linux-next/drivers/spi/spi-stm32.c
Mark Brown 1b2e883e1a
spi: Merge up fix
One small fix that didn't seem worth sending before the merge window.
2023-10-30 13:20:58 +00:00

2096 lines
59 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// STMicroelectronics STM32 SPI Controller driver
//
// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
#include <linux/bitfield.h>
#include <linux/debugfs.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>
#define DRIVER_NAME "spi_stm32"
/* STM32F4 SPI registers */
#define STM32F4_SPI_CR1 0x00
#define STM32F4_SPI_CR2 0x04
#define STM32F4_SPI_SR 0x08
#define STM32F4_SPI_DR 0x0C
#define STM32F4_SPI_I2SCFGR 0x1C
/* STM32F4_SPI_CR1 bit fields */
#define STM32F4_SPI_CR1_CPHA BIT(0)
#define STM32F4_SPI_CR1_CPOL BIT(1)
#define STM32F4_SPI_CR1_MSTR BIT(2)
#define STM32F4_SPI_CR1_BR_SHIFT 3
#define STM32F4_SPI_CR1_BR GENMASK(5, 3)
#define STM32F4_SPI_CR1_SPE BIT(6)
#define STM32F4_SPI_CR1_LSBFRST BIT(7)
#define STM32F4_SPI_CR1_SSI BIT(8)
#define STM32F4_SPI_CR1_SSM BIT(9)
#define STM32F4_SPI_CR1_RXONLY BIT(10)
#define STM32F4_SPI_CR1_DFF BIT(11)
#define STM32F4_SPI_CR1_CRCNEXT BIT(12)
#define STM32F4_SPI_CR1_CRCEN BIT(13)
#define STM32F4_SPI_CR1_BIDIOE BIT(14)
#define STM32F4_SPI_CR1_BIDIMODE BIT(15)
#define STM32F4_SPI_CR1_BR_MIN 0
#define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
/* STM32F4_SPI_CR2 bit fields */
#define STM32F4_SPI_CR2_RXDMAEN BIT(0)
#define STM32F4_SPI_CR2_TXDMAEN BIT(1)
#define STM32F4_SPI_CR2_SSOE BIT(2)
#define STM32F4_SPI_CR2_FRF BIT(4)
#define STM32F4_SPI_CR2_ERRIE BIT(5)
#define STM32F4_SPI_CR2_RXNEIE BIT(6)
#define STM32F4_SPI_CR2_TXEIE BIT(7)
/* STM32F4_SPI_SR bit fields */
#define STM32F4_SPI_SR_RXNE BIT(0)
#define STM32F4_SPI_SR_TXE BIT(1)
#define STM32F4_SPI_SR_CHSIDE BIT(2)
#define STM32F4_SPI_SR_UDR BIT(3)
#define STM32F4_SPI_SR_CRCERR BIT(4)
#define STM32F4_SPI_SR_MODF BIT(5)
#define STM32F4_SPI_SR_OVR BIT(6)
#define STM32F4_SPI_SR_BSY BIT(7)
#define STM32F4_SPI_SR_FRE BIT(8)
/* STM32F4_SPI_I2SCFGR bit fields */
#define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
/* STM32F4 SPI Baud Rate min/max divisor */
#define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
#define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
/* STM32H7 SPI registers */
#define STM32H7_SPI_CR1 0x00
#define STM32H7_SPI_CR2 0x04
#define STM32H7_SPI_CFG1 0x08
#define STM32H7_SPI_CFG2 0x0C
#define STM32H7_SPI_IER 0x10
#define STM32H7_SPI_SR 0x14
#define STM32H7_SPI_IFCR 0x18
#define STM32H7_SPI_TXDR 0x20
#define STM32H7_SPI_RXDR 0x30
#define STM32H7_SPI_I2SCFGR 0x50
/* STM32H7_SPI_CR1 bit fields */
#define STM32H7_SPI_CR1_SPE BIT(0)
#define STM32H7_SPI_CR1_MASRX BIT(8)
#define STM32H7_SPI_CR1_CSTART BIT(9)
#define STM32H7_SPI_CR1_CSUSP BIT(10)
#define STM32H7_SPI_CR1_HDDIR BIT(11)
#define STM32H7_SPI_CR1_SSI BIT(12)
/* STM32H7_SPI_CR2 bit fields */
#define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
#define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0)
/* STM32H7_SPI_CFG1 bit fields */
#define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
#define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
#define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
#define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
#define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
#define STM32H7_SPI_CFG1_MBR_SHIFT 28
#define STM32H7_SPI_CFG1_MBR_MIN 0
#define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
/* STM32H7_SPI_CFG2 bit fields */
#define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
#define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
#define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
