linux-next/drivers/edac/i7300_edac.c
Mauro Carvalho Chehab 5f032119d6 i7300_edac: Fix error cleanup logic
The error cleanup logic was broken. Due to that, one error is generated for
every error polling.

Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2011-11-01 10:01:53 -02:00

1249 lines
36 KiB
C

/*
* Intel 7300 class Memory Controllers kernel module (Clarksboro)
*
* This file may be distributed under the terms of the
* GNU General Public License version 2 only.
*
* Copyright (c) 2010 by:
* Mauro Carvalho Chehab <mchehab@redhat.com>
*
* Red Hat Inc. http://www.redhat.com
*
* Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
* http://www.intel.com/Assets/PDF/datasheet/318082.pdf
*
* TODO: The chipset allow checking for PCI Express errors also. Currently,
* the driver covers only memory error errors
*
* This driver uses "csrows" EDAC attribute to represent DIMM slot#
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
#include "edac_core.h"
/*
* Alter this version for the I7300 module when modifications are made
*/
#define I7300_REVISION " Ver: 1.0.0"
#define EDAC_MOD_STR "i7300_edac"
#define i7300_printk(level, fmt, arg...) \
edac_printk(level, "i7300", fmt, ##arg)
#define i7300_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
/***********************************************
* i7300 Limit constants Structs and static vars
***********************************************/
/*
* Memory topology is organized as:
* Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
* Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
* Each channel can have to 8 DIMM sets (called as SLOTS)
* Slots should generally be filled in pairs
* Except on Single Channel mode of operation
* just slot 0/channel0 filled on this mode
* On normal operation mode, the two channels on a branch should be
* filled together for the same SLOT#
* When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
* channels on both branches should be filled
*/
/* Limits for i7300 */
#define MAX_SLOTS 8
#define MAX_BRANCHES 2
#define MAX_CH_PER_BRANCH 2
#define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES)
#define MAX_MIR 3
#define to_channel(ch, branch) ((((branch)) << 1) | (ch))
#define to_csrow(slot, ch, branch) \
(to_channel(ch, branch) | ((slot) << 2))
/* Device name and register DID (Device ID) */
struct i7300_dev_info {
const char *ctl_name; /* name for this device */
u16 fsb_mapping_errors; /* DID for the branchmap,control */
};
/* Table of devices attributes supported by this driver */
static const struct i7300_dev_info i7300_devs[] = {
{
.ctl_name = "I7300",
.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
},
};
struct i7300_dimm_info {
int megabytes; /* size, 0 means not present */
};
/* driver private data structure */
struct i7300_pvt {
struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */
struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */
struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */
struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */
u16 tolm; /* top of low memory */
u64 ambase; /* AMB BAR */
u32 mc_settings; /* Report several settings */
u32 mc_settings_a;
u16 mir[MAX_MIR]; /* Memory Interleave Reg*/
u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */
u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */
/* DIMM information matrix, allocating architecture maximums */
struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
/* Temporary buffer for use when preparing error messages */
char *tmp_prt_buffer;
};
/* FIXME: Why do we need to have this static? */
static struct edac_pci_ctl_info *i7300_pci;
/***************************************************
* i7300 Register definitions for memory enumeration
***************************************************/
/*
* Device 16,
* Function 0: System Address (not documented)
* Function 1: Memory Branch Map, Control, Errors Register
*/
/* OFFSETS for Function 0 */
#define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
#define MAXCH 0x56 /* Max Channel Number */
#define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
/* OFFSETS for Function 1 */
#define MC_SETTINGS 0x40
#define IS_MIRRORED(mc) ((mc) & (1 << 16))
#define IS_ECC_ENABLED(mc) ((mc) & (1 << 5))
#define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31))
#define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8))
#define MC_SETTINGS_A 0x58
#define IS_SINGLE_MODE(mca) ((mca) & (1 << 14))
#define TOLM 0x6C
#define MIR0 0x80
#define MIR1 0x84
#define MIR2 0x88
/*
* Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
* memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
* seems that we cannot use this information directly for the same usage.
* Each memory slot may have up to 2 AMB interfaces, one for income and another
* for outcome interface to the next slot.
* For now, the driver just stores the AMB present registers, but rely only at
* the MTR info to detect memory.
* Datasheet is also not clear about how to map each AMBPRESENT registers to
* one of the 4 available channels.
