentry *dentry, unsigned int *i_flags)
{
if (fsflags & FS_CASEFOLD_FL)
return -EOPNOTSUPP;
return 0;
}
#endif
/*
* chattr's fsflags are unrelated to extended attributes,
* but tmpfs has chosen to enable them under the same config option.
*/
static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
{
unsigned int i_flags = 0;
int ret;
ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
if (ret)
return ret;
if (fsflags & FS_NOATIME_FL)
i_flags |= S_NOATIME;
if (fsflags & FS_APPEND_FL)
i_flags |= S_APPEND;
if (fsflags & FS_IMMUTABLE_FL)
i_flags |= S_IMMUTABLE;
/*
* But FS_NODUMP_FL does not require any action in i_flags.
*/
inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
return 0;
}
#else
static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
{
}
#define shmem_initxattrs NULL
#endif
static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
{
return &SHMEM_I(inode)->dir_offsets;
}
static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
struct super_block *sb,
struct inode *dir, umode_t mode,
dev_t dev, unsigned long flags)
{
struct inode *inode;
struct shmem_inode_info *info;
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
ino_t ino;
int err;
err = shmem_reserve_inode(sb, &ino);
if (err)
return ERR_PTR(err);
inode = new_inode(sb);
if (!inode) {
shmem_free_inode(sb, 0);
return ERR_PTR(-ENOSPC);
}
inode->i_ino = ino;
inode_init_owner(idmap, inode, dir, mode);
inode->i_blocks = 0;
simple_inode_init_ts(inode);
inode->i_generation = get_random_u32();
info = SHMEM_I(inode);
memset(info, 0, (char *)inode - (char *)info);
spin_lock_init(&info->lock);
atomic_set(&info->stop_eviction, 0);
info->seals = F_SEAL_SEAL;
info->flags = flags & VM_NORESERVE;
info->i_crtime = inode_get_mtime(inode);
info->fsflags = (dir == NULL) ? 0 :
SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
if (info->fsflags)
shmem_set_inode_flags(inode, info->fsflags, NULL);
INIT_LIST_HEAD(&info->shrinklist);
INIT_LIST_HEAD(&info->swaplist);
simple_xattrs_init(&info->xattrs);
cache_no_acl(inode);
if (sbinfo->noswap)
mapping_set_unevictable(inode->i_mapping);
/* Don't consider 'deny' for emergencies and 'force' for testing */
if (sbinfo->huge)
mapping_set_large_folios(inode->i_mapping);
switch (mode & S_IFMT) {
default:
inode->i_op = &shmem_special_inode_operations;
init_special_inode(inode, mode, dev);
break;
case S_IFREG:
inode->i_mapping->a_ops = &shmem_aops;
inode->i_op = &shmem_inode_operations;
inode->i_fop = &shmem_file_operations;
mpol_shared_policy_init(&info->policy,
shmem_get_sbmpol(sbinfo));
break;
case S_IFDIR:
inc_nlink(inode);
/* Some things misbehave if size == 0 on a directory */
inode->i_size = 2 * BOGO_DIRENT_SIZE;
inode->i_op = &shmem_dir_inode_operations;
inode->i_fop = &simple_offset_dir_operations;
simple_offset_init(shmem_get_offset_ctx(inode));
break;
case S_IFLNK:
/*
* Must not load anything in the rbtree,
* mpol_free_shared_policy will not be called.
*/
mpol_shared_policy_init(&info->policy, NULL);
break;
}
lockdep_annotate_inode_mutex_key(inode);
return inode;
}
#ifdef CONFIG_TMPFS_QUOTA
static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
struct super_block *sb, struct inode *dir,
umode_t mode, dev_t dev, unsigned long flags)
{
int err;
struct inode *inode;
inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
if (IS_ERR(inode))
return inode;
err = dquot_initialize(inode);
if (err)
goto errout;
err = dquot_alloc_inode(inode);
if (err) {
dquot_drop(inode);
goto errout;
}
return inode;
errout:
inode->i_flags |= S_NOQUOTA;
iput(inode);
return ERR_PTR(err);
}
#else
static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
struct super_block *sb, struct inode *dir,
umode_t mode, dev_t dev, unsigned long flags)
{
return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
}
#endif /* CONFIG_TMPFS_QUOTA */
#ifdef CONFIG_USERFAULTFD
int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
struct vm_area_struct *dst_vma,
unsigned long dst_addr,
unsigned long src_addr,
uffd_flags_t flags,
struct folio **foliop)
{
struct inode *inode = file_inode(dst_vma->vm_file);
struct shmem_inode_info *info = SHMEM_I(inode);
struct address_space *mapping = inode->i_mapping;
gfp_t gfp = mapping_gfp_mask(mapping);
pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
void *page_kaddr;
struct folio *folio;
int ret;
pgoff_t max_off;
if (shmem_inode_acct_blocks(inode, 1)) {
/*
* We may have got a page, returned -ENOENT triggering a retry,
* and now we find ourselves with -ENOMEM. Release the page, to
* avoid a BUG_ON in our caller.
*/
if (unlikely(*foliop)) {
folio_put(*foliop);
*foliop = NULL;
}
return -ENOMEM;
}
if (!*foliop) {
ret = -ENOMEM;
folio = shmem_alloc_folio(gfp, 0, info, pgoff);
if (!folio)
goto out_unacct_blocks;
if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
page_kaddr = kmap_local_folio(folio, 0);
/*
* The read mmap_lock is held here. Despite the
* mmap_lock being read recursive a deadlock is still
* possible if a writer has taken a lock. For example:
*
* process A thread 1 takes read lock on own mmap_lock
* process A thread 2 calls mmap, blocks taking write lock
* process B thread 1 takes page fault, read lock on own mmap lock
* process B thread 2 calls mmap, blocks taking write lock
* process A thread 1 blocks taking read lock on process B
* process B thread 1 blocks taking read lock on process A
*
* Disable page faults to prevent potential deadlock
* and retry the copy outside the mmap_lock.
*/
pagefault_disable();
ret = copy_from_user(page_kaddr,
(const void __user *)src_addr,
PAGE_SIZE);
pagefault_enable();
kunmap_local(page_kaddr);
/* fallback to copy_from_user outside mmap_lock */
if (unlikely(ret)) {
*foliop = folio;
ret = -ENOENT;
/* don't free the page */
goto out_unacct_blocks;
}
flush_dcache_folio(folio);
} else { /* ZEROPAGE */
clear_user_highpage(&folio->page, dst_addr);
}
} else {
folio = *foliop;
VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
*foliop = NULL;
}
VM_BUG_ON(folio_test_locked(folio));
VM_BUG_ON(folio_test_swapbacked(folio));
__folio_set_locked(folio);
__folio_set_swapbacked(folio);
__folio_mark_uptodate(folio);
ret = -EFAULT;
max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
if (unlikely(pgoff >= max_off))
goto out_release;
ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
if (ret)
goto out_release;
ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
if (ret)
goto out_release;
ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
&folio->page, true, flags);
if (ret)
goto out_delete_from_cache;
shmem_recalc_inode(inode, 1, 0);
folio_unlock(folio);
return 0;
out_delete_from_cache:
filemap_remove_folio(folio);
out_release:
folio_unlock(folio);
folio_put(folio);
out_unacct_blocks:
shmem_inode_unacct_blocks(inode, 1);
return ret;
}
#endif /* CONFIG_USERFAULTFD */
#ifdef CONFIG_TMPFS
static const struct inode_operations shmem_symlink_inode_operations;
static const struct inode_operations shmem_short_symlink_operations;
static int
shmem_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len,
struct folio **foliop, void **fsdata)
{
struct inode *inode = mapping->host;
struct shmem_inode_info *info = SHMEM_I(inode);
pgoff_t index = pos >> PAGE_SHIFT;
struct folio *folio;
int ret = 0;
/* i_rwsem is held by caller */
if (unlikely(info->seals & (F_SEAL_GROW |
F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
return -EPERM;
if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
return -EPERM;
}
ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
if (ret)
return ret;
if (folio_test_hwpoison(folio) ||
(folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
folio_unlock(folio);
folio_put(folio);
return -EIO;
}
*foliop = folio;
return 0;
}
static int
shmem_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct folio *folio, void *fsdata)
{
struct inode *inode = mapping->host;
if (pos + copied > inode->i_size)
i_size_write(inode, pos + copied);
if (!folio_test_uptodate(folio)) {
if (copied < folio_size(folio)) {
size_t from = offset_in_folio(folio, pos);
folio_zero_segments(folio, 0, from,
from + copied, folio_size(folio));
}
folio_mark_uptodate(folio);
}
folio_mark_dirty(folio);
folio_unlock(folio);
folio_put(folio);
return copied;
}
static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct address_space *mapping = inode->i_mapping;
pgoff_t index;
unsigned long offset;
int error = 0;
ssize_t retval = 0;
for (;;) {
struct folio *folio = NULL;
struct page *page = NULL;
unsigned long nr, ret;
loff_t end_offset, i_size = i_size_read(inode);
bool fallback_page_copy = false;
size_t fsize;
if (unlikely(iocb->ki_pos >= i_size))
break;
index = iocb->ki_pos >> PAGE_SHIFT;
error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
if (error) {
if (error == -EINVAL)
error = 0;
break;
}
if (folio) {
folio_unlock(folio);
page = folio_file_page(folio, index);
if (PageHWPoison(page)) {
folio_put(folio);
error = -EIO;
break;
}
if (folio_test_large(folio) &&
folio_test_has_hwpoisoned(folio))
fallback_page_copy = true;
}
/*
* We must evaluate after, since reads (unlike writes)
* are called without i_rwsem protection against truncate
*/
i_size = i_size_read(inode);
if (unlikely(iocb->ki_pos >= i_size)) {
if (folio)
folio_put(folio);
break;
}
end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
if (folio && likely(!fallback_page_copy))
fsize = folio_size(folio);
else
fsize = PAGE_SIZE;
offset = iocb->ki_pos & (fsize - 1);
nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
if (folio) {
/*
* If users can be writing to this page using arbitrary
* virtual addresses, take care about potential aliasing
* before reading the page on the kernel side.