#define STM32H7_SPI_CFG2_MASTER BIT(22)
#define STM32H7_SPI_CFG2_LSBFRST BIT(23)
#define STM32H7_SPI_CFG2_CPHA BIT(24)
#define STM32H7_SPI_CFG2_CPOL BIT(25)
#define STM32H7_SPI_CFG2_SSM BIT(26)
#define STM32H7_SPI_CFG2_SSIOP BIT(28)
#define STM32H7_SPI_CFG2_AFCNTR BIT(31)
/* STM32H7_SPI_IER bit fields */
#define STM32H7_SPI_IER_RXPIE BIT(0)
#define STM32H7_SPI_IER_TXPIE BIT(1)
#define STM32H7_SPI_IER_DXPIE BIT(2)
#define STM32H7_SPI_IER_EOTIE BIT(3)
#define STM32H7_SPI_IER_TXTFIE BIT(4)
#define STM32H7_SPI_IER_OVRIE BIT(6)
#define STM32H7_SPI_IER_MODFIE BIT(9)
#define STM32H7_SPI_IER_ALL GENMASK(10, 0)
/* STM32H7_SPI_SR bit fields */
#define STM32H7_SPI_SR_RXP BIT(0)
#define STM32H7_SPI_SR_TXP BIT(1)
#define STM32H7_SPI_SR_EOT BIT(3)
#define STM32H7_SPI_SR_OVR BIT(6)
#define STM32H7_SPI_SR_MODF BIT(9)
#define STM32H7_SPI_SR_SUSP BIT(11)
#define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
#define STM32H7_SPI_SR_RXWNE BIT(15)
/* STM32H7_SPI_IFCR bit fields */
#define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
/* STM32H7_SPI_I2SCFGR bit fields */
#define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
/* STM32H7 SPI Master Baud Rate min/max divisor */
#define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
#define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
/* STM32H7 SPI Communication mode */
#define STM32H7_SPI_FULL_DUPLEX 0
#define STM32H7_SPI_SIMPLEX_TX 1
#define STM32H7_SPI_SIMPLEX_RX 2
#define STM32H7_SPI_HALF_DUPLEX 3
/* SPI Communication type */
#define SPI_FULL_DUPLEX 0
#define SPI_SIMPLEX_TX 1
#define SPI_SIMPLEX_RX 2
#define SPI_3WIRE_TX 3
#define SPI_3WIRE_RX 4
#define STM32_SPI_AUTOSUSPEND_DELAY 1 /* 1 ms */
/*
* use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
* without fifo buffers.
*/
#define SPI_DMA_MIN_BYTES 16
/* STM32 SPI driver helpers */
#define STM32_SPI_MASTER_MODE(stm32_spi) (!(stm32_spi)->device_mode)
#define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode)
/**
* struct stm32_spi_reg - stm32 SPI register & bitfield desc
* @reg: register offset
* @mask: bitfield mask
* @shift: left shift
*/
struct stm32_spi_reg {
int reg;
int mask;
int shift;
};
/**
* struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
* @en: enable register and SPI enable bit
* @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
* @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
* @cpol: clock polarity register and polarity bit
* @cpha: clock phase register and phase bit
* @lsb_first: LSB transmitted first register and bit
* @cs_high: chips select active value
* @br: baud rate register and bitfields
* @rx: SPI RX data register
* @tx: SPI TX data register
*/
struct stm32_spi_regspec {
const struct stm32_spi_reg en;
const struct stm32_spi_reg dma_rx_en;
const struct stm32_spi_reg dma_tx_en;
const struct stm32_spi_reg cpol;
const struct stm32_spi_reg cpha;
const struct stm32_spi_reg lsb_first;
const struct stm32_spi_reg cs_high;
const struct stm32_spi_reg br;
const struct stm32_spi_reg rx;
const struct stm32_spi_reg tx;
};
struct stm32_spi;
/**
* struct stm32_spi_cfg - stm32 compatible configuration data
* @regs: registers descriptions
* @get_fifo_size: routine to get fifo size
* @get_bpw_mask: routine to get bits per word mask
* @disable: routine to disable controller
* @config: routine to configure controller as SPI Master
* @set_bpw: routine to configure registers to for bits per word
* @set_mode: routine to configure registers to desired mode
* @set_data_idleness: optional routine to configure registers to desired idle
* time between frames (if driver has this functionality)
