linux-next/fs/xfs/xfs_fsmap.c
Christoph Hellwig f220f6da5f xfs: make RT extent numbers relative to the rtgroup
To prepare for adding per-rtgroup bitmap files, make the xfs_rtxnum_t
type encode the RT extent number relative to the rtgroup.  The biggest
part of this to clearly distinguish between the relative extent number
that gets masked when converting from a global block number and length
values that just have a factor applied to them when converting from
file system blocks.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-05 13:38:38 -08:00

1187 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <darrick.wong@oracle.com>
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_btree.h"
#include "xfs_rmap_btree.h"
#include "xfs_trace.h"
#include "xfs_rmap.h"
#include "xfs_alloc.h"
#include "xfs_bit.h"
#include <linux/fsmap.h>
#include "xfs_fsmap.h"
#include "xfs_refcount.h"
#include "xfs_refcount_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_rtbitmap.h"
#include "xfs_ag.h"
#include "xfs_rtgroup.h"
/* Convert an xfs_fsmap to an fsmap. */
static void
xfs_fsmap_from_internal(
struct fsmap *dest,
struct xfs_fsmap *src)
{
dest->fmr_device = src->fmr_device;
dest->fmr_flags = src->fmr_flags;
dest->fmr_physical = BBTOB(src->fmr_physical);
dest->fmr_owner = src->fmr_owner;
dest->fmr_offset = BBTOB(src->fmr_offset);
dest->fmr_length = BBTOB(src->fmr_length);
dest->fmr_reserved[0] = 0;
dest->fmr_reserved[1] = 0;
dest->fmr_reserved[2] = 0;
}
/* Convert an fsmap to an xfs_fsmap. */
static void
xfs_fsmap_to_internal(
struct xfs_fsmap *dest,
struct fsmap *src)
{
dest->fmr_device = src->fmr_device;
dest->fmr_flags = src->fmr_flags;
dest->fmr_physical = BTOBBT(src->fmr_physical);
dest->fmr_owner = src->fmr_owner;
dest->fmr_offset = BTOBBT(src->fmr_offset);
dest->fmr_length = BTOBBT(src->fmr_length);
}
/* Convert an fsmap owner into an rmapbt owner. */
static int
xfs_fsmap_owner_to_rmap(
struct xfs_rmap_irec *dest,
const struct xfs_fsmap *src)
{
if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
dest->rm_owner = src->fmr_owner;
return 0;
}
switch (src->fmr_owner) {
case 0: /* "lowest owner id possible" */
case -1ULL: /* "highest owner id possible" */
dest->rm_owner = src->fmr_owner;
break;
case XFS_FMR_OWN_FREE:
dest->rm_owner = XFS_RMAP_OWN_NULL;
break;
case XFS_FMR_OWN_UNKNOWN:
dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
break;
case XFS_FMR_OWN_FS:
dest->rm_owner = XFS_RMAP_OWN_FS;
break;
case XFS_FMR_OWN_LOG:
dest->rm_owner = XFS_RMAP_OWN_LOG;
break;
case XFS_FMR_OWN_AG:
dest->rm_owner = XFS_RMAP_OWN_AG;
break;
case XFS_FMR_OWN_INOBT:
dest->rm_owner = XFS_RMAP_OWN_INOBT;
break;
case XFS_FMR_OWN_INODES:
dest->rm_owner = XFS_RMAP_OWN_INODES;
break;
case XFS_FMR_OWN_REFC:
dest->rm_owner = XFS_RMAP_OWN_REFC;
break;
case XFS_FMR_OWN_COW:
dest->rm_owner = XFS_RMAP_OWN_COW;
break;
case XFS_FMR_OWN_DEFECTIVE: /* not implemented */
/* fall through */
default:
return -EINVAL;
}
return 0;
}
/* Convert an rmapbt owner into an fsmap owner. */
static int
xfs_fsmap_owner_from_frec(
struct xfs_fsmap *dest,
const struct xfs_fsmap_irec *frec)
{
dest->fmr_flags = 0;
if (!XFS_RMAP_NON_INODE_OWNER(frec->owner)) {
dest->fmr_owner = frec->owner;
return 0;
}
dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
switch (frec->owner) {
case XFS_RMAP_OWN_FS:
dest->fmr_owner = XFS_FMR_OWN_FS;
break;
case XFS_RMAP_OWN_LOG:
dest->fmr_owner = XFS_FMR_OWN_LOG;
break;