*/
if (mapping_writably_mapped(mapping)) {
if (likely(!fallback_page_copy))
flush_dcache_folio(folio);
else
flush_dcache_page(page);
}
/*
* Mark the folio accessed if we read the beginning.
*/
if (!offset)
folio_mark_accessed(folio);
/*
* Ok, we have the page, and it's up-to-date, so
* now we can copy it to user space...
*/
if (likely(!fallback_page_copy))
ret = copy_folio_to_iter(folio, offset, nr, to);
else
ret = copy_page_to_iter(page, offset, nr, to);
folio_put(folio);
} else if (user_backed_iter(to)) {
/*
* Copy to user tends to be so well optimized, but
* clear_user() not so much, that it is noticeably
* faster to copy the zero page instead of clearing.
*/
ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
} else {
/*
* But submitting the same page twice in a row to
* splice() - or others? - can result in confusion:
* so don't attempt that optimization on pipes etc.
*/
ret = iov_iter_zero(nr, to);
}
retval += ret;
iocb->ki_pos += ret;
if (!iov_iter_count(to))
break;
if (ret < nr) {
error = -EFAULT;
break;
}
cond_resched();
}
file_accessed(file);
return retval ? retval : error;
}
static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
ssize_t ret;
inode_lock(inode);
ret = generic_write_checks(iocb, from);
if (ret <= 0)
goto unlock;
ret = file_remove_privs(file);
if (ret)
goto unlock;
ret = file_update_time(file);
if (ret)
goto unlock;
ret = generic_perform_write(iocb, from);
unlock:
inode_unlock(inode);
return ret;
}
static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
return true;
}
static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
}
static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
return false;
}
static const struct pipe_buf_operations zero_pipe_buf_ops = {
.release = zero_pipe_buf_release,
.try_steal = zero_pipe_buf_try_steal,
.get = zero_pipe_buf_get,
};
static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
loff_t fpos, size_t size)
{
size_t offset = fpos & ~PAGE_MASK;
size = min_t(size_t, size, PAGE_SIZE - offset);
if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
struct pipe_buffer *buf = pipe_head_buf(pipe);
*buf = (struct pipe_buffer) {
.ops = &zero_pipe_buf_ops,
.page = ZERO_PAGE(0),
.offset = offset,
.len = size,
};
pipe->head++;
}
return size;
}
static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
struct pipe_inode_info *pipe,
size_t len, unsigned int flags)
{
struct inode *inode = file_inode(in);
struct address_space *mapping = inode->i_mapping;
struct folio *folio = NULL;
size_t total_spliced = 0, used, npages, n, part;
loff_t isize;
int error = 0;
/* Work out how much data we can actually add into the pipe */
used = pipe_occupancy(pipe->head, pipe->tail);
npages = max_t(ssize_t, pipe->max_usage - used, 0);
len = min_t(size_t, len, npages * PAGE_SIZE);
do {
bool fallback_page_splice = false;
struct page *page = NULL;
pgoff_t index;
size_t size;
if (*ppos >= i_size_read(inode))
break;
index = *ppos >> PAGE_SHIFT;
error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
if (error) {
if (error == -EINVAL)
error = 0;
break;
}
if (folio) {
folio_unlock(folio);
page = folio_file_page(folio, index);
if (PageHWPoison(page)) {
error = -EIO;
break;
}
if (folio_test_large(folio) &&
folio_test_has_hwpoisoned(folio))
fallback_page_splice = true;
}
/*
* i_size must be checked after we know the pages are Uptodate.
*
* Checking i_size after the check allows us to calculate
* the correct value for "nr", which means the zero-filled
* part of the page is not copied back to userspace (unless
* another truncate extends the file - this is desired though).
*/
isize = i_size_read(inode);
if (unlikely(*ppos >= isize))
break;
/*
* Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
* pages.
*/
size = len;
if (unlikely(fallback_page_splice)) {
size_t offset = *ppos & ~PAGE_MASK;
size = umin(size, PAGE_SIZE - offset);
}
part = min_t(loff_t, isize - *ppos, size);
if (folio) {
/*
* If users can be writing to this page using arbitrary
* virtual addresses, take care about potential aliasing
* before reading the page on the kernel side.
*/
if (mapping_writably_mapped(mapping)) {
if (likely(!fallback_page_splice))
flush_dcache_folio(folio);
else
flush_dcache_page(page);
}
folio_mark_accessed(folio);
/*
* Ok, we have the page, and it's up-to-date, so we can
* now splice it into the pipe.
*/
n = splice_folio_into_pipe(pipe, folio, *ppos, part);
folio_put(folio);
folio = NULL;
} else {
n = splice_zeropage_into_pipe(pipe, *ppos, part);
}
if (!n)
break;
len -= n;
total_spliced += n;
*ppos += n;
in->f_ra.prev_pos = *ppos;
if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
break;
cond_resched();
} while (len);
if (folio)
folio_put(folio);
file_accessed(in);
return total_spliced ? total_spliced : error;
}
static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
{
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
if (whence != SEEK_DATA && whence != SEEK_HOLE)
return generic_file_llseek_size(file, offset, whence,
MAX_LFS_FILESIZE, i_size_read(inode));
if (offset < 0)
return -ENXIO;
inode_lock(inode);
/* We're holding i_rwsem so we can access i_size directly */
offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
if (offset >= 0)
offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
inode_unlock(inode);
return offset;
}
static long shmem_fallocate(struct file *file, int mode, loff_t offset,
loff_t len)
{
struct inode *inode = file_inode(file);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_falloc shmem_falloc;
pgoff_t start, index, end, undo_fallocend;
int error;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return -EOPNOTSUPP;
inode_lock(inode);
if (mode & FALLOC_FL_PUNCH_HOLE) {
struct address_space *mapping = file->f_mapping;
loff_t unmap_start = round_up(offset, PAGE_SIZE);
loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
/* protected by i_rwsem */
if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
error = -EPERM;
goto out;
}
shmem_falloc.waitq = &shmem_falloc_waitq;
shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
spin_lock(&inode->i_lock);
inode->i_private = &shmem_falloc;
spin_unlock(&inode->i_lock);
if ((u64)unmap_end > (u64)unmap_start)
unmap_mapping_range(mapping, unmap_start,
1 + unmap_end - unmap_start, 0);
shmem_truncate_range(inode, offset, offset + len - 1);
/* No need to unmap again: hole-punching leaves COWed pages */
spin_lock(&inode->i_lock);
inode->i_private = NULL;
wake_up_all(&shmem_falloc_waitq);
WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
spin_unlock(&inode->i_lock);
error = 0;
goto out;
}
/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
error = inode_newsize_ok(inode, offset + len);
if (error)
goto out;
if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
error = -EPERM;
goto out;
}
start = offset >> PAGE_SHIFT;
end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
/* Try to avoid a swapstorm if len is impossible to satisfy */
if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
error = -ENOSPC;
goto out;
}
shmem_falloc.waitq = NULL;
shmem_falloc.start = start;
shmem_falloc.next = start;
shmem_falloc.nr_falloced = 0;
shmem_falloc.nr_unswapped = 0;
spin_lock(&inode->i_lock);
inode->i_private = &shmem_falloc;
spin_unlock(&inode->i_lock);
/*
* info->fallocend is only relevant when huge pages might be
* involved: to prevent split_huge_page() freeing fallocated
* pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
*/
undo_fallocend = info->fallocend;
if (info->fallocend < end)
info->fallocend = end;
for (index = start; index < end; ) {
struct folio *folio;
/*
* Check for fatal signal so that we abort early in OOM
* situations. We don't want to abort in case of non-fatal
* signals as large fallocate can take noticeable time and
* e.g. periodic timers may result in fallocate constantly
* restarting.
*/
if (fatal_signal_pending(current))
error = -EINTR;
else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
error = -ENOMEM;
else
error = shmem_get_folio(inode, index, offset + len,
&folio, SGP_FALLOC);
if (error) {
info->fallocend = undo_fallocend;
/* Remove the !uptodate folios we added */
if (index > start) {
shmem_undo_range(inode,
(loff_t)start << PAGE_SHIFT,
((loff_t)index << PAGE_SHIFT) - 1, true);
}
goto undone;
}
/*
* Here is a more important optimization than it appears:
* a second SGP_FALLOC on the same large folio will clear it,
* making it uptodate and un-undoable if we fail later.
*/
index = folio_next_index(folio);
/* Beware 32-bit wraparound */
if (!index)
index--;
/*
* Inform shmem_writepage() how far we have reached.
* No need for lock or barrier: we have the page lock.
*/
if (!folio_test_uptodate(folio))
shmem_falloc.nr_falloced += index - shmem_falloc.next;
shmem_falloc.next = index;
/*
* If !uptodate, leave it that way so that freeable folios
* can be recognized if we need to rollback on error later.