* @set_number_of_data: optional routine to configure registers to desired
* number of data (if driver has this functionality)
* @transfer_one_dma_start: routine to start transfer a single spi_transfer
* using DMA
* @dma_rx_cb: routine to call after DMA RX channel operation is complete
* @dma_tx_cb: routine to call after DMA TX channel operation is complete
* @transfer_one_irq: routine to configure interrupts for driver
* @irq_handler_event: Interrupt handler for SPI controller events
* @irq_handler_thread: thread of interrupt handler for SPI controller
* @baud_rate_div_min: minimum baud rate divisor
* @baud_rate_div_max: maximum baud rate divisor
* @has_fifo: boolean to know if fifo is used for driver
* @has_device_mode: is this compatible capable to switch on device mode
* @flags: compatible specific SPI controller flags used at registration time
*/
struct stm32_spi_cfg {
const struct stm32_spi_regspec *regs;
int (*get_fifo_size)(struct stm32_spi *spi);
int (*get_bpw_mask)(struct stm32_spi *spi);
void (*disable)(struct stm32_spi *spi);
int (*config)(struct stm32_spi *spi);
void (*set_bpw)(struct stm32_spi *spi);
int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
void (*transfer_one_dma_start)(struct stm32_spi *spi);
void (*dma_rx_cb)(void *data);
void (*dma_tx_cb)(void *data);
int (*transfer_one_irq)(struct stm32_spi *spi);
irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
unsigned int baud_rate_div_min;
unsigned int baud_rate_div_max;
bool has_fifo;
bool has_device_mode;
u16 flags;
};
/**
* struct stm32_spi - private data of the SPI controller
* @dev: driver model representation of the controller
* @ctrl: controller interface
* @cfg: compatible configuration data
* @base: virtual memory area
* @clk: hw kernel clock feeding the SPI clock generator
* @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
* @lock: prevent I/O concurrent access
* @irq: SPI controller interrupt line
* @fifo_size: size of the embedded fifo in bytes
* @cur_midi: master inter-data idleness in ns
* @cur_speed: speed configured in Hz
* @cur_half_period: time of a half bit in us
* @cur_bpw: number of bits in a single SPI data frame
* @cur_fthlv: fifo threshold level (data frames in a single data packet)
* @cur_comm: SPI communication mode
* @cur_xferlen: current transfer length in bytes
* @cur_usedma: boolean to know if dma is used in current transfer
* @tx_buf: data to be written, or NULL
* @rx_buf: data to be read, or NULL
* @tx_len: number of data to be written in bytes
* @rx_len: number of data to be read in bytes
* @dma_tx: dma channel for TX transfer
* @dma_rx: dma channel for RX transfer
* @phys_addr: SPI registers physical base address
* @device_mode: the controller is configured as SPI device
*/
struct stm32_spi {
struct device *dev;
struct spi_controller *ctrl;
const struct stm32_spi_cfg *cfg;
void __iomem *base;
struct clk *clk;
u32 clk_rate;
spinlock_t lock; /* prevent I/O concurrent access */
int irq;
unsigned int fifo_size;
unsigned int cur_midi;
unsigned int cur_speed;
unsigned int cur_half_period;
unsigned int cur_bpw;
unsigned int cur_fthlv;
unsigned int cur_comm;
unsigned int cur_xferlen;
bool cur_usedma;
const void *tx_buf;
void *rx_buf;
int tx_len;
int rx_len;
struct dma_chan *dma_tx;
struct dma_chan *dma_rx;
dma_addr_t phys_addr;
bool device_mode;
};
static const struct stm32_spi_regspec stm32f4_spi_regspec = {
.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
.cs_high = {},
.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
.rx = { STM32F4_SPI_DR },
.tx = { STM32F4_SPI_DR },
};
static const struct stm32_spi_regspec stm32h7_spi_regspec = {
/* SPI data transfer is enabled but spi_ker_ck is idle.