*/
#define AMBPRESENT_0 0x64
#define AMBPRESENT_1 0x66
static const u16 mtr_regs[MAX_SLOTS] = {
0x80, 0x84, 0x88, 0x8c,
0x82, 0x86, 0x8a, 0x8e
};
/*
* Defines to extract the vaious fields from the
* MTRx - Memory Technology Registers
*/
#define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8))
#define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7))
#define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
#define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4)
#define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0)
#define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
#define MTR_DRAM_BANKS_ADDR_BITS 2
#define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
#define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
#define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
#ifdef CONFIG_EDAC_DEBUG
/* MTR NUMROW */
static const char *numrow_toString[] = {
"8,192 - 13 rows",
"16,384 - 14 rows",
"32,768 - 15 rows",
"65,536 - 16 rows"
};
/* MTR NUMCOL */
static const char *numcol_toString[] = {
"1,024 - 10 columns",
"2,048 - 11 columns",
"4,096 - 12 columns",
"reserved"
};
#endif
/************************************************
* i7300 Register definitions for error detection
************************************************/
/*
* Device 16.1: FBD Error Registers
*/
#define FERR_FAT_FBD 0x98
static const char *ferr_fat_fbd_name[] = {
[22] = "Non-Redundant Fast Reset Timeout",
[2] = ">Tmid Thermal event with intelligent throttling disabled",
[1] = "Memory or FBD configuration CRC read error",
[0] = "Memory Write error on non-redundant retry or "
"FBD configuration Write error on retry",
};
#define GET_FBD_FAT_IDX(fbderr) (fbderr & (3 << 28))
#define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 3))
#define FERR_NF_FBD 0xa0
static const char *ferr_nf_fbd_name[] = {
[24] = "DIMM-Spare Copy Completed",
[23] = "DIMM-Spare Copy Initiated",
[22] = "Redundant Fast Reset Timeout",
[21] = "Memory Write error on redundant retry",
[18] = "SPD protocol Error",
[17] = "FBD Northbound parity error on FBD Sync Status",
[16] = "Correctable Patrol Data ECC",
[15] = "Correctable Resilver- or Spare-Copy Data ECC",
[14] = "Correctable Mirrored Demand Data ECC",
[13] = "Correctable Non-Mirrored Demand Data ECC",
[11] = "Memory or FBD configuration CRC read error",
[10] = "FBD Configuration Write error on first attempt",
[9] = "Memory Write error on first attempt",
[8] = "Non-Aliased Uncorrectable Patrol Data ECC",
[7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
[6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
[5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
[4] = "Aliased Uncorrectable Patrol Data ECC",
[3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
[2] = "Aliased Uncorrectable Mirrored Demand Data ECC",
[1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
[0] = "Uncorrectable Data ECC on Replay",
};
#define GET_FBD_NF_IDX(fbderr) (fbderr & (3 << 28))
#define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
(1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
(1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
(1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
(1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
(1 << 1) | (1 << 0))
#define EMASK_FBD 0xa8
#define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
(1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
(1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
(1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
(1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
(1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
(1 << 1) | (1 << 0))
/*
* Device 16.2: Global Error Registers
*/
#define FERR_GLOBAL_HI 0x48
static const char *ferr_global_hi_name[] = {
[3] = "FSB 3 Fatal Error",
[2] = "FSB 2 Fatal Error",
[1] = "FSB 1 Fatal Error",
[0] = "FSB 0 Fatal Error",
};
#define ferr_global_hi_is_fatal(errno) 1
#define FERR_GLOBAL_LO 0x40
static const char *ferr_global_lo_name[] = {
[31] = "Internal MCH Fatal Error",
[30] = "Intel QuickData Technology Device Fatal Error",
[29] = "FSB1 Fatal Error",
[28] = "FSB0 Fatal Error",
[27] = "FBD Channel 3 Fatal Error",
[26] = "FBD Channel 2 Fatal Error",
[25] = "FBD Channel 1 Fatal Error",
[24] = "FBD Channel 0 Fatal Error",
[23] = "PCI Express Device 7Fatal Error",