* But mark it dirty so that memory pressure will swap rather
* than free the folios we are allocating (and SGP_CACHE folios
* might still be clean: we now need to mark those dirty too).
*/
folio_mark_dirty(folio);
folio_unlock(folio);
folio_put(folio);
cond_resched();
}
if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
i_size_write(inode, offset + len);
undone:
spin_lock(&inode->i_lock);
inode->i_private = NULL;
spin_unlock(&inode->i_lock);
out:
if (!error)
file_modified(file);
inode_unlock(inode);
return error;
}
static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
buf->f_type = TMPFS_MAGIC;
buf->f_bsize = PAGE_SIZE;
buf->f_namelen = NAME_MAX;
if (sbinfo->max_blocks) {
buf->f_blocks = sbinfo->max_blocks;
buf->f_bavail =
buf->f_bfree = sbinfo->max_blocks -
percpu_counter_sum(&sbinfo->used_blocks);
}
if (sbinfo->max_inodes) {
buf->f_files = sbinfo->max_inodes;
buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
}
/* else leave those fields 0 like simple_statfs */
buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
return 0;
}
/*
* File creation. Allocate an inode, and we're done..
*/
static int
shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode, dev_t dev)
{
struct inode *inode;
int error;
if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
return -EINVAL;
inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
if (IS_ERR(inode))
return PTR_ERR(inode);
error = simple_acl_create(dir, inode);
if (error)
goto out_iput;
error = security_inode_init_security(inode, dir, &dentry->d_name,
shmem_initxattrs, NULL);
if (error && error != -EOPNOTSUPP)
goto out_iput;
error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
if (error)
goto out_iput;
dir->i_size += BOGO_DIRENT_SIZE;
inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
inode_inc_iversion(dir);
if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
d_add(dentry, inode);
else
d_instantiate(dentry, inode);
dget(dentry); /* Extra count - pin the dentry in core */
return error;
out_iput:
iput(inode);
return error;
}
static int
shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
struct file *file, umode_t mode)
{
struct inode *inode;
int error;
inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
if (IS_ERR(inode)) {
error = PTR_ERR(inode);
goto err_out;
}
error = security_inode_init_security(inode, dir, NULL,
shmem_initxattrs, NULL);
if (error && error != -EOPNOTSUPP)
goto out_iput;
error = simple_acl_create(dir, inode);
if (error)
goto out_iput;
d_tmpfile(file, inode);
err_out:
return finish_open_simple(file, error);
out_iput:
iput(inode);
return error;
}
static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode)
{
int error;
error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
if (error)
return error;
inc_nlink(dir);
return 0;
}
static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, umode_t mode, bool excl)
{
return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
}
/*
* Link a file..
*/
static int shmem_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *dentry)
{
struct inode *inode = d_inode(old_dentry);
int ret = 0;
/*
* No ordinary (disk based) filesystem counts links as inodes;
* but each new link needs a new dentry, pinning lowmem, and
* tmpfs dentries cannot be pruned until they are unlinked.
* But if an O_TMPFILE file is linked into the tmpfs, the
* first link must skip that, to get the accounting right.
*/
if (inode->i_nlink) {
ret = shmem_reserve_inode(inode->i_sb, NULL);
if (ret)
goto out;
}
ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
if (ret) {
if (inode->i_nlink)
shmem_free_inode(inode->i_sb, 0);
goto out;
}
dir->i_size += BOGO_DIRENT_SIZE;
inode_set_mtime_to_ts(dir,
inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
inode_inc_iversion(dir);
inc_nlink(inode);
ihold(inode); /* New dentry reference */
dget(dentry); /* Extra pinning count for the created dentry */
if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
d_add(dentry, inode);
else
d_instantiate(dentry, inode);
out:
return ret;
}
static int shmem_unlink(struct inode *dir, struct dentry *dentry)
{
struct inode *inode = d_inode(dentry);
if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
shmem_free_inode(inode->i_sb, 0);
simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
dir->i_size -= BOGO_DIRENT_SIZE;
inode_set_mtime_to_ts(dir,
inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
inode_inc_iversion(dir);
drop_nlink(inode);
dput(dentry); /* Undo the count from "create" - does all the work */
/*
* For now, VFS can't deal with case-insensitive negative dentries, so
* we invalidate them
*/
if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
d_invalidate(dentry);
return 0;
}
static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
{
if (!simple_empty(dentry))
return -ENOTEMPTY;
drop_nlink(d_inode(dentry));
drop_nlink(dir);
return shmem_unlink(dir, dentry);
}
static int shmem_whiteout(struct mnt_idmap *idmap,
struct inode *old_dir, struct dentry *old_dentry)
{
struct dentry *whiteout;
int error;
whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
if (!whiteout)
return -ENOMEM;
error = shmem_mknod(idmap, old_dir, whiteout,
S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
dput(whiteout);
if (error)
return error;
/*
* Cheat and hash the whiteout while the old dentry is still in
* place, instead of playing games with FS_RENAME_DOES_D_MOVE.
*
* d_lookup() will consistently find one of them at this point,
* not sure which one, but that isn't even important.
*/
d_rehash(whiteout);
return 0;
}
/*
* The VFS layer already does all the dentry stuff for rename,
* we just have to decrement the usage count for the target if
* it exists so that the VFS layer correctly free's it when it
* gets overwritten.
*/
static int shmem_rename2(struct mnt_idmap *idmap,
struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
struct inode *inode = d_inode(old_dentry);
int they_are_dirs = S_ISDIR(inode->i_mode);
int error;
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
return -EINVAL;
if (flags & RENAME_EXCHANGE)
return simple_offset_rename_exchange(old_dir, old_dentry,
new_dir, new_dentry);
if (!simple_empty(new_dentry))
return -ENOTEMPTY;
if (flags & RENAME_WHITEOUT) {
error = shmem_whiteout(idmap, old_dir, old_dentry);
if (error)
return error;
}
error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
if (error)
return error;
if (d_really_is_positive(new_dentry)) {
(void) shmem_unlink(new_dir, new_dentry);
if (they_are_dirs) {
drop_nlink(d_inode(new_dentry));
drop_nlink(old_dir);
}
} else if (they_are_dirs) {
drop_nlink(old_dir);
inc_nlink(new_dir);
}
old_dir->i_size -= BOGO_DIRENT_SIZE;
new_dir->i_size += BOGO_DIRENT_SIZE;
simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
inode_inc_iversion(old_dir);
inode_inc_iversion(new_dir);
return 0;
}
static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
struct dentry *dentry, const char *symname)
{
int error;
int len;
struct inode *inode;
struct folio *folio;
char *link;
len = strlen(symname) + 1;
if (len > PAGE_SIZE)
return -ENAMETOOLONG;
inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
VM_NORESERVE);
if (IS_ERR(inode))
return PTR_ERR(inode);
error = security_inode_init_security(inode, dir, &dentry->d_name,
shmem_initxattrs, NULL);
if (error && error != -EOPNOTSUPP)
goto out_iput;
error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
if (error)
goto out_iput;
inode->i_size = len-1;
if (len <= SHORT_SYMLINK_LEN) {
link = kmemdup(symname, len, GFP_KERNEL);
if (!link) {
error = -ENOMEM;
goto out_remove_offset;
}
inode->i_op = &shmem_short_symlink_operations;
inode_set_cached_link(inode, link, len - 1);
} else {
inode_nohighmem(inode);
inode->i_mapping->a_ops = &shmem_aops;
error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
if (error)
goto out_remove_offset;
inode->i_op = &shmem_symlink_inode_operations;
memcpy(folio_address(folio), symname, len);
folio_mark_uptodate(folio);
folio_mark_dirty(folio);
folio_unlock(folio);
folio_put(folio);
}
dir->i_size += BOGO_DIRENT_SIZE;
inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
inode_inc_iversion(dir);
if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
d_add(dentry, inode);
else
d_instantiate(dentry, inode);
dget(dentry);
return 0;
out_remove_offset:
simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
out_iput:
iput(inode);
return error;
}
static void shmem_put_link(void *arg)
{
folio_mark_accessed(arg);
folio_put(arg);
}
static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
struct delayed_call *done)
{
struct folio *folio = NULL;
int error;
if (!dentry) {
folio = filemap_get_folio(inode->i_mapping, 0);
if (IS_ERR(folio))
return ERR_PTR(-ECHILD);
if (PageHWPoison(folio_page(folio, 0)) ||
!folio_test_uptodate(folio)) {
folio_put(folio);
return ERR_PTR(-ECHILD);
}
} else {
error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
if (error)
return ERR_PTR(error);
if (!folio)
return ERR_PTR(-ECHILD);
if (PageHWPoison(folio_page(folio, 0))) {
folio_unlock(folio);
folio_put(folio);
return ERR_PTR(-ECHILD);
}
folio_unlock(folio);
}
set_delayed_call(done, shmem_put_link, folio);
return folio_address(folio);
}
#ifdef CONFIG_TMPFS_XATTR
static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
{
struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
return 0;
}
static int shmem_fileattr_set(struct mnt_idmap *idmap,
struct dentry *dentry, struct fileattr *fa)
{
struct inode *inode = d_inode(dentry);
struct shmem_inode_info *info = SHMEM_I(inode);
int ret, flags;
if (fileattr_has_fsx(fa))
return -EOPNOTSUPP;
if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
return -EOPNOTSUPP;
flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
(fa->flags & SHMEM_FL_USER_MODIFIABLE);
ret = shmem_set_inode_flags(inode, flags, dentry);
if (ret)
return ret;
info->fsflags = flags;
inode_set_ctime_current(inode);
inode_inc_iversion(inode);
return 0;
}
/*
* Superblocks without xattr inode operations may get some security.* xattr
* support from the LSM "for free". As soon as we have any other xattrs
* like ACLs, we also need to implement the security.* handlers at
* filesystem level, though.