case XFS_RMAP_OWN_AG:
dest->fmr_owner = XFS_FMR_OWN_AG;
break;
case XFS_RMAP_OWN_INOBT:
dest->fmr_owner = XFS_FMR_OWN_INOBT;
break;
case XFS_RMAP_OWN_INODES:
dest->fmr_owner = XFS_FMR_OWN_INODES;
break;
case XFS_RMAP_OWN_REFC:
dest->fmr_owner = XFS_FMR_OWN_REFC;
break;
case XFS_RMAP_OWN_COW:
dest->fmr_owner = XFS_FMR_OWN_COW;
break;
case XFS_RMAP_OWN_NULL: /* "free" */
dest->fmr_owner = XFS_FMR_OWN_FREE;
break;
default:
ASSERT(0);
return -EFSCORRUPTED;
}
return 0;
}
/* getfsmap query state */
struct xfs_getfsmap_info {
struct xfs_fsmap_head *head;
struct fsmap *fsmap_recs; /* mapping records */
struct xfs_buf *agf_bp; /* AGF, for refcount queries */
struct xfs_group *group; /* group info, if applicable */
xfs_daddr_t next_daddr; /* next daddr we expect */
/* daddr of low fsmap key when we're using the rtbitmap */
xfs_daddr_t low_daddr;
xfs_daddr_t end_daddr; /* daddr of high fsmap key */
u64 missing_owner; /* owner of holes */
u32 dev; /* device id */
/*
* Low rmap key for the query. If low.rm_blockcount is nonzero, this
* is the second (or later) call to retrieve the recordset in pieces.
* xfs_getfsmap_rec_before_start will compare all records retrieved
* by the rmapbt query to filter out any records that start before
* the last record.
*/
struct xfs_rmap_irec low;
struct xfs_rmap_irec high; /* high rmap key */
bool last; /* last extent? */
};
/* Associate a device with a getfsmap handler. */
struct xfs_getfsmap_dev {
u32 dev;
int (*fn)(struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info);
sector_t nr_sectors;
};
/* Compare two getfsmap device handlers. */
static int
xfs_getfsmap_dev_compare(
const void *p1,
const void *p2)
{
const struct xfs_getfsmap_dev *d1 = p1;
const struct xfs_getfsmap_dev *d2 = p2;
return d1->dev - d2->dev;
}
/* Decide if this mapping is shared. */
STATIC int
xfs_getfsmap_is_shared(
struct xfs_trans *tp,
struct xfs_getfsmap_info *info,
const struct xfs_fsmap_irec *frec,
bool *stat)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_btree_cur *cur;
xfs_agblock_t fbno;
xfs_extlen_t flen;
int error;
*stat = false;
if (!xfs_has_reflink(mp))
return 0;
/* rt files will have no perag structure */
if (!info->group)
return 0;
/* Are there any shared blocks here? */
flen = 0;
cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp,
to_perag(info->group));
error = xfs_refcount_find_shared(cur, frec->rec_key,
XFS_BB_TO_FSBT(mp, frec->len_daddr), &fbno, &flen,
false);
xfs_btree_del_cursor(cur, error);
if (error)
return error;
*stat = flen > 0;
return 0;
}
static inline void
xfs_getfsmap_format(
struct xfs_mount *mp,
struct xfs_fsmap *xfm,
struct xfs_getfsmap_info *info)
{
struct fsmap *rec;
trace_xfs_getfsmap_mapping(mp, xfm);
rec = &info->fsmap_recs[info->head->fmh_entries++];
xfs_fsmap_from_internal(rec, xfm);
}
static inline bool
xfs_getfsmap_frec_before_start(
struct xfs_getfsmap_info *info,
const struct xfs_fsmap_irec *frec)
{
if (info->low_daddr != XFS_BUF_DADDR_NULL)
return frec->start_daddr < info->low_daddr;
if (info->low.rm_blockcount) {
struct xfs_rmap_irec rec = {
.rm_startblock = frec->rec_key,
.rm_owner = frec->owner,
.rm_flags = frec->rm_flags,
};
return xfs_rmap_compare(&rec, &info->low) < 0;
}
return false;
}
/*
* Format a reverse mapping for getfsmap, having translated rm_startblock
* into the appropriate daddr units. Pass in a nonzero @len_daddr if the
* length could be larger than rm_blockcount in struct xfs_rmap_irec.