[22] = "PCI Express Device 6 Fatal Error",
[21] = "PCI Express Device 5 Fatal Error",
[20] = "PCI Express Device 4 Fatal Error",
[19] = "PCI Express Device 3 Fatal Error",
[18] = "PCI Express Device 2 Fatal Error",
[17] = "PCI Express Device 1 Fatal Error",
[16] = "ESI Fatal Error",
[15] = "Internal MCH Non-Fatal Error",
[14] = "Intel QuickData Technology Device Non Fatal Error",
[13] = "FSB1 Non-Fatal Error",
[12] = "FSB 0 Non-Fatal Error",
[11] = "FBD Channel 3 Non-Fatal Error",
[10] = "FBD Channel 2 Non-Fatal Error",
[9] = "FBD Channel 1 Non-Fatal Error",
[8] = "FBD Channel 0 Non-Fatal Error",
[7] = "PCI Express Device 7 Non-Fatal Error",
[6] = "PCI Express Device 6 Non-Fatal Error",
[5] = "PCI Express Device 5 Non-Fatal Error",
[4] = "PCI Express Device 4 Non-Fatal Error",
[3] = "PCI Express Device 3 Non-Fatal Error",
[2] = "PCI Express Device 2 Non-Fatal Error",
[1] = "PCI Express Device 1 Non-Fatal Error",
[0] = "ESI Non-Fatal Error",
};
#define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1)
#define NRECMEMA 0xbe
#define NRECMEMA_BANK(v) (((v) >> 12) & 7)
#define NRECMEMA_RANK(v) (((v) >> 8) & 15)
#define NRECMEMB 0xc0
#define NRECMEMB_IS_WR(v) ((v) & (1 << 31))
#define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
#define NRECMEMB_RAS(v) ((v) & 0xffff)
#define REDMEMA 0xdc
#define REDMEMB 0x7c
#define IS_SECOND_CH(v) ((v) * (1 << 17))
#define RECMEMA 0xe0
#define RECMEMA_BANK(v) (((v) >> 12) & 7)
#define RECMEMA_RANK(v) (((v) >> 8) & 15)
#define RECMEMB 0xe4
#define RECMEMB_IS_WR(v) ((v) & (1 << 31))
#define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
#define RECMEMB_RAS(v) ((v) & 0xffff)
/********************************************
* i7300 Functions related to error detection
********************************************/
/**
* get_err_from_table() - Gets the error message from a table
* @table: table name (array of char *)
* @size: number of elements at the table
* @pos: position of the element to be returned
*
* This is a small routine that gets the pos-th element of a table. If the
* element doesn't exist (or it is empty), it returns "reserved".
* Instead of calling it directly, the better is to call via the macro
* GET_ERR_FROM_TABLE(), that automatically checks the table size via
* ARRAY_SIZE() macro
*/
static const char *get_err_from_table(const char *table[], int size, int pos)
{
if (unlikely(pos >= size))
return "Reserved";
if (unlikely(!table[pos]))
return "Reserved";
return table[pos];
}
#define GET_ERR_FROM_TABLE(table, pos) \
get_err_from_table(table, ARRAY_SIZE(table), pos)
/**
* i7300_process_error_global() - Retrieve the hardware error information from
* the hardware global error registers and
* sends it to dmesg
* @mci: struct mem_ctl_info pointer
*/
static void i7300_process_error_global(struct mem_ctl_info *mci)
{
struct i7300_pvt *pvt;
u32 errnum, error_reg;
unsigned long errors;
const char *specific;
bool is_fatal;
pvt = mci->pvt_info;
/* read in the 1st FATAL error register */
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
FERR_GLOBAL_HI, &error_reg);
if (unlikely(error_reg)) {
errors = error_reg;
errnum = find_first_bit(&errors,
ARRAY_SIZE(ferr_global_hi_name));
specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
is_fatal = ferr_global_hi_is_fatal(errnum);
/* Clear the error bit */
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
FERR_GLOBAL_HI, error_reg);
goto error_global;
}
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
FERR_GLOBAL_LO, &error_reg);
if (unlikely(error_reg)) {
errors = error_reg;
errnum = find_first_bit(&errors,
ARRAY_SIZE(ferr_global_lo_name));
specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
is_fatal = ferr_global_lo_is_fatal(errnum);
/* Clear the error bit */
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
FERR_GLOBAL_LO, error_reg);
goto error_global;
}
return;
error_global:
i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
is_fatal ? "Fatal" : "NOT fatal", specific);
}
/**
* i7300_process_fbd_error() - Retrieve the hardware error information from
* the FBD error registers and sends it via
* EDAC error API calls
* @mci: struct mem_ctl_info pointer
*/
static void i7300_process_fbd_error(struct mem_ctl_info *mci)
{
struct i7300_pvt *pvt;
u32 errnum, value, error_reg;
u16 val16;