*/
/*
* Callback for security_inode_init_security() for acquiring xattrs.
*/
static int shmem_initxattrs(struct inode *inode,
const struct xattr *xattr_array, void *fs_info)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
const struct xattr *xattr;
struct simple_xattr *new_xattr;
size_t ispace = 0;
size_t len;
if (sbinfo->max_inodes) {
for (xattr = xattr_array; xattr->name != NULL; xattr++) {
ispace += simple_xattr_space(xattr->name,
xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
}
if (ispace) {
raw_spin_lock(&sbinfo->stat_lock);
if (sbinfo->free_ispace < ispace)
ispace = 0;
else
sbinfo->free_ispace -= ispace;
raw_spin_unlock(&sbinfo->stat_lock);
if (!ispace)
return -ENOSPC;
}
}
for (xattr = xattr_array; xattr->name != NULL; xattr++) {
new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
if (!new_xattr)
break;
len = strlen(xattr->name) + 1;
new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
GFP_KERNEL_ACCOUNT);
if (!new_xattr->name) {
kvfree(new_xattr);
break;
}
memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
XATTR_SECURITY_PREFIX_LEN);
memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
xattr->name, len);
simple_xattr_add(&info->xattrs, new_xattr);
}
if (xattr->name != NULL) {
if (ispace) {
raw_spin_lock(&sbinfo->stat_lock);
sbinfo->free_ispace += ispace;
raw_spin_unlock(&sbinfo->stat_lock);
}
simple_xattrs_free(&info->xattrs, NULL);
return -ENOMEM;
}
return 0;
}
static int shmem_xattr_handler_get(const struct xattr_handler *handler,
struct dentry *unused, struct inode *inode,
const char *name, void *buffer, size_t size)
{
struct shmem_inode_info *info = SHMEM_I(inode);
name = xattr_full_name(handler, name);
return simple_xattr_get(&info->xattrs, name, buffer, size);
}
static int shmem_xattr_handler_set(const struct xattr_handler *handler,
struct mnt_idmap *idmap,
struct dentry *unused, struct inode *inode,
const char *name, const void *value,
size_t size, int flags)
{
struct shmem_inode_info *info = SHMEM_I(inode);
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
struct simple_xattr *old_xattr;
size_t ispace = 0;
name = xattr_full_name(handler, name);
if (value && sbinfo->max_inodes) {
ispace = simple_xattr_space(name, size);
raw_spin_lock(&sbinfo->stat_lock);
if (sbinfo->free_ispace < ispace)
ispace = 0;
else
sbinfo->free_ispace -= ispace;
raw_spin_unlock(&sbinfo->stat_lock);
if (!ispace)
return -ENOSPC;
}
old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
if (!IS_ERR(old_xattr)) {
ispace = 0;
if (old_xattr && sbinfo->max_inodes)
ispace = simple_xattr_space(old_xattr->name,
old_xattr->size);
simple_xattr_free(old_xattr);
old_xattr = NULL;
inode_set_ctime_current(inode);
inode_inc_iversion(inode);
}
if (ispace) {
raw_spin_lock(&sbinfo->stat_lock);
sbinfo->free_ispace += ispace;
raw_spin_unlock(&sbinfo->stat_lock);
}
return PTR_ERR(old_xattr);
}
static const struct xattr_handler shmem_security_xattr_handler = {
.prefix = XATTR_SECURITY_PREFIX,
.get = shmem_xattr_handler_get,
.set = shmem_xattr_handler_set,
};
static const struct xattr_handler shmem_trusted_xattr_handler = {
.prefix = XATTR_TRUSTED_PREFIX,
.get = shmem_xattr_handler_get,
.set = shmem_xattr_handler_set,
};
static const struct xattr_handler shmem_user_xattr_handler = {
.prefix = XATTR_USER_PREFIX,
.get = shmem_xattr_handler_get,
.set = shmem_xattr_handler_set,
};
static const struct xattr_handler * const shmem_xattr_handlers[] = {
&shmem_security_xattr_handler,
&shmem_trusted_xattr_handler,
&shmem_user_xattr_handler,
NULL
};
static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
{
struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
}
#endif /* CONFIG_TMPFS_XATTR */
static const struct inode_operations shmem_short_symlink_operations = {
.getattr = shmem_getattr,
.setattr = shmem_setattr,
.get_link = simple_get_link,
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
#endif
};
static const struct inode_operations shmem_symlink_inode_operations = {
.getattr = shmem_getattr,
.setattr = shmem_setattr,
.get_link = shmem_get_link,
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
#endif
};
static struct dentry *shmem_get_parent(struct dentry *child)
{
return ERR_PTR(-ESTALE);
}
static int shmem_match(struct inode *ino, void *vfh)
{
__u32 *fh = vfh;
__u64 inum = fh[2];
inum = (inum << 32) | fh[1];
return ino->i_ino == inum && fh[0] == ino->i_generation;
}
/* Find any alias of inode, but prefer a hashed alias */
static struct dentry *shmem_find_alias(struct inode *inode)
{
struct dentry *alias = d_find_alias(inode);
return alias ?: d_find_any_alias(inode);
}
static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
struct fid *fid, int fh_len, int fh_type)
{
struct inode *inode;
struct dentry *dentry = NULL;
u64 inum;
if (fh_len < 3)
return NULL;
inum = fid->raw[2];
inum = (inum << 32) | fid->raw[1];
inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
shmem_match, fid->raw);
if (inode) {
dentry = shmem_find_alias(inode);
iput(inode);
}
return dentry;
}
static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
struct inode *parent)
{
if (*len < 3) {
*len = 3;
return FILEID_INVALID;
}
if (inode_unhashed(inode)) {
/* Unfortunately insert_inode_hash is not idempotent,
* so as we hash inodes here rather than at creation
* time, we need a lock to ensure we only try
* to do it once
*/
static DEFINE_SPINLOCK(lock);
spin_lock(&lock);
if (inode_unhashed(inode))
__insert_inode_hash(inode,
inode->i_ino + inode->i_generation);
spin_unlock(&lock);
}
fh[0] = inode->i_generation;
fh[1] = inode->i_ino;
fh[2] = ((__u64)inode->i_ino) >> 32;
*len = 3;
return 1;
}
static const struct export_operations shmem_export_ops = {
.get_parent = shmem_get_parent,
.encode_fh = shmem_encode_fh,
.fh_to_dentry = shmem_fh_to_dentry,
};
enum shmem_param {
Opt_gid,
Opt_huge,
Opt_mode,
Opt_mpol,
Opt_nr_blocks,
Opt_nr_inodes,
Opt_size,
Opt_uid,
Opt_inode32,
Opt_inode64,
Opt_noswap,
Opt_quota,
Opt_usrquota,
Opt_grpquota,
Opt_usrquota_block_hardlimit,
Opt_usrquota_inode_hardlimit,
Opt_grpquota_block_hardlimit,
Opt_grpquota_inode_hardlimit,
Opt_casefold_version,
Opt_casefold,
Opt_strict_encoding,
};
static const struct constant_table shmem_param_enums_huge[] = {
{"never", SHMEM_HUGE_NEVER },
{"always", SHMEM_HUGE_ALWAYS },
{"within_size", SHMEM_HUGE_WITHIN_SIZE },
{"advise", SHMEM_HUGE_ADVISE },
{}
};
const struct fs_parameter_spec shmem_fs_parameters[] = {
fsparam_gid ("gid", Opt_gid),
fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
fsparam_u32oct("mode", Opt_mode),
fsparam_string("mpol", Opt_mpol),
fsparam_string("nr_blocks", Opt_nr_blocks),
fsparam_string("nr_inodes", Opt_nr_inodes),
fsparam_string("size", Opt_size),
fsparam_uid ("uid", Opt_uid),
fsparam_flag ("inode32", Opt_inode32),
fsparam_flag ("inode64", Opt_inode64),
fsparam_flag ("noswap", Opt_noswap),
#ifdef CONFIG_TMPFS_QUOTA
fsparam_flag ("quota", Opt_quota),
fsparam_flag ("usrquota", Opt_usrquota),
fsparam_flag ("grpquota", Opt_grpquota),
fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
#endif
fsparam_string("casefold", Opt_casefold_version),
fsparam_flag ("casefold", Opt_casefold),
fsparam_flag ("strict_encoding", Opt_strict_encoding),
{}
};
#if IS_ENABLED(CONFIG_UNICODE)
static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
bool latest_version)
{
struct shmem_options *ctx = fc->fs_private;
int version = UTF8_LATEST;
struct unicode_map *encoding;
char *version_str = param->string + 5;
if (!latest_version) {
if (strncmp(param->string, "utf8-", 5))
return invalfc(fc, "Only UTF-8 encodings are supported "
"in the format: utf8-<version number>");
version = utf8_parse_version(version_str);
if (version < 0)
return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
}
encoding = utf8_load(version);
if (IS_ERR(encoding)) {
return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
unicode_major(version), unicode_minor(version),
unicode_rev(version));
}
pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
unicode_major(version), unicode_minor(version), unicode_rev(version));
ctx->encoding = encoding;
return 0;
}
#else
static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
bool latest_version)
{
return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
}
#endif
static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
{
struct shmem_options *ctx = fc->fs_private;
struct fs_parse_result result;
unsigned long long size;
char *rest;
int opt;
kuid_t kuid;
kgid_t kgid;
opt = fs_parse(fc, shmem_fs_parameters, param, &result);
if (opt < 0)
return opt;
switch (opt) {
case Opt_size:
size = memparse(param->string, &rest);
if (*rest == '%') {
size <<= PAGE_SHIFT;
size *= totalram_pages();
do_div(size, 100);
rest++;
}
if (*rest)
goto bad_value;
ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
ctx->seen |= SHMEM_SEEN_BLOCKS;
break;
case Opt_nr_blocks:
ctx->blocks = memparse(param->string, &rest);
if (*rest || ctx->blocks > LONG_MAX)
goto bad_value;
ctx->seen |= SHMEM_SEEN_BLOCKS;
break;
case Opt_nr_inodes:
ctx->inodes = memparse(param->string, &rest);
if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
goto bad_value;
ctx->seen |= SHMEM_SEEN_INODES;
break;
case Opt_mode:
ctx->mode = result.uint_32 & 07777;
break;
case Opt_uid:
kuid = result.uid;
/*
* The requested uid must be representable in the
* filesystem's idmapping.