*/
STATIC int
xfs_getfsmap_helper(
struct xfs_trans *tp,
struct xfs_getfsmap_info *info,
const struct xfs_fsmap_irec *frec)
{
struct xfs_fsmap fmr;
struct xfs_mount *mp = tp->t_mountp;
bool shared;
int error = 0;
if (fatal_signal_pending(current))
return -EINTR;
/*
* Filter out records that start before our startpoint, if the
* caller requested that.
*/
if (xfs_getfsmap_frec_before_start(info, frec))
goto out;
/* Are we just counting mappings? */
if (info->head->fmh_count == 0) {
if (info->head->fmh_entries == UINT_MAX)
return -ECANCELED;
if (frec->start_daddr > info->next_daddr)
info->head->fmh_entries++;
if (info->last)
return 0;
info->head->fmh_entries++;
goto out;
}
/*
* If the record starts past the last physical block we saw,
* then we've found a gap. Report the gap as being owned by
* whatever the caller specified is the missing owner.
*/
if (frec->start_daddr > info->next_daddr) {
if (info->head->fmh_entries >= info->head->fmh_count)
return -ECANCELED;
fmr.fmr_device = info->dev;
fmr.fmr_physical = info->next_daddr;
fmr.fmr_owner = info->missing_owner;
fmr.fmr_offset = 0;
fmr.fmr_length = frec->start_daddr - info->next_daddr;
fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
xfs_getfsmap_format(mp, &fmr, info);
}
if (info->last)
goto out;
/* Fill out the extent we found */
if (info->head->fmh_entries >= info->head->fmh_count)
return -ECANCELED;
trace_xfs_fsmap_mapping(mp, info->dev,
info->group ? info->group->xg_gno : NULLAGNUMBER,
frec);
fmr.fmr_device = info->dev;
fmr.fmr_physical = frec->start_daddr;
error = xfs_fsmap_owner_from_frec(&fmr, frec);
if (error)
return error;
fmr.fmr_offset = XFS_FSB_TO_BB(mp, frec->offset);
fmr.fmr_length = frec->len_daddr;
if (frec->rm_flags & XFS_RMAP_UNWRITTEN)
fmr.fmr_flags |= FMR_OF_PREALLOC;
if (frec->rm_flags & XFS_RMAP_ATTR_FORK)
fmr.fmr_flags |= FMR_OF_ATTR_FORK;
if (frec->rm_flags & XFS_RMAP_BMBT_BLOCK)
fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
if (fmr.fmr_flags == 0) {
error = xfs_getfsmap_is_shared(tp, info, frec, &shared);
if (error)
return error;
if (shared)
fmr.fmr_flags |= FMR_OF_SHARED;
}
xfs_getfsmap_format(mp, &fmr, info);
out:
info->next_daddr = max(info->next_daddr,
frec->start_daddr + frec->len_daddr);
return 0;
}
static inline int
xfs_getfsmap_group_helper(
struct xfs_getfsmap_info *info,
struct xfs_trans *tp,
struct xfs_group *xg,
xfs_agblock_t startblock,
xfs_extlen_t blockcount,
struct xfs_fsmap_irec *frec)
{
/*
* For an info->last query, we're looking for a gap between the last
* mapping emitted and the high key specified by userspace. If the
* user's query spans less than 1 fsblock, then info->high and
* info->low will have the same rm_startblock, which causes rec_daddr
* and next_daddr to be the same. Therefore, use the end_daddr that
* we calculated from userspace's high key to synthesize the record.
* Note that if the btree query found a mapping, there won't be a gap.