* CFG1 and CFG2 registers are write protected when SPE is enabled.
*/
.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
.cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
STM32H7_SPI_CFG1_MBR_SHIFT },
.rx = { STM32H7_SPI_RXDR },
.tx = { STM32H7_SPI_TXDR },
};
static inline void stm32_spi_set_bits(struct stm32_spi *spi,
u32 offset, u32 bits)
{
writel_relaxed(readl_relaxed(spi->base + offset) | bits,
spi->base + offset);
}
static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
u32 offset, u32 bits)
{
writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
spi->base + offset);
}
/**
* stm32h7_spi_get_fifo_size - Return fifo size
* @spi: pointer to the spi controller data structure
*/
static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
{
unsigned long flags;
u32 count = 0;
spin_lock_irqsave(&spi->lock, flags);
stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
spin_unlock_irqrestore(&spi->lock, flags);
dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
return count;
}
/**
* stm32f4_spi_get_bpw_mask - Return bits per word mask
* @spi: pointer to the spi controller data structure
*/
static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
{
dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
}
/**
* stm32h7_spi_get_bpw_mask - Return bits per word mask
* @spi: pointer to the spi controller data structure
*/
static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
{
unsigned long flags;
u32 cfg1, max_bpw;
spin_lock_irqsave(&spi->lock, flags);
/*
* The most significant bit at DSIZE bit field is reserved when the
* maximum data size of periperal instances is limited to 16-bit
*/
stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
spin_unlock_irqrestore(&spi->lock, flags);
dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
return SPI_BPW_RANGE_MASK(4, max_bpw);
}
/**
* stm32_spi_prepare_mbr - Determine baud rate divisor value
* @spi: pointer to the spi controller data structure
* @speed_hz: requested speed
* @min_div: minimum baud rate divisor
* @max_div: maximum baud rate divisor
*
* Return baud rate divisor value in case of success or -EINVAL
*/
static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
u32 min_div, u32 max_div)
{
u32 div, mbrdiv;
/* Ensure spi->clk_rate is even */
div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
/*
* SPI framework set xfer->speed_hz to ctrl->max_speed_hz if
* xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns
* an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so
* no need to check it there.
* However, we need to ensure the following calculations.
*/
if ((div < min_div) || (div > max_div))
return -EINVAL;
/* Determine the first power of 2 greater than or equal to div */
if (div & (div - 1))
mbrdiv = fls(div);
else
mbrdiv = fls(div) - 1;
spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
return mbrdiv - 1;
}
/**
* stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
* @spi: pointer to the spi controller data structure
* @xfer_len: length of the message to be transferred
*/
static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
{
u32 packet, bpw;
/* data packet should not exceed 1/2 of fifo space */
packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
/* align packet size with data registers access */
bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
return DIV_ROUND_UP(packet, bpw);
}
/**
* stm32f4_spi_write_tx - Write bytes to Transmit Data Register
* @spi: pointer to the spi controller data structure
*
* Read from tx_buf depends on remaining bytes to avoid to read beyond
* tx_buf end.
*/
static void stm32f4_spi_write_tx(struct stm32_spi *spi)
{
if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
STM32F4_SPI_SR_TXE)) {
u32 offs = spi->cur_xferlen - spi->tx_len;
if (spi->cur_bpw == 16) {
const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
spi->tx_len -= sizeof(u16);
} else {
const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
spi->tx_len -= sizeof(u8);
}
}
dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
}
/**
* stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
* @spi: pointer to the spi controller data structure
*
* Read from tx_buf depends on remaining bytes to avoid to read beyond
* tx_buf end.
*/
static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
{
while ((spi->tx_len > 0) &&
(readl_relaxed(spi->base + STM32H7_SPI_SR) &
STM32H7_SPI_SR_TXP)) {
u32 offs = spi->cur_xferlen - spi->tx_len;
if (spi->tx_len >= sizeof(u32)) {
const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
spi->tx_len -= sizeof(u32);
} else if (spi->tx_len >= sizeof(u16)) {
const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
spi->tx_len -= sizeof(u16);
} else {
const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
spi->tx_len -= sizeof(u8);
}
}
dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
}
/**
* stm32f4_spi_read_rx - Read bytes from Receive Data Register
* @spi: pointer to the spi controller data structure
*
* Write in rx_buf depends on remaining bytes to avoid to write beyond
* rx_buf end.