*/
if (!kuid_has_mapping(fc->user_ns, kuid))
goto bad_value;
ctx->uid = kuid;
break;
case Opt_gid:
kgid = result.gid;
/*
* The requested gid must be representable in the
* filesystem's idmapping.
*/
if (!kgid_has_mapping(fc->user_ns, kgid))
goto bad_value;
ctx->gid = kgid;
break;
case Opt_huge:
ctx->huge = result.uint_32;
if (ctx->huge != SHMEM_HUGE_NEVER &&
!(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
has_transparent_hugepage()))
goto unsupported_parameter;
ctx->seen |= SHMEM_SEEN_HUGE;
break;
case Opt_mpol:
if (IS_ENABLED(CONFIG_NUMA)) {
mpol_put(ctx->mpol);
ctx->mpol = NULL;
if (mpol_parse_str(param->string, &ctx->mpol))
goto bad_value;
break;
}
goto unsupported_parameter;
case Opt_inode32:
ctx->full_inums = false;
ctx->seen |= SHMEM_SEEN_INUMS;
break;
case Opt_inode64:
if (sizeof(ino_t) < 8) {
return invalfc(fc,
"Cannot use inode64 with <64bit inums in kernel\n");
}
ctx->full_inums = true;
ctx->seen |= SHMEM_SEEN_INUMS;
break;
case Opt_noswap:
if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
return invalfc(fc,
"Turning off swap in unprivileged tmpfs mounts unsupported");
}
ctx->noswap = true;
ctx->seen |= SHMEM_SEEN_NOSWAP;
break;
case Opt_quota:
if (fc->user_ns != &init_user_ns)
return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
ctx->seen |= SHMEM_SEEN_QUOTA;
ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
break;
case Opt_usrquota:
if (fc->user_ns != &init_user_ns)
return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
ctx->seen |= SHMEM_SEEN_QUOTA;
ctx->quota_types |= QTYPE_MASK_USR;
break;
case Opt_grpquota:
if (fc->user_ns != &init_user_ns)
return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
ctx->seen |= SHMEM_SEEN_QUOTA;
ctx->quota_types |= QTYPE_MASK_GRP;
break;
case Opt_usrquota_block_hardlimit:
size = memparse(param->string, &rest);
if (*rest || !size)
goto bad_value;
if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
return invalfc(fc,
"User quota block hardlimit too large.");
ctx->qlimits.usrquota_bhardlimit = size;
break;
case Opt_grpquota_block_hardlimit:
size = memparse(param->string, &rest);
if (*rest || !size)
goto bad_value;
if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
return invalfc(fc,
"Group quota block hardlimit too large.");
ctx->qlimits.grpquota_bhardlimit = size;
break;
case Opt_usrquota_inode_hardlimit:
size = memparse(param->string, &rest);
if (*rest || !size)
goto bad_value;
if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
return invalfc(fc,
"User quota inode hardlimit too large.");
ctx->qlimits.usrquota_ihardlimit = size;
break;
case Opt_grpquota_inode_hardlimit:
size = memparse(param->string, &rest);
if (*rest || !size)
goto bad_value;
if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
return invalfc(fc,
"Group quota inode hardlimit too large.");
ctx->qlimits.grpquota_ihardlimit = size;
break;
case Opt_casefold_version:
return shmem_parse_opt_casefold(fc, param, false);
case Opt_casefold:
return shmem_parse_opt_casefold(fc, param, true);
case Opt_strict_encoding:
#if IS_ENABLED(CONFIG_UNICODE)
ctx->strict_encoding = true;
break;
#else
return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
#endif
}
return 0;
unsupported_parameter:
return invalfc(fc, "Unsupported parameter '%s'", param->key);
bad_value:
return invalfc(fc, "Bad value for '%s'", param->key);
}
static char *shmem_next_opt(char **s)
{
char *sbegin = *s;
char *p;
if (sbegin == NULL)
return NULL;
/*
* NUL-terminate this option: unfortunately,
* mount options form a comma-separated list,
* but mpol's nodelist may also contain commas.
*/
for (;;) {
p = strchr(*s, ',');
if (p == NULL)
break;
*s = p + 1;
if (!isdigit(*(p+1))) {
*p = '\0';
return sbegin;
}
}
*s = NULL;
return sbegin;
}
static int shmem_parse_monolithic(struct fs_context *fc, void *data)
{
return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
}
/*
* Reconfigure a shmem filesystem.
*/
static int shmem_reconfigure(struct fs_context *fc)
{
struct shmem_options *ctx = fc->fs_private;
struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
unsigned long used_isp;
struct mempolicy *mpol = NULL;
const char *err;
raw_spin_lock(&sbinfo->stat_lock);
used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
if (!sbinfo->max_blocks) {
err = "Cannot retroactively limit size";
goto out;
}
if (percpu_counter_compare(&sbinfo->used_blocks,
ctx->blocks) > 0) {
err = "Too small a size for current use";
goto out;
}
}
if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
if (!sbinfo->max_inodes) {
err = "Cannot retroactively limit inodes";
goto out;
}
if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
err = "Too few inodes for current use";
goto out;
}
}
if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
sbinfo->next_ino > UINT_MAX) {
err = "Current inum too high to switch to 32-bit inums";
goto out;
}
if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
err = "Cannot disable swap on remount";
goto out;
}
if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
err = "Cannot enable swap on remount if it was disabled on first mount";
goto out;
}
if (ctx->seen & SHMEM_SEEN_QUOTA &&
!sb_any_quota_loaded(fc->root->d_sb)) {
err = "Cannot enable quota on remount";
goto out;
}
#ifdef CONFIG_TMPFS_QUOTA
#define CHANGED_LIMIT(name) \
(ctx->qlimits.name## hardlimit && \
(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
err = "Cannot change global quota limit on remount";
goto out;
}
#endif /* CONFIG_TMPFS_QUOTA */
if (ctx->seen & SHMEM_SEEN_HUGE)
sbinfo->huge = ctx->huge;
if (ctx->seen & SHMEM_SEEN_INUMS)
sbinfo->full_inums = ctx->full_inums;
if (ctx->seen & SHMEM_SEEN_BLOCKS)
sbinfo->max_blocks = ctx->blocks;
if (ctx->seen & SHMEM_SEEN_INODES) {
sbinfo->max_inodes = ctx->inodes;
sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
}
/*
* Preserve previous mempolicy unless mpol remount option was specified.
*/
if (ctx->mpol) {
mpol = sbinfo->mpol;
sbinfo->mpol = ctx->mpol; /* transfers initial ref */
ctx->mpol = NULL;
}
if (ctx->noswap)
sbinfo->noswap = true;
raw_spin_unlock(&sbinfo->stat_lock);
mpol_put(mpol);
return 0;
out:
raw_spin_unlock(&sbinfo->stat_lock);
return invalfc(fc, "%s", err);
}
static int shmem_show_options(struct seq_file *seq, struct dentry *root)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
struct mempolicy *mpol;
if (sbinfo->max_blocks != shmem_default_max_blocks())
seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
if (sbinfo->max_inodes != shmem_default_max_inodes())
seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
if (sbinfo->mode != (0777 | S_ISVTX))
seq_printf(seq, ",mode=%03ho", sbinfo->mode);
if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
seq_printf(seq, ",uid=%u",
from_kuid_munged(&init_user_ns, sbinfo->uid));
if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
seq_printf(seq, ",gid=%u",
from_kgid_munged(&init_user_ns, sbinfo->gid));
/*
* Showing inode{64,32} might be useful even if it's the system default,
* since then people don't have to resort to checking both here and
* /proc/config.gz to confirm 64-bit inums were successfully applied
* (which may not even exist if IKCONFIG_PROC isn't enabled).
*
* We hide it when inode64 isn't the default and we are using 32-bit
* inodes, since that probably just means the feature isn't even under
* consideration.