*/
if (info->last && info->end_daddr != XFS_BUF_DADDR_NULL)
frec->start_daddr = info->end_daddr;
else
frec->start_daddr = xfs_gbno_to_daddr(xg, startblock);
frec->len_daddr = XFS_FSB_TO_BB(xg->xg_mount, blockcount);
return xfs_getfsmap_helper(tp, info, frec);
}
/* Transform a rmapbt irec into a fsmap */
STATIC int
xfs_getfsmap_rmapbt_helper(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xfs_fsmap_irec frec = {
.owner = rec->rm_owner,
.offset = rec->rm_offset,
.rm_flags = rec->rm_flags,
.rec_key = rec->rm_startblock,
};
struct xfs_getfsmap_info *info = priv;
return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
rec->rm_startblock, rec->rm_blockcount, &frec);
}
/* Transform a bnobt irec into a fsmap */
STATIC int
xfs_getfsmap_datadev_bnobt_helper(
struct xfs_btree_cur *cur,
const struct xfs_alloc_rec_incore *rec,
void *priv)
{
struct xfs_fsmap_irec frec = {
.owner = XFS_RMAP_OWN_NULL, /* "free" */
.rec_key = rec->ar_startblock,
};
struct xfs_getfsmap_info *info = priv;
return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
rec->ar_startblock, rec->ar_blockcount, &frec);
}
/* Set rmap flags based on the getfsmap flags */
static void
xfs_getfsmap_set_irec_flags(
struct xfs_rmap_irec *irec,
const struct xfs_fsmap *fmr)
{
irec->rm_flags = 0;
if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
irec->rm_flags |= XFS_RMAP_ATTR_FORK;
if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
if (fmr->fmr_flags & FMR_OF_PREALLOC)
irec->rm_flags |= XFS_RMAP_UNWRITTEN;
}
static inline bool
rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r)
{
if (!xfs_has_reflink(mp))
return true;
if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner))
return true;
if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK |
XFS_RMAP_UNWRITTEN))
return true;
return false;
}
/* Execute a getfsmap query against the regular data device. */
STATIC int
__xfs_getfsmap_datadev(
struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info,
int (*query_fn)(struct xfs_trans *,
struct xfs_getfsmap_info *,
struct xfs_btree_cur **,
void *),
void *priv)
{
struct xfs_mount *mp = tp->t_mountp;
struct xfs_perag *pag = NULL;
struct xfs_btree_cur *bt_cur = NULL;
xfs_fsblock_t start_fsb;
xfs_fsblock_t end_fsb;
xfs_agnumber_t start_ag, end_ag;
uint64_t eofs;
int error = 0;
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
if (keys[0].fmr_physical >= eofs)
return 0;
start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
/*
* Convert the fsmap low/high keys to AG based keys. Initialize
* low to the fsmap low key and max out the high key to the end
* of the AG.
*/
info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
if (error)
return error;
info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
/* Adjust the low key if we are continuing from where we left off. */
if (info->low.rm_blockcount == 0) {
/* No previous record from which to continue */
} else if (rmap_not_shareable(mp, &info->low)) {
/* Last record seen was an unshareable extent */
info->low.rm_owner = 0;
info->low.rm_offset = 0;
start_fsb += info->low.rm_blockcount;
if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
return 0;
} else {
/* Last record seen was a shareable file data extent */
info->low.rm_offset += info->low.rm_blockcount;
}
info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
info->high.rm_startblock = -1U;
info->high.rm_owner = ULLONG_MAX;
info->high.rm_offset = ULLONG_MAX;
info->high.rm_blockcount = 0;
info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
while ((pag = xfs_perag_next_range(mp, pag, start_ag, end_ag))) {
/*
* Set the AG high key from the fsmap high key if this
* is the last AG that we're querying.
*/
info->group = pag_group(pag);
if (pag_agno(pag) == end_ag) {
info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
end_fsb);
info->high.rm_offset = XFS_BB_TO_FSBT(mp,
keys[1].fmr_offset);
error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
if (error)
break;
xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
}
if (bt_cur) {
xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
bt_cur = NULL;
xfs_trans_brelse(tp, info->agf_bp);
info->agf_bp = NULL;
}
error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
if (error)
break;
trace_xfs_fsmap_low_group_key(mp, info->dev, pag_agno(pag),
&info->low);
trace_xfs_fsmap_high_group_key(mp, info->dev, pag_agno(pag),
&info->high);
error = query_fn(tp, info, &bt_cur, priv);
if (error)
break;
/*
* Set the AG low key to the start of the AG prior to
* moving on to the next AG.
*/
if (pag_agno(pag) == start_ag)
memset(&info->low, 0, sizeof(info->low));
/*
* If this is the last AG, report any gap at the end of it
* before we drop the reference to the perag when the loop
* terminates.