unsigned branch, channel, bank, rank, cas, ras;
u32 syndrome;
unsigned long errors;
const char *specific;
bool is_wr;
pvt = mci->pvt_info;
/* read in the 1st FATAL error register */
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
FERR_FAT_FBD, &error_reg);
if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
errnum = find_first_bit(&errors,
ARRAY_SIZE(ferr_fat_fbd_name));
specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
NRECMEMA, &val16);
bank = NRECMEMA_BANK(val16);
rank = NRECMEMA_RANK(val16);
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
NRECMEMB, &value);
is_wr = NRECMEMB_IS_WR(value);
cas = NRECMEMB_CAS(value);
ras = NRECMEMB_RAS(value);
/* Clean the error register */
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
FERR_FAT_FBD, error_reg);
snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
"FATAL (Branch=%d DRAM-Bank=%d %s "
"RAS=%d CAS=%d Err=0x%lx (%s))",
branch, bank,
is_wr ? "RDWR" : "RD",
ras, cas,
errors, specific);
/* Call the helper to output message */
edac_mc_handle_fbd_ue(mci, rank, branch << 1,
(branch << 1) + 1,
pvt->tmp_prt_buffer);
}
/* read in the 1st NON-FATAL error register */
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
FERR_NF_FBD, &error_reg);
if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
errors = error_reg & FERR_NF_FBD_ERR_MASK;
errnum = find_first_bit(&errors,
ARRAY_SIZE(ferr_nf_fbd_name));
specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
REDMEMA, &syndrome);
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
RECMEMA, &val16);
bank = RECMEMA_BANK(val16);
rank = RECMEMA_RANK(val16);
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
RECMEMB, &value);
is_wr = RECMEMB_IS_WR(value);
cas = RECMEMB_CAS(value);
ras = RECMEMB_RAS(value);
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
REDMEMB, &value);
channel = (branch << 1);
if (IS_SECOND_CH(value))
channel++;
/* Clear the error bit */
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
FERR_NF_FBD, error_reg);
/* Form out message */
snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
"Corrected error (Branch=%d, Channel %d), "
" DRAM-Bank=%d %s "
"RAS=%d CAS=%d, CE Err=0x%lx, Syndrome=0x%08x(%s))",
branch, channel,
bank,
is_wr ? "RDWR" : "RD",
ras, cas,
errors, syndrome, specific);
/*
* Call the helper to output message
* NOTE: Errors are reported per-branch, and not per-channel
* Currently, we don't know how to identify the right
* channel.
*/
edac_mc_handle_fbd_ce(mci, rank, channel,
pvt->tmp_prt_buffer);
}
return;
}
/**
* i7300_check_error() - Calls the error checking subroutines
* @mci: struct mem_ctl_info pointer
*/
static void i7300_check_error(struct mem_ctl_info *mci)
{
i7300_process_error_global(mci);
i7300_process_fbd_error(mci);
};
/**
* i7300_clear_error() - Clears the error registers
* @mci: struct mem_ctl_info pointer
*/
static void i7300_clear_error(struct mem_ctl_info *mci)
{
struct i7300_pvt *pvt = mci->pvt_info;
u32 value;
/*
* All error values are RWC - we need to read and write 1 to the
* bit that we want to cleanup
*/
/* Clear global error registers */
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
FERR_GLOBAL_HI, &value);
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
FERR_GLOBAL_HI, value);
pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
FERR_GLOBAL_LO, &value);
pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
FERR_GLOBAL_LO, value);
/* Clear FBD error registers */
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
FERR_FAT_FBD, &value);
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
FERR_FAT_FBD, value);
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
FERR_NF_FBD, &value);
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
FERR_NF_FBD, value);
}
/**
* i7300_enable_error_reporting() - Enable the memory reporting logic at the
* hardware
* @mci: struct mem_ctl_info pointer
*/
static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
{
struct i7300_pvt *pvt = mci->pvt_info;
u32 fbd_error_mask;
/* Read the FBD Error Mask Register */
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
EMASK_FBD, &fbd_error_mask);
/* Enable with a '0' */
fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
EMASK_FBD, fbd_error_mask);
}
/************************************************
* i7300 Functions related to memory enumberation