*/
static void stm32f4_spi_read_rx(struct stm32_spi *spi)
{
if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
STM32F4_SPI_SR_RXNE)) {
u32 offs = spi->cur_xferlen - spi->rx_len;
if (spi->cur_bpw == 16) {
u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
spi->rx_len -= sizeof(u16);
} else {
u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
spi->rx_len -= sizeof(u8);
}
}
dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
}
/**
* stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
* @spi: pointer to the spi controller data structure
*
* Write in rx_buf depends on remaining bytes to avoid to write beyond
* rx_buf end.
*/
static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
{
u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
while ((spi->rx_len > 0) &&
((sr & STM32H7_SPI_SR_RXP) ||
((sr & STM32H7_SPI_SR_EOT) &&
((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
u32 offs = spi->cur_xferlen - spi->rx_len;
if ((spi->rx_len >= sizeof(u32)) ||
(sr & STM32H7_SPI_SR_RXWNE)) {
u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
spi->rx_len -= sizeof(u32);
} else if ((spi->rx_len >= sizeof(u16)) ||
(!(sr & STM32H7_SPI_SR_RXWNE) &&
(rxplvl >= 2 || spi->cur_bpw > 8))) {
u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
spi->rx_len -= sizeof(u16);
} else {
u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
spi->rx_len -= sizeof(u8);
}
sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
}
dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
__func__, spi->rx_len, sr);
}
/**
* stm32_spi_enable - Enable SPI controller
* @spi: pointer to the spi controller data structure
*/
static void stm32_spi_enable(struct stm32_spi *spi)
{
dev_dbg(spi->dev, "enable controller\n");
stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
spi->cfg->regs->en.mask);
}
/**
* stm32f4_spi_disable - Disable SPI controller
* @spi: pointer to the spi controller data structure
*/
static void stm32f4_spi_disable(struct stm32_spi *spi)
{
unsigned long flags;
u32 sr;
dev_dbg(spi->dev, "disable controller\n");
spin_lock_irqsave(&spi->lock, flags);
if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
STM32F4_SPI_CR1_SPE)) {
spin_unlock_irqrestore(&spi->lock, flags);
return;
}
/* Disable interrupts */
stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
STM32F4_SPI_CR2_RXNEIE |
STM32F4_SPI_CR2_ERRIE);
/* Wait until BSY = 0 */
if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
sr, !(sr & STM32F4_SPI_SR_BSY),
10, 100000) < 0) {
dev_warn(spi->dev, "disabling condition timeout\n");
}
if (spi->cur_usedma && spi->dma_tx)
dmaengine_terminate_async(spi->dma_tx);
if (spi->cur_usedma && spi->dma_rx)
dmaengine_terminate_async(spi->dma_rx);
stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
STM32F4_SPI_CR2_RXDMAEN);
/* Sequence to clear OVR flag */
readl_relaxed(spi->base + STM32F4_SPI_DR);
readl_relaxed(spi->base + STM32F4_SPI_SR);
spin_unlock_irqrestore(&spi->lock, flags);
}
/**
* stm32h7_spi_disable - Disable SPI controller
* @spi: pointer to the spi controller data structure
*
* RX-Fifo is flushed when SPI controller is disabled.