*/
if (pag_agno(pag) == end_ag) {
info->last = true;
error = query_fn(tp, info, &bt_cur, priv);
if (error)
break;
}
info->group = NULL;
}
if (bt_cur)
xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
XFS_BTREE_NOERROR);
if (info->agf_bp) {
xfs_trans_brelse(tp, info->agf_bp);
info->agf_bp = NULL;
}
if (info->group) {
xfs_perag_rele(pag);
info->group = NULL;
} else if (pag) {
/* loop termination case */
xfs_perag_rele(pag);
}
return error;
}
/* Actually query the rmap btree. */
STATIC int
xfs_getfsmap_datadev_rmapbt_query(
struct xfs_trans *tp,
struct xfs_getfsmap_info *info,
struct xfs_btree_cur **curpp,
void *priv)
{
/* Report any gap at the end of the last AG. */
if (info->last)
return xfs_getfsmap_rmapbt_helper(*curpp, &info->high, info);
/* Allocate cursor for this AG and query_range it. */
*curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
to_perag(info->group));
return xfs_rmap_query_range(*curpp, &info->low, &info->high,
xfs_getfsmap_rmapbt_helper, info);
}
/* Execute a getfsmap query against the regular data device rmapbt. */
STATIC int
xfs_getfsmap_datadev_rmapbt(
struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info)
{
info->missing_owner = XFS_FMR_OWN_FREE;
return __xfs_getfsmap_datadev(tp, keys, info,
xfs_getfsmap_datadev_rmapbt_query, NULL);
}
/* Actually query the bno btree. */
STATIC int
xfs_getfsmap_datadev_bnobt_query(
struct xfs_trans *tp,
struct xfs_getfsmap_info *info,
struct xfs_btree_cur **curpp,
void *priv)
{
struct xfs_alloc_rec_incore *key = priv;
/* Report any gap at the end of the last AG. */
if (info->last)
return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
/* Allocate cursor for this AG and query_range it. */
*curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp,
to_perag(info->group));
key->ar_startblock = info->low.rm_startblock;
key[1].ar_startblock = info->high.rm_startblock;
return xfs_alloc_query_range(*curpp, key, &key[1],
xfs_getfsmap_datadev_bnobt_helper, info);
}
/* Execute a getfsmap query against the regular data device's bnobt. */
STATIC int
xfs_getfsmap_datadev_bnobt(
struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info)
{
struct xfs_alloc_rec_incore akeys[2];
memset(akeys, 0, sizeof(akeys));
info->missing_owner = XFS_FMR_OWN_UNKNOWN;
return __xfs_getfsmap_datadev(tp, keys, info,
xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
}
/* Execute a getfsmap query against the log device. */
STATIC int
xfs_getfsmap_logdev(
struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info)
{
struct xfs_fsmap_irec frec = {
.start_daddr = 0,
.rec_key = 0,
.owner = XFS_RMAP_OWN_LOG,
};
struct xfs_mount *mp = tp->t_mountp;
xfs_fsblock_t start_fsb, end_fsb;
uint64_t eofs;
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
if (keys[0].fmr_physical >= eofs)
return 0;
start_fsb = XFS_BB_TO_FSBT(mp,
keys[0].fmr_physical + keys[0].fmr_length);
end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
/* Adjust the low key if we are continuing from where we left off. */
if (keys[0].fmr_length > 0)
info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
trace_xfs_fsmap_low_linear_key(mp, info->dev, start_fsb);
trace_xfs_fsmap_high_linear_key(mp, info->dev, end_fsb);
if (start_fsb > 0)
return 0;
/* Fabricate an rmap entry for the external log device. */
frec.len_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
return xfs_getfsmap_helper(tp, info, &frec);
}
#ifdef CONFIG_XFS_RT
/* Transform a rtbitmap "record" into a fsmap */
STATIC int
xfs_getfsmap_rtdev_rtbitmap_helper(
struct xfs_rtgroup *rtg,
struct xfs_trans *tp,
const struct xfs_rtalloc_rec *rec,
void *priv)
{
struct xfs_fsmap_irec frec = {
.owner = XFS_RMAP_OWN_NULL, /* "free" */
};
struct xfs_mount *mp = rtg_mount(rtg);
struct xfs_getfsmap_info *info = priv;
xfs_rtblock_t start_rtb =
xfs_rtx_to_rtb(rtg, rec->ar_startext);
uint64_t rtbcount =
xfs_rtbxlen_to_blen(mp, rec->ar_extcount);
/*
* For an info->last query, we're looking for a gap between the last
* mapping emitted and the high key specified by userspace. If the
* user's query spans less than 1 fsblock, then info->high and
* info->low will have the same rm_startblock, which causes rec_daddr
* and next_daddr to be the same. Therefore, use the end_daddr that
* we calculated from userspace's high key to synthesize the record.