************************************************/
/**
* decode_mtr() - Decodes the MTR descriptor, filling the edac structs
* @pvt: pointer to the private data struct used by i7300 driver
* @slot: DIMM slot (0 to 7)
* @ch: Channel number within the branch (0 or 1)
* @branch: Branch number (0 or 1)
* @dinfo: Pointer to DIMM info where dimm size is stored
* @p_csrow: Pointer to the struct csrow_info that corresponds to that element
*/
static int decode_mtr(struct i7300_pvt *pvt,
int slot, int ch, int branch,
struct i7300_dimm_info *dinfo,
struct csrow_info *p_csrow,
u32 *nr_pages)
{
int mtr, ans, addrBits, channel;
channel = to_channel(ch, branch);
mtr = pvt->mtr[slot][branch];
ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
debugf2("\tMTR%d CH%d: DIMMs are %s (mtr)\n",
slot, channel,
ans ? "Present" : "NOT Present");
/* Determine if there is a DIMM present in this DIMM slot */
if (!ans)
return 0;
/* Start with the number of bits for a Bank
* on the DRAM */
addrBits = MTR_DRAM_BANKS_ADDR_BITS;
/* Add thenumber of ROW bits */
addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
/* add the number of COLUMN bits */
addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
/* add the number of RANK bits */
addrBits += MTR_DIMM_RANKS(mtr);
addrBits += 6; /* add 64 bits per DIMM */
addrBits -= 20; /* divide by 2^^20 */
addrBits -= 3; /* 8 bits per bytes */
dinfo->megabytes = 1 << addrBits;
*nr_pages = dinfo->megabytes << 8;
debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
debugf2("\t\tELECTRICAL THROTTLING is %s\n",
MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANKS(mtr) ? "double" : "single");
debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
debugf2("\t\tSIZE: %d MB\n", dinfo->megabytes);
p_csrow->grain = 8;
p_csrow->mtype = MEM_FB_DDR2;
p_csrow->csrow_idx = slot;
p_csrow->page_mask = 0;
/*
* The type of error detection actually depends of the
* mode of operation. When it is just one single memory chip, at
* socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
* In normal or mirrored mode, it uses Lockstep mode,
* with the possibility of using an extended algorithm for x8 memories
* See datasheet Sections 7.3.6 to 7.3.8
*/
if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
p_csrow->edac_mode = EDAC_SECDED;
debugf2("\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
} else {
debugf2("\t\tECC code is on Lockstep mode\n");
if (MTR_DRAM_WIDTH(mtr) == 8)
p_csrow->edac_mode = EDAC_S8ECD8ED;
else
p_csrow->edac_mode = EDAC_S4ECD4ED;
}
/* ask what device type on this row */
if (MTR_DRAM_WIDTH(mtr) == 8) {
debugf2("\t\tScrub algorithm for x8 is on %s mode\n",
IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
"enhanced" : "normal");
p_csrow->dtype = DEV_X8;
} else
p_csrow->dtype = DEV_X4;
return mtr;
}
/**
* print_dimm_size() - Prints dump of the memory organization
* @pvt: pointer to the private data struct used by i7300 driver
*
* Useful for debug. If debug is disabled, this routine do nothing
*/
static void print_dimm_size(struct i7300_pvt *pvt)
{
#ifdef CONFIG_EDAC_DEBUG
struct i7300_dimm_info *dinfo;
char *p;
int space, n;
int channel, slot;
space = PAGE_SIZE;
p = pvt->tmp_prt_buffer;
n = snprintf(p, space, " ");
p += n;
space -= n;
for (channel = 0; channel < MAX_CHANNELS; channel++) {
n = snprintf(p, space, "channel %d | ", channel);
p += n;
space -= n;
}
debugf2("%s\n", pvt->tmp_prt_buffer);
p = pvt->tmp_prt_buffer;
space = PAGE_SIZE;
n = snprintf(p, space, "-------------------------------"
"------------------------------");
p += n;
space -= n;
debugf2("%s\n", pvt->tmp_prt_buffer);
p = pvt->tmp_prt_buffer;
space = PAGE_SIZE;
for (slot = 0; slot < MAX_SLOTS; slot++) {
n = snprintf(p, space, "csrow/SLOT %d ", slot);
p += n;
space -= n;
for (channel = 0; channel < MAX_CHANNELS; channel++) {
dinfo = &pvt->dimm_info[slot][channel];
n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
p += n;
space -= n;
}
debugf2("%s\n", pvt->tmp_prt_buffer);
p = pvt->tmp_prt_buffer;
space = PAGE_SIZE;
}
n = snprintf(p, space, "-------------------------------"
"------------------------------");
p += n;
space -= n;
debugf2("%s\n", pvt->tmp_prt_buffer);
p = pvt->tmp_prt_buffer;
space = PAGE_SIZE;
#endif
}
/**
* i7300_init_csrows() - Initialize the 'csrows' table within
* the mci control structure with the
* addressing of memory.