*
* As such:
*
* +-----------------+-----------------+
* | TMPFS_INODE64=y | TMPFS_INODE64=n |
* +------------------+-----------------+-----------------+
* | full_inums=true | show | show |
* | full_inums=false | show | hide |
* +------------------+-----------------+-----------------+
*
*/
if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
if (sbinfo->huge)
seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
#endif
mpol = shmem_get_sbmpol(sbinfo);
shmem_show_mpol(seq, mpol);
mpol_put(mpol);
if (sbinfo->noswap)
seq_printf(seq, ",noswap");
#ifdef CONFIG_TMPFS_QUOTA
if (sb_has_quota_active(root->d_sb, USRQUOTA))
seq_printf(seq, ",usrquota");
if (sb_has_quota_active(root->d_sb, GRPQUOTA))
seq_printf(seq, ",grpquota");
if (sbinfo->qlimits.usrquota_bhardlimit)
seq_printf(seq, ",usrquota_block_hardlimit=%lld",
sbinfo->qlimits.usrquota_bhardlimit);
if (sbinfo->qlimits.grpquota_bhardlimit)
seq_printf(seq, ",grpquota_block_hardlimit=%lld",
sbinfo->qlimits.grpquota_bhardlimit);
if (sbinfo->qlimits.usrquota_ihardlimit)
seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
sbinfo->qlimits.usrquota_ihardlimit);
if (sbinfo->qlimits.grpquota_ihardlimit)
seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
sbinfo->qlimits.grpquota_ihardlimit);
#endif
return 0;
}
#endif /* CONFIG_TMPFS */
static void shmem_put_super(struct super_block *sb)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
#if IS_ENABLED(CONFIG_UNICODE)
if (sb->s_encoding)
utf8_unload(sb->s_encoding);
#endif
#ifdef CONFIG_TMPFS_QUOTA
shmem_disable_quotas(sb);
#endif
free_percpu(sbinfo->ino_batch);
percpu_counter_destroy(&sbinfo->used_blocks);
mpol_put(sbinfo->mpol);
kfree(sbinfo);
sb->s_fs_info = NULL;
}
#if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
static const struct dentry_operations shmem_ci_dentry_ops = {
.d_hash = generic_ci_d_hash,
.d_compare = generic_ci_d_compare,
.d_delete = always_delete_dentry,
};
#endif
static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
{
struct shmem_options *ctx = fc->fs_private;
struct inode *inode;
struct shmem_sb_info *sbinfo;
int error = -ENOMEM;
/* Round up to L1_CACHE_BYTES to resist false sharing */
sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
L1_CACHE_BYTES), GFP_KERNEL);
if (!sbinfo)
return error;
sb->s_fs_info = sbinfo;
#ifdef CONFIG_TMPFS
/*
* Per default we only allow half of the physical ram per
* tmpfs instance, limiting inodes to one per page of lowmem;
* but the internal instance is left unlimited.
*/
if (!(sb->s_flags & SB_KERNMOUNT)) {
if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
ctx->blocks = shmem_default_max_blocks();
if (!(ctx->seen & SHMEM_SEEN_INODES))
ctx->inodes = shmem_default_max_inodes();
if (!(ctx->seen & SHMEM_SEEN_INUMS))
ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
sbinfo->noswap = ctx->noswap;
} else {
sb->s_flags |= SB_NOUSER;
}
sb->s_export_op = &shmem_export_ops;
sb->s_flags |= SB_NOSEC | SB_I_VERSION;
#if IS_ENABLED(CONFIG_UNICODE)
if (!ctx->encoding && ctx->strict_encoding) {
pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
error = -EINVAL;
goto failed;
}
if (ctx->encoding) {
sb->s_encoding = ctx->encoding;
sb->s_d_op = &shmem_ci_dentry_ops;
if (ctx->strict_encoding)
sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
}
#endif
#else
sb->s_flags |= SB_NOUSER;
#endif /* CONFIG_TMPFS */
sbinfo->max_blocks = ctx->blocks;
sbinfo->max_inodes = ctx->inodes;
sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
if (sb->s_flags & SB_KERNMOUNT) {
sbinfo->ino_batch = alloc_percpu(ino_t);
if (!sbinfo->ino_batch)
goto failed;
}
sbinfo->uid = ctx->uid;
sbinfo->gid = ctx->gid;
sbinfo->full_inums = ctx->full_inums;
sbinfo->mode = ctx->mode;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (ctx->seen & SHMEM_SEEN_HUGE)
sbinfo->huge = ctx->huge;
else
sbinfo->huge = tmpfs_huge;
#endif
sbinfo->mpol = ctx->mpol;
ctx->mpol = NULL;
raw_spin_lock_init(&sbinfo->stat_lock);
if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
goto failed;
spin_lock_init(&sbinfo->shrinklist_lock);
INIT_LIST_HEAD(&sbinfo->shrinklist);
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_blocksize = PAGE_SIZE;
sb->s_blocksize_bits = PAGE_SHIFT;
sb->s_magic = TMPFS_MAGIC;
sb->s_op = &shmem_ops;
sb->s_time_gran = 1;
#ifdef CONFIG_TMPFS_XATTR
sb->s_xattr = shmem_xattr_handlers;
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
sb->s_flags |= SB_POSIXACL;
#endif
uuid_t uuid;
uuid_gen(&uuid);
super_set_uuid(sb, uuid.b, sizeof(uuid));
#ifdef CONFIG_TMPFS_QUOTA
if (ctx->seen & SHMEM_SEEN_QUOTA) {
sb->dq_op = &shmem_quota_operations;
sb->s_qcop = &dquot_quotactl_sysfile_ops;
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
/* Copy the default limits from ctx into sbinfo */
memcpy(&sbinfo->qlimits, &ctx->qlimits,
sizeof(struct shmem_quota_limits));
if (shmem_enable_quotas(sb, ctx->quota_types))
goto failed;
}
#endif /* CONFIG_TMPFS_QUOTA */
inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
if (IS_ERR(inode)) {
error = PTR_ERR(inode);
goto failed;
}
inode->i_uid = sbinfo->uid;
inode->i_gid = sbinfo->gid;
sb->s_root = d_make_root(inode);
if (!sb->s_root)
goto failed;
return 0;
failed:
shmem_put_super(sb);
return error;
}
static int shmem_get_tree(struct fs_context *fc)
{
return get_tree_nodev(fc, shmem_fill_super);
}
static void shmem_free_fc(struct fs_context *fc)
{
struct shmem_options *ctx = fc->fs_private;
if (ctx) {
mpol_put(ctx->mpol);
kfree(ctx);
}
}
static const struct fs_context_operations shmem_fs_context_ops = {
.free = shmem_free_fc,
.get_tree = shmem_get_tree,
#ifdef CONFIG_TMPFS
.parse_monolithic = shmem_parse_monolithic,
.parse_param = shmem_parse_one,
.reconfigure = shmem_reconfigure,
#endif
};
static struct kmem_cache *shmem_inode_cachep __ro_after_init;
static struct inode *shmem_alloc_inode(struct super_block *sb)
{
struct shmem_inode_info *info;
info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
if (!info)
return NULL;
return &info->vfs_inode;
}
static void shmem_free_in_core_inode(struct inode *inode)
{
if (S_ISLNK(inode->i_mode))
kfree(inode->i_link);
kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
}
static void shmem_destroy_inode(struct inode *inode)
{
if (S_ISREG(inode->i_mode))
mpol_free_shared_policy(&SHMEM_I(inode)->policy);
if (S_ISDIR(inode->i_mode))
simple_offset_destroy(shmem_get_offset_ctx(inode));
}
static void shmem_init_inode(void *foo)
{
struct shmem_inode_info *info = foo;
inode_init_once(&info->vfs_inode);
}
static void __init shmem_init_inodecache(void)
{
shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
sizeof(struct shmem_inode_info),
0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
}
static void __init shmem_destroy_inodecache(void)
{
kmem_cache_destroy(shmem_inode_cachep);
}
/* Keep the page in page cache instead of truncating it */
static int shmem_error_remove_folio(struct address_space *mapping,
struct folio *folio)
{
return 0;
}
static const struct address_space_operations shmem_aops = {
.writepage = shmem_writepage,
.dirty_folio = noop_dirty_folio,
#ifdef CONFIG_TMPFS
.write_begin = shmem_write_begin,
.write_end = shmem_write_end,
#endif
#ifdef CONFIG_MIGRATION
.migrate_folio = migrate_folio,
#endif
.error_remove_folio = shmem_error_remove_folio,
};
static const struct file_operations shmem_file_operations = {
.mmap = shmem_mmap,
.open = shmem_file_open,
.get_unmapped_area = shmem_get_unmapped_area,
#ifdef CONFIG_TMPFS
.llseek = shmem_file_llseek,
.read_iter = shmem_file_read_iter,
.write_iter = shmem_file_write_iter,
.fsync = noop_fsync,
.splice_read = shmem_file_splice_read,
.splice_write = iter_file_splice_write,
.fallocate = shmem_fallocate,
#endif
};
static const struct inode_operations shmem_inode_operations = {
.getattr = shmem_getattr,
.setattr = shmem_setattr,
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
.set_acl = simple_set_acl,
.fileattr_get = shmem_fileattr_get,
.fileattr_set = shmem_fileattr_set,
#endif
};
static const struct inode_operations shmem_dir_inode_operations = {
#ifdef CONFIG_TMPFS
.getattr = shmem_getattr,
.create = shmem_create,
.lookup = simple_lookup,
.link = shmem_link,
.unlink = shmem_unlink,
.symlink = shmem_symlink,
.mkdir = shmem_mkdir,
.rmdir = shmem_rmdir,
.mknod = shmem_mknod,
.rename = shmem_rename2,
.tmpfile = shmem_tmpfile,
.get_offset_ctx = shmem_get_offset_ctx,
#endif
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
.fileattr_get = shmem_fileattr_get,
.fileattr_set = shmem_fileattr_set,
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
.setattr = shmem_setattr,
.set_acl = simple_set_acl,
#endif
};
static const struct inode_operations shmem_special_inode_operations = {
.getattr = shmem_getattr,
#ifdef CONFIG_TMPFS_XATTR