*/
static void stm32h7_spi_disable(struct stm32_spi *spi)
{
unsigned long flags;
u32 cr1;
dev_dbg(spi->dev, "disable controller\n");
spin_lock_irqsave(&spi->lock, flags);
cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
spin_unlock_irqrestore(&spi->lock, flags);
return;
}
/* Add a delay to make sure that transmission is ended. */
if (spi->cur_half_period)
udelay(spi->cur_half_period);
if (spi->cur_usedma && spi->dma_tx)
dmaengine_terminate_async(spi->dma_tx);
if (spi->cur_usedma && spi->dma_rx)
dmaengine_terminate_async(spi->dma_rx);
stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
STM32H7_SPI_CFG1_RXDMAEN);
/* Disable interrupts and clear status flags */
writel_relaxed(0, spi->base + STM32H7_SPI_IER);
writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
spin_unlock_irqrestore(&spi->lock, flags);
}
/**
* stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
* @ctrl: controller interface
* @spi_dev: pointer to the spi device
* @transfer: pointer to spi transfer
*
* If driver has fifo and the current transfer size is greater than fifo size,
* use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
*/
static bool stm32_spi_can_dma(struct spi_controller *ctrl,
struct spi_device *spi_dev,
struct spi_transfer *transfer)
{
unsigned int dma_size;
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
if (spi->cfg->has_fifo)
dma_size = spi->fifo_size;
else
dma_size = SPI_DMA_MIN_BYTES;
dev_dbg(spi->dev, "%s: %s\n", __func__,
(transfer->len > dma_size) ? "true" : "false");
return (transfer->len > dma_size);
}
/**
* stm32f4_spi_irq_event - Interrupt handler for SPI controller events
* @irq: interrupt line
* @dev_id: SPI controller ctrl interface
*/
static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
{
struct spi_controller *ctrl = dev_id;
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
u32 sr, mask = 0;
bool end = false;
spin_lock(&spi->lock);
sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
/*
* BSY flag is not handled in interrupt but it is normal behavior when
* this flag is set.
*/
sr &= ~STM32F4_SPI_SR_BSY;
if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
spi->cur_comm == SPI_3WIRE_TX)) {
/* OVR flag shouldn't be handled for TX only mode */
sr &= ~(STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE);
mask |= STM32F4_SPI_SR_TXE;
}
if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
spi->cur_comm == SPI_SIMPLEX_RX ||
spi->cur_comm == SPI_3WIRE_RX)) {
/* TXE flag is set and is handled when RXNE flag occurs */
sr &= ~STM32F4_SPI_SR_TXE;
mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
}
if (!(sr & mask)) {
dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
spin_unlock(&spi->lock);
return IRQ_NONE;
}
if (sr & STM32F4_SPI_SR_OVR) {
dev_warn(spi->dev, "Overrun: received value discarded\n");
/* Sequence to clear OVR flag */
readl_relaxed(spi->base + STM32F4_SPI_DR);
readl_relaxed(spi->base + STM32F4_SPI_SR);
/*
* If overrun is detected, it means that something went wrong,
* so stop the current transfer. Transfer can wait for next
* RXNE but DR is already read and end never happens.
*/
end = true;
goto end_irq;
}
if (sr & STM32F4_SPI_SR_TXE) {
if (spi->tx_buf)
stm32f4_spi_write_tx(spi);
if (spi->tx_len == 0)
end = true;
}
if (sr & STM32F4_SPI_SR_RXNE) {
stm32f4_spi_read_rx(spi);
if (spi->rx_len == 0)
end = true;
else if (spi->tx_buf)/* Load data for discontinuous mode */
stm32f4_spi_write_tx(spi);
}
end_irq:
if (end) {
/* Immediately disable interrupts to do not generate new one */
stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
STM32F4_SPI_CR2_TXEIE |
STM32F4_SPI_CR2_RXNEIE |
STM32F4_SPI_CR2_ERRIE);
spin_unlock(&spi->lock);
return IRQ_WAKE_THREAD;
}
spin_unlock(&spi->lock);
return IRQ_HANDLED;
}
/**
* stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
* @irq: interrupt line
* @dev_id: SPI controller interface
*/
static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
{
struct spi_controller *ctrl = dev_id;
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
spi_finalize_current_transfer(ctrl);
stm32f4_spi_disable(spi);
return IRQ_HANDLED;
}
/**
* stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
* @irq: interrupt line
* @dev_id: SPI controller interface
*/
static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
{
struct spi_controller *ctrl = dev_id;
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
u32 sr, ier, mask;
unsigned long flags;
bool end = false;
spin_lock_irqsave(&spi->lock, flags);
sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
mask = ier;
/*
* EOTIE enables irq from EOT, SUSP and TXC events. We need to set
* SUSP to acknowledge it later. TXC is automatically cleared
*/
mask |= STM32H7_SPI_SR_SUSP;
/*
* DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
* are set. So in case of Full-Duplex, need to poll TXP and RXP event.