* @mci: struct mem_ctl_info pointer
*/
static int i7300_init_csrows(struct mem_ctl_info *mci)
{
struct i7300_pvt *pvt;
struct i7300_dimm_info *dinfo;
struct csrow_info *p_csrow;
int rc = -ENODEV;
int mtr;
int ch, branch, slot, channel;
u32 last_page = 0, nr_pages;
pvt = mci->pvt_info;
debugf2("Memory Technology Registers:\n");
/* Get the AMB present registers for the four channels */
for (branch = 0; branch < MAX_BRANCHES; branch++) {
/* Read and dump branch 0's MTRs */
channel = to_channel(0, branch);
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
AMBPRESENT_0,
&pvt->ambpresent[channel]);
debugf2("\t\tAMB-present CH%d = 0x%x:\n",
channel, pvt->ambpresent[channel]);
channel = to_channel(1, branch);
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
AMBPRESENT_1,
&pvt->ambpresent[channel]);
debugf2("\t\tAMB-present CH%d = 0x%x:\n",
channel, pvt->ambpresent[channel]);
}
/* Get the set of MTR[0-7] regs by each branch */
for (slot = 0; slot < MAX_SLOTS; slot++) {
int where = mtr_regs[slot];
for (branch = 0; branch < MAX_BRANCHES; branch++) {
pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
where,
&pvt->mtr[slot][branch]);
for (ch = 0; ch < MAX_BRANCHES; ch++) {
int channel = to_channel(ch, branch);
dinfo = &pvt->dimm_info[slot][channel];
p_csrow = &mci->csrows[slot];
mtr = decode_mtr(pvt, slot, ch, branch,
dinfo, p_csrow, &nr_pages);
/* if no DIMMS on this row, continue */
if (!MTR_DIMMS_PRESENT(mtr))
continue;
/* Update per_csrow memory count */
p_csrow->nr_pages += nr_pages;
p_csrow->first_page = last_page;
last_page += nr_pages;
p_csrow->last_page = last_page;
rc = 0;
}
}
}
return rc;
}
/**
* decode_mir() - Decodes Memory Interleave Register (MIR) info
* @int mir_no: number of the MIR register to decode
* @mir: array with the MIR data cached on the driver
*/
static void decode_mir(int mir_no, u16 mir[MAX_MIR])
{
if (mir[mir_no] & 3)
debugf2("MIR%d: limit= 0x%x Branch(es) that participate:"
" %s %s\n",
mir_no,
(mir[mir_no] >> 4) & 0xfff,
(mir[mir_no] & 1) ? "B0" : "",
(mir[mir_no] & 2) ? "B1" : "");
}
/**
* i7300_get_mc_regs() - Get the contents of the MC enumeration registers
* @mci: struct mem_ctl_info pointer
*
* Data read is cached internally for its usage when needed
*/
static int i7300_get_mc_regs(struct mem_ctl_info *mci)
{
struct i7300_pvt *pvt;
u32 actual_tolm;
int i, rc;
pvt = mci->pvt_info;
pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
(u32 *) &pvt->ambase);
debugf2("AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
/* Get the Branch Map regs */
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
pvt->tolm >>= 12;
debugf2("TOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
pvt->tolm);
actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
/* Get memory controller settings */
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
&pvt->mc_settings);
pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
&pvt->mc_settings_a);
if (IS_SINGLE_MODE(pvt->mc_settings_a))
debugf0("Memory controller operating on single mode\n");
else
debugf0("Memory controller operating on %s mode\n",
IS_MIRRORED(pvt->mc_settings) ? "mirrored" : "non-mirrored");
debugf0("Error detection is %s\n",
IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
debugf0("Retry is %s\n",
IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
/* Get Memory Interleave Range registers */
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
&pvt->mir[0]);
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
&pvt->mir[1]);
pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
&pvt->mir[2]);
/* Decode the MIR regs */
for (i = 0; i < MAX_MIR; i++)
decode_mir(i, pvt->mir);
rc = i7300_init_csrows(mci);
if (rc < 0)
return rc;
/* Go and determine the size of each DIMM and place in an
* orderly matrix */
print_dimm_size(pvt);