.listxattr = shmem_listxattr,
#endif
#ifdef CONFIG_TMPFS_POSIX_ACL
.setattr = shmem_setattr,
.set_acl = simple_set_acl,
#endif
};
static const struct super_operations shmem_ops = {
.alloc_inode = shmem_alloc_inode,
.free_inode = shmem_free_in_core_inode,
.destroy_inode = shmem_destroy_inode,
#ifdef CONFIG_TMPFS
.statfs = shmem_statfs,
.show_options = shmem_show_options,
#endif
#ifdef CONFIG_TMPFS_QUOTA
.get_dquots = shmem_get_dquots,
#endif
.evict_inode = shmem_evict_inode,
.drop_inode = generic_delete_inode,
.put_super = shmem_put_super,
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
.nr_cached_objects = shmem_unused_huge_count,
.free_cached_objects = shmem_unused_huge_scan,
#endif
};
static const struct vm_operations_struct shmem_vm_ops = {
.fault = shmem_fault,
.map_pages = filemap_map_pages,
#ifdef CONFIG_NUMA
.set_policy = shmem_set_policy,
.get_policy = shmem_get_policy,
#endif
};
static const struct vm_operations_struct shmem_anon_vm_ops = {
.fault = shmem_fault,
.map_pages = filemap_map_pages,
#ifdef CONFIG_NUMA
.set_policy = shmem_set_policy,
.get_policy = shmem_get_policy,
#endif
};
int shmem_init_fs_context(struct fs_context *fc)
{
struct shmem_options *ctx;
ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->mode = 0777 | S_ISVTX;
ctx->uid = current_fsuid();
ctx->gid = current_fsgid();
#if IS_ENABLED(CONFIG_UNICODE)
ctx->encoding = NULL;
#endif
fc->fs_private = ctx;
fc->ops = &shmem_fs_context_ops;
return 0;
}
static struct file_system_type shmem_fs_type = {
.owner = THIS_MODULE,
.name = "tmpfs",
.init_fs_context = shmem_init_fs_context,
#ifdef CONFIG_TMPFS
.parameters = shmem_fs_parameters,
#endif
.kill_sb = kill_litter_super,
.fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
};
#if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
#define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
{ \
.attr = { .name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
}
#define TMPFS_ATTR_W(_name, _store) \
static struct kobj_attribute tmpfs_attr_##_name = \
__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
#define TMPFS_ATTR_RW(_name, _show, _store) \
static struct kobj_attribute tmpfs_attr_##_name = \
__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
#define TMPFS_ATTR_RO(_name, _show) \
static struct kobj_attribute tmpfs_attr_##_name = \
__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
#if IS_ENABLED(CONFIG_UNICODE)
static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
char *buf)
{
return sysfs_emit(buf, "supported\n");
}
TMPFS_ATTR_RO(casefold, casefold_show);
#endif
static struct attribute *tmpfs_attributes[] = {
#if IS_ENABLED(CONFIG_UNICODE)
&tmpfs_attr_casefold.attr,
#endif
NULL
};
static const struct attribute_group tmpfs_attribute_group = {
.attrs = tmpfs_attributes,
.name = "features"
};
static struct kobject *tmpfs_kobj;
static int __init tmpfs_sysfs_init(void)
{
int ret;
tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
if (!tmpfs_kobj)
return -ENOMEM;
ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
if (ret)
kobject_put(tmpfs_kobj);
return ret;
}
#endif /* CONFIG_SYSFS && CONFIG_TMPFS */
void __init shmem_init(void)
{
int error;
shmem_init_inodecache();
#ifdef CONFIG_TMPFS_QUOTA
register_quota_format(&shmem_quota_format);
#endif
error = register_filesystem(&shmem_fs_type);
if (error) {
pr_err("Could not register tmpfs\n");
goto out2;
}
shm_mnt = kern_mount(&shmem_fs_type);
if (IS_ERR(shm_mnt)) {
error = PTR_ERR(shm_mnt);
pr_err("Could not kern_mount tmpfs\n");
goto out1;
}
#if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
error = tmpfs_sysfs_init();
if (error) {
pr_err("Could not init tmpfs sysfs\n");
goto out1;
}
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
else
shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
/*
* Default to setting PMD-sized THP to inherit the global setting and
* disable all other multi-size THPs.
*/
if (!shmem_orders_configured)
huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
#endif
return;
out1:
unregister_filesystem(&shmem_fs_type);
out2:
#ifdef CONFIG_TMPFS_QUOTA
unregister_quota_format(&shmem_quota_format);
#endif
shmem_destroy_inodecache();
shm_mnt = ERR_PTR(error);
}
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
static ssize_t shmem_enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
static const int values[] = {
SHMEM_HUGE_ALWAYS,
SHMEM_HUGE_WITHIN_SIZE,
SHMEM_HUGE_ADVISE,
SHMEM_HUGE_NEVER,
SHMEM_HUGE_DENY,
SHMEM_HUGE_FORCE,
};
int len = 0;
int i;
for (i = 0; i < ARRAY_SIZE(values); i++) {
len += sysfs_emit_at(buf, len,
shmem_huge == values[i] ? "%s[%s]" : "%s%s",
i ? " " : "", shmem_format_huge(values[i]));
}
len += sysfs_emit_at(buf, len, "\n");
return len;
}
static ssize_t shmem_enabled_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
char tmp[16];
int huge, err;
if (count + 1 > sizeof(tmp))
return -EINVAL;
memcpy(tmp, buf, count);
tmp[count] = '\0';
if (count && tmp[count - 1] == '\n')
tmp[count - 1] = '\0';
huge = shmem_parse_huge(tmp);
if (huge == -EINVAL)
return huge;
shmem_huge = huge;
if (shmem_huge > SHMEM_HUGE_DENY)
SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
err = start_stop_khugepaged();
return err ? err : count;
}
struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
static DEFINE_SPINLOCK(huge_shmem_orders_lock);
static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
int order = to_thpsize(kobj)->order;
const char *output;
if (test_bit(order, &huge_shmem_orders_always))
output = "[always] inherit within_size advise never";
else if (test_bit(order, &huge_shmem_orders_inherit))
output = "always [inherit] within_size advise never";
else if (test_bit(order, &huge_shmem_orders_within_size))
output = "always inherit [within_size] advise never";
else if (test_bit(order, &huge_shmem_orders_madvise))
output = "always inherit within_size [advise] never";
else
output = "always inherit within_size advise [never]";
return sysfs_emit(buf, "%s\n", output);
}
static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
int order = to_thpsize(kobj)->order;
ssize_t ret = count;
if (sysfs_streq(buf, "always")) {
spin_lock(&huge_shmem_orders_lock);
clear_bit(order, &huge_shmem_orders_inherit);
clear_bit(order, &huge_shmem_orders_madvise);
clear_bit(order, &huge_shmem_orders_within_size);
set_bit(order, &huge_shmem_orders_always);
spin_unlock(&huge_shmem_orders_lock);
} else if (sysfs_streq(buf, "inherit")) {
/* Do not override huge allocation policy with non-PMD sized mTHP */
if (shmem_huge == SHMEM_HUGE_FORCE &&
order != HPAGE_PMD_ORDER)
return -EINVAL;
spin_lock(&huge_shmem_orders_lock);
clear_bit(order, &huge_shmem_orders_always);
clear_bit(order, &huge_shmem_orders_madvise);
clear_bit(order, &huge_shmem_orders_within_size);
set_bit(order, &huge_shmem_orders_inherit);
spin_unlock(&huge_shmem_orders_lock);
} else if (sysfs_streq(buf, "within_size")) {
spin_lock(&huge_shmem_orders_lock);
clear_bit(order, &huge_shmem_orders_always);
clear_bit(order, &huge_shmem_orders_inherit);
clear_bit(order, &huge_shmem_orders_madvise);
set_bit(order, &huge_shmem_orders_within_size);
spin_unlock(&huge_shmem_orders_lock);
} else if (sysfs_streq(buf, "advise")) {
spin_lock(&huge_shmem_orders_lock);
clear_bit(order, &huge_shmem_orders_always);
clear_bit(order, &huge_shmem_orders_inherit);
clear_bit(order, &huge_shmem_orders_within_size);
set_bit(order, &huge_shmem_orders_madvise);
spin_unlock(&huge_shmem_orders_lock);
} else if (sysfs_streq(buf, "never")) {
spin_lock(&huge_shmem_orders_lock);
clear_bit(order, &huge_shmem_orders_always);
clear_bit(order, &huge_shmem_orders_inherit);
clear_bit(order, &huge_shmem_orders_within_size);
clear_bit(order, &huge_shmem_orders_madvise);
spin_unlock(&huge_shmem_orders_lock);
} else {
ret = -EINVAL;
}
if (ret > 0) {
int err = start_stop_khugepaged();
if (err)
ret = err;
}
return ret;
}
struct kobj_attribute thpsize_shmem_enabled_attr =
__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
static int __init setup_transparent_hugepage_shmem(char *str)
{
int huge;
huge = shmem_parse_huge(str);
if (huge == -EINVAL) {
pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
return huge;
}
shmem_huge = huge;
return 1;
}
__setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
static int __init setup_transparent_hugepage_tmpfs(char *str)
{
int huge;
huge = shmem_parse_huge(str);
if (huge < 0) {
pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
return huge;
}
tmpfs_huge = huge;
return 1;
}
__setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
static char str_dup[PAGE_SIZE] __initdata;
static int __init setup_thp_shmem(char *str)
{
char *token, *range, *policy, *subtoken;
unsigned long always, inherit, madvise, within_size;