* Note that if the btree query found a mapping, there won't be a gap.
*/
if (info->last && info->end_daddr != XFS_BUF_DADDR_NULL) {
frec.start_daddr = info->end_daddr;
} else {
frec.start_daddr = xfs_rtb_to_daddr(mp, start_rtb);
}
frec.len_daddr = XFS_FSB_TO_BB(mp, rtbcount);
return xfs_getfsmap_helper(tp, info, &frec);
}
/* Execute a getfsmap query against the realtime device rtbitmap. */
STATIC int
xfs_getfsmap_rtdev_rtbitmap(
struct xfs_trans *tp,
const struct xfs_fsmap *keys,
struct xfs_getfsmap_info *info)
{
struct xfs_mount *mp = tp->t_mountp;
xfs_rtblock_t start_rtbno, end_rtbno;
xfs_rtxnum_t start_rtx, end_rtx;
xfs_rgnumber_t start_rgno, end_rgno;
struct xfs_rtgroup *rtg = NULL;
uint64_t eofs;
int error;
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
if (keys[0].fmr_physical >= eofs)
return 0;
info->missing_owner = XFS_FMR_OWN_UNKNOWN;
/* Adjust the low key if we are continuing from where we left off. */
start_rtbno = xfs_daddr_to_rtb(mp,
keys[0].fmr_physical + keys[0].fmr_length);
if (keys[0].fmr_length > 0) {
info->low_daddr = xfs_rtb_to_daddr(mp, start_rtbno);
if (info->low_daddr >= eofs)
return 0;
}
start_rtx = xfs_rtb_to_rtx(mp, start_rtbno);
start_rgno = xfs_rtb_to_rgno(mp, start_rtbno);
end_rtbno = xfs_daddr_to_rtb(mp, min(eofs - 1, keys[1].fmr_physical));
end_rgno = xfs_rtb_to_rgno(mp, end_rtbno);
trace_xfs_fsmap_low_linear_key(mp, info->dev, start_rtbno);
trace_xfs_fsmap_high_linear_key(mp, info->dev, end_rtbno);
end_rtx = -1ULL;
while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) {
if (rtg_rgno(rtg) == end_rgno)
end_rtx = xfs_rtb_to_rtx(mp,
end_rtbno + mp->m_sb.sb_rextsize - 1);
info->group = rtg_group(rtg);
xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
error = xfs_rtalloc_query_range(rtg, tp, start_rtx, end_rtx,
xfs_getfsmap_rtdev_rtbitmap_helper, info);
if (error)
break;
/*
* Report any gaps at the end of the rtbitmap by simulating a
* zero-length free extent starting at the rtx after the end
* of the query range.
*/
if (rtg_rgno(rtg) == end_rgno) {
struct xfs_rtalloc_rec ahigh = {
.ar_startext = min(end_rtx + 1,
rtg->rtg_extents),
};
info->last = true;
error = xfs_getfsmap_rtdev_rtbitmap_helper(rtg, tp,
&ahigh, info);
if (error)
break;
}
xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
info->group = NULL;
start_rtx = 0;
}
/* loop termination case */
if (rtg) {
if (info->group) {
xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
info->group = NULL;
}
xfs_rtgroup_rele(rtg);
}
return error;
}
#endif /* CONFIG_XFS_RT */
/* Do we recognize the device? */
STATIC bool
xfs_getfsmap_is_valid_device(
struct xfs_mount *mp,
struct xfs_fsmap *fm)
{
if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
return true;
if (mp->m_logdev_targp &&
fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
return true;
if (mp->m_rtdev_targp &&
fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
return true;
return false;
}
/* Ensure that the low key is less than the high key. */
STATIC bool
xfs_getfsmap_check_keys(
struct xfs_fsmap *low_key,
struct xfs_fsmap *high_key)
{
if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
if (low_key->fmr_offset)
return false;
}
if (high_key->fmr_flags != -1U &&
(high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
FMR_OF_EXTENT_MAP))) {
if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
return false;
}
if (high_key->fmr_length && high_key->fmr_length != -1ULL)
return false;
if (low_key->fmr_device > high_key->fmr_device)
return false;
if (low_key->fmr_device < high_key->fmr_device)
return true;
if (low_key->fmr_physical > high_key->fmr_physical)
return false;
if (low_key->fmr_physical < high_key->fmr_physical)
return true;
if (low_key->fmr_owner > high_key->fmr_owner)
return false;
if (low_key->fmr_owner < high_key->fmr_owner)
return true;
if (low_key->fmr_offset > high_key->fmr_offset)
return false;
if (low_key->fmr_offset < high_key->fmr_offset)
return true;
return false;
}
/*
* There are only two devices if we didn't configure RT devices at build time.