return 0;
}
/*************************************************
* i7300 Functions related to device probe/release
*************************************************/
/**
* i7300_put_devices() - Release the PCI devices
* @mci: struct mem_ctl_info pointer
*/
static void i7300_put_devices(struct mem_ctl_info *mci)
{
struct i7300_pvt *pvt;
int branch;
pvt = mci->pvt_info;
/* Decrement usage count for devices */
for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
}
/**
* i7300_get_devices() - Find and perform 'get' operation on the MCH's
* device/functions we want to reference for this driver
* @mci: struct mem_ctl_info pointer
*
* Access and prepare the several devices for usage:
* I7300 devices used by this driver:
* Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
* Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
* Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
*/
static int __devinit i7300_get_devices(struct mem_ctl_info *mci)
{
struct i7300_pvt *pvt;
struct pci_dev *pdev;
pvt = mci->pvt_info;
/* Attempt to 'get' the MCH register we want */
pdev = NULL;
while (!pvt->pci_dev_16_1_fsb_addr_map ||
!pvt->pci_dev_16_2_fsb_err_regs) {
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev);
if (!pdev) {
/* End of list, leave */
i7300_printk(KERN_ERR,
"'system address,Process Bus' "
"device not found:"
"vendor 0x%x device 0x%x ERR funcs "
"(broken BIOS?)\n",
PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
goto error;
}
/* Store device 16 funcs 1 and 2 */
switch (PCI_FUNC(pdev->devfn)) {
case 1:
pvt->pci_dev_16_1_fsb_addr_map = pdev;
break;
case 2:
pvt->pci_dev_16_2_fsb_err_regs = pdev;
break;
}
}
debugf1("System Address, processor bus- PCI Bus ID: %s %x:%x\n",
pci_name(pvt->pci_dev_16_0_fsb_ctlr),
pvt->pci_dev_16_0_fsb_ctlr->vendor,
pvt->pci_dev_16_0_fsb_ctlr->device);
debugf1("Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
pci_name(pvt->pci_dev_16_1_fsb_addr_map),
pvt->pci_dev_16_1_fsb_addr_map->vendor,
pvt->pci_dev_16_1_fsb_addr_map->device);
debugf1("FSB Error Regs - PCI Bus ID: %s %x:%x\n",
pci_name(pvt->pci_dev_16_2_fsb_err_regs),
pvt->pci_dev_16_2_fsb_err_regs->vendor,
pvt->pci_dev_16_2_fsb_err_regs->device);
pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
NULL);
if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
i7300_printk(KERN_ERR,
"MC: 'BRANCH 0' device not found:"
"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
goto error;
}
pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
NULL);
if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
i7300_printk(KERN_ERR,
"MC: 'BRANCH 1' device not found:"
"vendor 0x%x device 0x%x Func 0 "
"(broken BIOS?)\n",
PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
goto error;
}
return 0;
error:
i7300_put_devices(mci);
return -ENODEV;
}
/**
* i7300_init_one() - Probe for one instance of the device
* @pdev: struct pci_dev pointer
* @id: struct pci_device_id pointer - currently unused
*/
static int __devinit i7300_init_one(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct mem_ctl_info *mci;
struct i7300_pvt *pvt;
int num_channels;
int num_dimms_per_channel;
int num_csrows;
int rc;
/* wake up device */
rc = pci_enable_device(pdev);
if (rc == -EIO)
return rc;
debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
__func__,
pdev->bus->number,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
/* We only are looking for func 0 of the set */
if (PCI_FUNC(pdev->devfn) != 0)
return -ENODEV;
/* As we don't have a motherboard identification routine to determine
* actual number of slots/dimms per channel, we thus utilize the
* resource as specified by the chipset. Thus, we might have
* have more DIMMs per channel than actually on the mobo, but this
* allows the driver to support up to the chipset max, without
* some fancy mobo determination.