char *start_size, *end_size;
int start, end, nr;
char *p;
if (!str || strlen(str) + 1 > PAGE_SIZE)
goto err;
strscpy(str_dup, str);
always = huge_shmem_orders_always;
inherit = huge_shmem_orders_inherit;
madvise = huge_shmem_orders_madvise;
within_size = huge_shmem_orders_within_size;
p = str_dup;
while ((token = strsep(&p, ";")) != NULL) {
range = strsep(&token, ":");
policy = token;
if (!policy)
goto err;
while ((subtoken = strsep(&range, ",")) != NULL) {
if (strchr(subtoken, '-')) {
start_size = strsep(&subtoken, "-");
end_size = subtoken;
start = get_order_from_str(start_size,
THP_ORDERS_ALL_FILE_DEFAULT);
end = get_order_from_str(end_size,
THP_ORDERS_ALL_FILE_DEFAULT);
} else {
start_size = end_size = subtoken;
start = end = get_order_from_str(subtoken,
THP_ORDERS_ALL_FILE_DEFAULT);
}
if (start == -EINVAL) {
pr_err("invalid size %s in thp_shmem boot parameter\n",
start_size);
goto err;
}
if (end == -EINVAL) {
pr_err("invalid size %s in thp_shmem boot parameter\n",
end_size);
goto err;
}
if (start < 0 || end < 0 || start > end)
goto err;
nr = end - start + 1;
if (!strcmp(policy, "always")) {
bitmap_set(&always, start, nr);
bitmap_clear(&inherit, start, nr);
bitmap_clear(&madvise, start, nr);
bitmap_clear(&within_size, start, nr);
} else if (!strcmp(policy, "advise")) {
bitmap_set(&madvise, start, nr);
bitmap_clear(&inherit, start, nr);
bitmap_clear(&always, start, nr);
bitmap_clear(&within_size, start, nr);
} else if (!strcmp(policy, "inherit")) {
bitmap_set(&inherit, start, nr);
bitmap_clear(&madvise, start, nr);
bitmap_clear(&always, start, nr);
bitmap_clear(&within_size, start, nr);
} else if (!strcmp(policy, "within_size")) {
bitmap_set(&within_size, start, nr);
bitmap_clear(&inherit, start, nr);
bitmap_clear(&madvise, start, nr);
bitmap_clear(&always, start, nr);
} else if (!strcmp(policy, "never")) {
bitmap_clear(&inherit, start, nr);
bitmap_clear(&madvise, start, nr);
bitmap_clear(&always, start, nr);
bitmap_clear(&within_size, start, nr);
} else {
pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
goto err;
}
}
}
huge_shmem_orders_always = always;
huge_shmem_orders_madvise = madvise;
huge_shmem_orders_inherit = inherit;
huge_shmem_orders_within_size = within_size;
shmem_orders_configured = true;
return 1;
err:
pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
return 0;
}
__setup("thp_shmem=", setup_thp_shmem);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#else /* !CONFIG_SHMEM */
/*
* tiny-shmem: simple shmemfs and tmpfs using ramfs code
*
* This is intended for small system where the benefits of the full
* shmem code (swap-backed and resource-limited) are outweighed by
* their complexity. On systems without swap this code should be
* effectively equivalent, but much lighter weight.
*/
static struct file_system_type shmem_fs_type = {
.name = "tmpfs",
.init_fs_context = ramfs_init_fs_context,
.parameters = ramfs_fs_parameters,
.kill_sb = ramfs_kill_sb,
.fs_flags = FS_USERNS_MOUNT,
};
void __init shmem_init(void)
{
BUG_ON(register_filesystem(&shmem_fs_type) != 0);
shm_mnt = kern_mount(&shmem_fs_type);
BUG_ON(IS_ERR(shm_mnt));
}
int shmem_unuse(unsigned int type)
{
return 0;
}
int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
{
return 0;
}
void shmem_unlock_mapping(struct address_space *mapping)
{
}
#ifdef CONFIG_MMU
unsigned long shmem_get_unmapped_area(struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
}
#endif
void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
{
truncate_inode_pages_range(inode->i_mapping, lstart, lend);
}
EXPORT_SYMBOL_GPL(shmem_truncate_range);
#define shmem_vm_ops generic_file_vm_ops
#define shmem_anon_vm_ops generic_file_vm_ops
#define shmem_file_operations ramfs_file_operations
#define shmem_acct_size(flags, size) 0
#define shmem_unacct_size(flags, size) do {} while (0)
static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
struct super_block *sb, struct inode *dir,
umode_t mode, dev_t dev, unsigned long flags)
{
struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
return inode ? inode : ERR_PTR(-ENOSPC);
}
#endif /* CONFIG_SHMEM */
/* common code */
static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
loff_t size, unsigned long flags, unsigned int i_flags)
{
struct inode *inode;
struct file *res;
if (IS_ERR(mnt))
return ERR_CAST(mnt);
if (size < 0 || size > MAX_LFS_FILESIZE)
return ERR_PTR(-EINVAL);
if (shmem_acct_size(flags, size))
return ERR_PTR(-ENOMEM);
if (is_idmapped_mnt(mnt))
return ERR_PTR(-EINVAL);
inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
S_IFREG | S_IRWXUGO, 0, flags);
if (IS_ERR(inode)) {
shmem_unacct_size(flags, size);
return ERR_CAST(inode);
}
inode->i_flags |= i_flags;
inode->i_size = size;
clear_nlink(inode); /* It is unlinked */
res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
if (!IS_ERR(res))
res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
&shmem_file_operations);
if (IS_ERR(res))
iput(inode);
return res;
}
/**
* shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
* kernel internal. There will be NO LSM permission checks against the
* underlying inode. So users of this interface must do LSM checks at a
* higher layer. The users are the big_key and shm implementations. LSM
* checks are provided at the key or shm level rather than the inode.
* @name: name for dentry (to be seen in /proc/<pid>/maps
* @size: size to be set for the file
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
*/
struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
{
return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
}
EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
/**
* shmem_file_setup - get an unlinked file living in tmpfs
* @name: name for dentry (to be seen in /proc/<pid>/maps
* @size: size to be set for the file
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
*/
struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
{
return __shmem_file_setup(shm_mnt, name, size, flags, 0);
}
EXPORT_SYMBOL_GPL(shmem_file_setup);
/**
* shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
* @mnt: the tmpfs mount where the file will be created
* @name: name for dentry (to be seen in /proc/<pid>/maps
* @size: size to be set for the file
* @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
*/
struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
loff_t size, unsigned long flags)
{
return __shmem_file_setup(mnt, name, size, flags, 0);
}
EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
/**
* shmem_zero_setup - setup a shared anonymous mapping
* @vma: the vma to be mmapped is prepared by do_mmap
*/
int shmem_zero_setup(struct vm_area_struct *vma)
{
struct file *file;
loff_t size = vma->vm_end - vma->vm_start;
/*
* Cloning a new file under mmap_lock leads to a lock ordering conflict
* between XFS directory reading and selinux: since this file is only
* accessible to the user through its mapping, use S_PRIVATE flag to
* bypass file security, in the same way as shmem_kernel_file_setup().
*/
file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
if (IS_ERR(file))
return PTR_ERR(file);
if (vma->vm_file)
fput(vma->vm_file);
vma->vm_file = file;
vma->vm_ops = &shmem_anon_vm_ops;
return 0;
}
/**
* shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
* @mapping: the folio's address_space
* @index: the folio index
* @gfp: the page allocator flags to use if allocating
*
* This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
* with any new page allocations done using the specified allocation flags.
* But read_cache_page_gfp() uses the ->read_folio() method: which does not
* suit tmpfs, since it may have pages in swapcache, and needs to find those
* for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
*
* i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
* with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
*/
struct folio *shmem_read_folio_gfp(struct address_space *mapping,
pgoff_t index, gfp_t gfp)
{
#ifdef CONFIG_SHMEM
struct inode *inode = mapping->host;
struct folio *folio;
int error;
error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
gfp, NULL, NULL);
if (error)
return ERR_PTR(error);
folio_unlock(folio);
return folio;
#else
/*
* The tiny !SHMEM case uses ramfs without swap
*/
return mapping_read_folio_gfp(mapping, index, gfp);
#endif
}
EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
pgoff_t index, gfp_t gfp)
{
struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
struct page *page;
if (IS_ERR(folio))
return &folio->page;
page = folio_file_page(folio, index);
if (PageHWPoison(page)) {
folio_put(folio);
return ERR_PTR(-EIO);
}
return page;
}
EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);