*/
#ifdef CONFIG_XFS_RT
#define XFS_GETFSMAP_DEVS 3
#else
#define XFS_GETFSMAP_DEVS 2
#endif /* CONFIG_XFS_RT */
/*
* Get filesystem's extents as described in head, and format for output. Fills
* in the supplied records array until there are no more reverse mappings to
* return or head.fmh_entries == head.fmh_count. In the second case, this
* function returns -ECANCELED to indicate that more records would have been
* returned.
*
* Key to Confusion
* ----------------
* There are multiple levels of keys and counters at work here:
* xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in;
* these reflect fs-wide sector addrs.
* dkeys -- fmh_keys used to query each device;
* these are fmh_keys but w/ the low key
* bumped up by fmr_length.
* xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this
* is how we detect gaps in the fsmap
records and report them.
* xfs_getfsmap_info.low/high -- per-AG low/high keys computed from
* dkeys; used to query the metadata.
*/
STATIC int
xfs_getfsmap(
struct xfs_mount *mp,
struct xfs_fsmap_head *head,
struct fsmap *fsmap_recs)
{
struct xfs_trans *tp = NULL;
struct xfs_fsmap dkeys[2]; /* per-dev keys */
struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS];
struct xfs_getfsmap_info info = { NULL };
bool use_rmap;
int i;
int error = 0;
if (head->fmh_iflags & ~FMH_IF_VALID)
return -EINVAL;
if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
return -EINVAL;
if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
return -EINVAL;
use_rmap = xfs_has_rmapbt(mp) &&
has_capability_noaudit(current, CAP_SYS_ADMIN);
head->fmh_entries = 0;
/* Set up our device handlers. */
memset(handlers, 0, sizeof(handlers));
handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
if (use_rmap)
handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
else
handlers[0].fn = xfs_getfsmap_datadev_bnobt;
if (mp->m_logdev_targp != mp->m_ddev_targp) {
handlers[1].nr_sectors = XFS_FSB_TO_BB(mp,
mp->m_sb.sb_logblocks);
handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
handlers[1].fn = xfs_getfsmap_logdev;
}
#ifdef CONFIG_XFS_RT
if (mp->m_rtdev_targp) {
handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
}
#endif /* CONFIG_XFS_RT */
xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
xfs_getfsmap_dev_compare);
/*
* To continue where we left off, we allow userspace to use the
* last mapping from a previous call as the low key of the next.
* This is identified by a non-zero length in the low key. We
* have to increment the low key in this scenario to ensure we
* don't return the same mapping again, and instead return the
* very next mapping.
*
* If the low key mapping refers to file data, the same physical
* blocks could be mapped to several other files/offsets.
* According to rmapbt record ordering, the minimal next
* possible record for the block range is the next starting
* offset in the same inode. Therefore, each fsmap backend bumps
* the file offset to continue the search appropriately. For
* all other low key mapping types (attr blocks, metadata), each
* fsmap backend bumps the physical offset as there can be no
* other mapping for the same physical block range.
*/
dkeys[0] = head->fmh_keys[0];
memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
info.next_daddr = head->fmh_keys[0].fmr_physical +
head->fmh_keys[0].fmr_length;
info.end_daddr = XFS_BUF_DADDR_NULL;
info.fsmap_recs = fsmap_recs;
info.head = head;
/* For each device we support... */
for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
/* Is this device within the range the user asked for? */
if (!handlers[i].fn)
continue;
if (head->fmh_keys[0].fmr_device > handlers[i].dev)
continue;
if (head->fmh_keys[1].fmr_device < handlers[i].dev)
break;
/*
* If this device number matches the high key, we have
* to pass the high key to the handler to limit the
* query results. If the device number exceeds the
* low key, zero out the low key so that we get
* everything from the beginning.