*/
num_dimms_per_channel = MAX_SLOTS;
num_channels = MAX_CHANNELS;
num_csrows = MAX_SLOTS * MAX_CHANNELS;
debugf0("MC: %s(): Number of - Channels= %d DIMMS= %d CSROWS= %d\n",
__func__, num_channels, num_dimms_per_channel, num_csrows);
/* allocate a new MC control structure */
mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
if (mci == NULL)
return -ENOMEM;
debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
mci->dev = &pdev->dev; /* record ptr to the generic device */
pvt = mci->pvt_info;
pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */
pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!pvt->tmp_prt_buffer) {
edac_mc_free(mci);
return -ENOMEM;
}
/* 'get' the pci devices we want to reserve for our use */
if (i7300_get_devices(mci))
goto fail0;
mci->mc_idx = 0;
mci->mtype_cap = MEM_FLAG_FB_DDR2;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = "i7300_edac.c";
mci->mod_ver = I7300_REVISION;
mci->ctl_name = i7300_devs[0].ctl_name;
mci->dev_name = pci_name(pdev);
mci->ctl_page_to_phys = NULL;
/* Set the function pointer to an actual operation function */
mci->edac_check = i7300_check_error;
/* initialize the MC control structure 'csrows' table
* with the mapping and control information */
if (i7300_get_mc_regs(mci)) {
debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
" because i7300_init_csrows() returned nonzero "
"value\n");
mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
} else {
debugf1("MC: Enable error reporting now\n");
i7300_enable_error_reporting(mci);
}
/* add this new MC control structure to EDAC's list of MCs */
if (edac_mc_add_mc(mci)) {
debugf0("MC: " __FILE__
": %s(): failed edac_mc_add_mc()\n", __func__);
/* FIXME: perhaps some code should go here that disables error
* reporting if we just enabled it
*/
goto fail1;
}
i7300_clear_error(mci);
/* allocating generic PCI control info */
i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
if (!i7300_pci) {
printk(KERN_WARNING
"%s(): Unable to create PCI control\n",
__func__);
printk(KERN_WARNING
"%s(): PCI error report via EDAC not setup\n",
__func__);
}
return 0;
/* Error exit unwinding stack */
fail1:
i7300_put_devices(mci);
fail0:
kfree(pvt->tmp_prt_buffer);
edac_mc_free(mci);
return -ENODEV;
}
/**
* i7300_remove_one() - Remove the driver
* @pdev: struct pci_dev pointer
*/
static void __devexit i7300_remove_one(struct pci_dev *pdev)
{
struct mem_ctl_info *mci;
char *tmp;
debugf0(__FILE__ ": %s()\n", __func__);
if (i7300_pci)
edac_pci_release_generic_ctl(i7300_pci);
mci = edac_mc_del_mc(&pdev->dev);
if (!mci)
return;
tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
/* retrieve references to resources, and free those resources */
i7300_put_devices(mci);
kfree(tmp);
edac_mc_free(mci);
}
/*
* pci_device_id: table for which devices we are looking for
*
* Has only 8086:360c PCI ID
*/
static const struct pci_device_id i7300_pci_tbl[] __devinitdata = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
{0,} /* 0 terminated list. */
};
MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
/*
* i7300_driver: pci_driver structure for this module
*/
static struct pci_driver i7300_driver = {
.name = "i7300_edac",
.probe = i7300_init_one,
.remove = __devexit_p(i7300_remove_one),
.id_table = i7300_pci_tbl,
};
/**
* i7300_init() - Registers the driver
*/
static int __init i7300_init(void)
{
int pci_rc;
debugf2("MC: " __FILE__ ": %s()\n", __func__);
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
opstate_init();
pci_rc = pci_register_driver(&i7300_driver);
return (pci_rc < 0) ? pci_rc : 0;
}
/**
* i7300_init() - Unregisters the driver
*/
static void __exit i7300_exit(void)
{
debugf2("MC: " __FILE__ ": %s()\n", __func__);
pci_unregister_driver(&i7300_driver);
}
module_init(i7300_init);
module_exit(i7300_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
I7300_REVISION);
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");