*/
if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
if (!(sr & mask)) {
dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
sr, ier);
spin_unlock_irqrestore(&spi->lock, flags);
return IRQ_NONE;
}
if (sr & STM32H7_SPI_SR_SUSP) {
static DEFINE_RATELIMIT_STATE(rs,
DEFAULT_RATELIMIT_INTERVAL * 10,
1);
ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
if (__ratelimit(&rs))
dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
stm32h7_spi_read_rxfifo(spi);
/*
* If communication is suspended while using DMA, it means
* that something went wrong, so stop the current transfer
*/
if (spi->cur_usedma)
end = true;
}
if (sr & STM32H7_SPI_SR_MODF) {
dev_warn(spi->dev, "Mode fault: transfer aborted\n");
end = true;
}
if (sr & STM32H7_SPI_SR_OVR) {
dev_err(spi->dev, "Overrun: RX data lost\n");
end = true;
}
if (sr & STM32H7_SPI_SR_EOT) {
if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
stm32h7_spi_read_rxfifo(spi);
if (!spi->cur_usedma ||
(spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
end = true;
}
if (sr & STM32H7_SPI_SR_TXP)
if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
stm32h7_spi_write_txfifo(spi);
if (sr & STM32H7_SPI_SR_RXP)
if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
stm32h7_spi_read_rxfifo(spi);
writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
spin_unlock_irqrestore(&spi->lock, flags);
if (end) {
stm32h7_spi_disable(spi);
spi_finalize_current_transfer(ctrl);
}
return IRQ_HANDLED;
}
/**
* stm32_spi_prepare_msg - set up the controller to transfer a single message
* @ctrl: controller interface
* @msg: pointer to spi message
*/
static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
struct spi_message *msg)
{
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
struct spi_device *spi_dev = msg->spi;
struct device_node *np = spi_dev->dev.of_node;
unsigned long flags;
u32 clrb = 0, setb = 0;
/* SPI slave device may need time between data frames */
spi->cur_midi = 0;
if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
if (spi_dev->mode & SPI_CPOL)
setb |= spi->cfg->regs->cpol.mask;
else
clrb |= spi->cfg->regs->cpol.mask;
if (spi_dev->mode & SPI_CPHA)
setb |= spi->cfg->regs->cpha.mask;
else
clrb |= spi->cfg->regs->cpha.mask;
if (spi_dev->mode & SPI_LSB_FIRST)
setb |= spi->cfg->regs->lsb_first.mask;
else
clrb |= spi->cfg->regs->lsb_first.mask;
if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH)
setb |= spi->cfg->regs->cs_high.mask;
else
clrb |= spi->cfg->regs->cs_high.mask;
dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
!!(spi_dev->mode & SPI_CPOL),
!!(spi_dev->mode & SPI_CPHA),
!!(spi_dev->mode & SPI_LSB_FIRST),
!!(spi_dev->mode & SPI_CS_HIGH));
/* On STM32H7, messages should not exceed a maximum size setted
* afterward via the set_number_of_data function. In order to
* ensure that, split large messages into several messages
*/
if (spi->cfg->set_number_of_data) {
int ret;
ret = spi_split_transfers_maxwords(ctrl, msg,
STM32H7_SPI_TSIZE_MAX,
GFP_KERNEL | GFP_DMA);
if (ret)
return ret;
}
spin_lock_irqsave(&spi->lock, flags);
/* CPOL, CPHA and LSB FIRST bits have common register */
if (clrb || setb)
writel_relaxed(
(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
~clrb) | setb,
spi->base + spi->cfg->regs->cpol.reg);
spin_unlock_irqrestore(&spi->lock, flags);
return 0;
}
/**
* stm32f4_spi_dma_tx_cb - dma callback
* @data: pointer to the spi controller data structure
*
* DMA callback is called when the transfer is complete for DMA TX channel.
*/
static void stm32f4_spi_dma_tx_cb(void *data)
{
struct stm32_spi *spi = data;
if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
spi_finalize_current_transfer(spi->ctrl);
stm32f4_spi_disable(spi);
}
}
/**
* stm32_spi_dma_rx_cb - dma callback
* @data: pointer to the spi controller data structure
*
* DMA callback is called when the transfer is complete for DMA RX channel.
*/
static void stm32_spi_dma_rx_cb(void *data)
{
struct stm32_spi *spi = data;
spi_finalize_current_transfer(spi->ctrl);
spi->cfg->disable(spi);
}
/**
* stm32_spi_dma_config - configure dma slave channel depending on current
* transfer bits_per_word.