*/
if (handlers[i].dev == head->fmh_keys[1].fmr_device) {
dkeys[1] = head->fmh_keys[1];
info.end_daddr = min(handlers[i].nr_sectors - 1,
dkeys[1].fmr_physical);
}
if (handlers[i].dev > head->fmh_keys[0].fmr_device)
memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
/*
* Grab an empty transaction so that we can use its recursive
* buffer locking abilities to detect cycles in the rmapbt
* without deadlocking.
*/
error = xfs_trans_alloc_empty(mp, &tp);
if (error)
break;
info.dev = handlers[i].dev;
info.last = false;
info.group = NULL;
info.low_daddr = XFS_BUF_DADDR_NULL;
info.low.rm_blockcount = 0;
error = handlers[i].fn(tp, dkeys, &info);
if (error)
break;
xfs_trans_cancel(tp);
tp = NULL;
info.next_daddr = 0;
}
if (tp)
xfs_trans_cancel(tp);
head->fmh_oflags = FMH_OF_DEV_T;
return error;
}
int
xfs_ioc_getfsmap(
struct xfs_inode *ip,
struct fsmap_head __user *arg)
{
struct xfs_fsmap_head xhead = {0};
struct fsmap_head head;
struct fsmap *recs;
unsigned int count;
__u32 last_flags = 0;
bool done = false;
int error;
if (copy_from_user(&head, arg, sizeof(struct fsmap_head)))
return -EFAULT;
if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) ||
memchr_inv(head.fmh_keys[0].fmr_reserved, 0,
sizeof(head.fmh_keys[0].fmr_reserved)) ||
memchr_inv(head.fmh_keys[1].fmr_reserved, 0,
sizeof(head.fmh_keys[1].fmr_reserved)))
return -EINVAL;
/*
* Use an internal memory buffer so that we don't have to copy fsmap
* data to userspace while holding locks. Start by trying to allocate
* up to 128k for the buffer, but fall back to a single page if needed.
*/
count = min_t(unsigned int, head.fmh_count,
131072 / sizeof(struct fsmap));
recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
if (!recs) {
count = min_t(unsigned int, head.fmh_count,
PAGE_SIZE / sizeof(struct fsmap));
recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
if (!recs)
return -ENOMEM;
}
xhead.fmh_iflags = head.fmh_iflags;
xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]);
xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]);
trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]);
head.fmh_entries = 0;
do {
struct fsmap __user *user_recs;
struct fsmap *last_rec;
user_recs = &arg->fmh_recs[head.fmh_entries];
xhead.fmh_entries = 0;
xhead.fmh_count = min_t(unsigned int, count,
head.fmh_count - head.fmh_entries);
/* Run query, record how many entries we got. */
error = xfs_getfsmap(ip->i_mount, &xhead, recs);
switch (error) {
case 0:
/*
* There are no more records in the result set. Copy
* whatever we got to userspace and break out.
*/
done = true;
break;
case -ECANCELED:
/*
* The internal memory buffer is full. Copy whatever
* records we got to userspace and go again if we have
* not yet filled the userspace buffer.
*/
error = 0;
break;
default:
goto out_free;
}
head.fmh_entries += xhead.fmh_entries;
head.fmh_oflags = xhead.fmh_oflags;
/*
* If the caller wanted a record count or there aren't any
* new records to return, we're done.
*/
if (head.fmh_count == 0 || xhead.fmh_entries == 0)
break;
/* Copy all the records we got out to userspace. */
if (copy_to_user(user_recs, recs,
xhead.fmh_entries * sizeof(struct fsmap))) {
error = -EFAULT;
goto out_free;
}
/* Remember the last record flags we copied to userspace. */
last_rec = &recs[xhead.fmh_entries - 1];
last_flags = last_rec->fmr_flags;
/* Set up the low key for the next iteration. */
xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec);
trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
} while (!done && head.fmh_entries < head.fmh_count);
/*
* If there are no more records in the query result set and we're not
* in counting mode, mark the last record returned with the LAST flag.
*/
if (done && head.fmh_count > 0 && head.fmh_entries > 0) {
struct fsmap __user *user_rec;
last_flags |= FMR_OF_LAST;
user_rec = &arg->fmh_recs[head.fmh_entries - 1];
if (copy_to_user(&user_rec->fmr_flags, &last_flags,
sizeof(last_flags))) {
error = -EFAULT;
goto out_free;
}
}
/* copy back header */
if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) {
error = -EFAULT;
goto out_free;
}
out_free:
kvfree(recs);
return error;
}