* @spi: pointer to the spi controller data structure
* @dma_conf: pointer to the dma_slave_config structure
* @dir: direction of the dma transfer
*/
static void stm32_spi_dma_config(struct stm32_spi *spi,
struct dma_slave_config *dma_conf,
enum dma_transfer_direction dir)
{
enum dma_slave_buswidth buswidth;
u32 maxburst;
if (spi->cur_bpw <= 8)
buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
else if (spi->cur_bpw <= 16)
buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
else
buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
if (spi->cfg->has_fifo) {
/* Valid for DMA Half or Full Fifo threshold */
if (spi->cur_fthlv == 2)
maxburst = 1;
else
maxburst = spi->cur_fthlv;
} else {
maxburst = 1;
}
memset(dma_conf, 0, sizeof(struct dma_slave_config));
dma_conf->direction = dir;
if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
dma_conf->src_addr_width = buswidth;
dma_conf->src_maxburst = maxburst;
dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
buswidth, maxburst);
} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
dma_conf->dst_addr_width = buswidth;
dma_conf->dst_maxburst = maxburst;
dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
buswidth, maxburst);
}
}
/**
* stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
* interrupts
* @spi: pointer to the spi controller data structure
*
* It must returns 0 if the transfer is finished or 1 if the transfer is still
* in progress.
*/
static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
{
unsigned long flags;
u32 cr2 = 0;
/* Enable the interrupts relative to the current communication mode */
if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
cr2 |= STM32F4_SPI_CR2_TXEIE;
} else if (spi->cur_comm == SPI_FULL_DUPLEX ||
spi->cur_comm == SPI_SIMPLEX_RX ||
spi->cur_comm == SPI_3WIRE_RX) {
/* In transmit-only mode, the OVR flag is set in the SR register
* since the received data are never read. Therefore set OVR
* interrupt only when rx buffer is available.
*/
cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
} else {
return -EINVAL;
}
spin_lock_irqsave(&spi->lock, flags);
stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
stm32_spi_enable(spi);
/* starting data transfer when buffer is loaded */
if (spi->tx_buf)
stm32f4_spi_write_tx(spi);
spin_unlock_irqrestore(&spi->lock, flags);
return 1;
}
/**
* stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
* interrupts
* @spi: pointer to the spi controller data structure
*
* It must returns 0 if the transfer is finished or 1 if the transfer is still
* in progress.
*/
static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
{
unsigned long flags;
u32 ier = 0;
/* Enable the interrupts relative to the current communication mode */
if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
ier |= STM32H7_SPI_IER_DXPIE;
else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
ier |= STM32H7_SPI_IER_TXPIE;
else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
ier |= STM32H7_SPI_IER_RXPIE;
/* Enable the interrupts relative to the end of transfer */
ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
spin_lock_irqsave(&spi->lock, flags);
stm32_spi_enable(spi);
/* Be sure to have data in fifo before starting data transfer */
if (spi->tx_buf)
stm32h7_spi_write_txfifo(spi);
if (STM32_SPI_MASTER_MODE(spi))
stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
spin_unlock_irqrestore(&spi->lock, flags);
return 1;
}
/**
* stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
* transfer using DMA
* @spi: pointer to the spi controller data structure
*/
static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
{
/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
spi->cur_comm == SPI_FULL_DUPLEX) {
/*
* In transmit-only mode, the OVR flag is set in the SR register
* since the received data are never read. Therefore set OVR
* interrupt only when rx buffer is available.
*/
stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
}
stm32_spi_enable(spi);
}
/**
* stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
* transfer using DMA
* @spi: pointer to the spi controller data structure
*/
static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
{
uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
/* Enable the interrupts */
if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
stm32_spi_enable(spi);
if (STM32_SPI_MASTER_MODE(spi))
stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
}
/**
* stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
* @spi: pointer to the spi controller data structure
* @xfer: pointer to the spi_transfer structure
*
* It must returns 0 if the transfer is finished or 1 if the transfer is still
* in progress.
*/
static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
struct spi_transfer *xfer)
{
struct dma_slave_config tx_dma_conf, rx_dma_conf;
struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
unsigned long flags;
spin_lock_irqsave(&spi->lock, flags);
rx_dma_desc = NULL;
if (spi->rx_buf && spi->dma_rx) {
stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
/* Enable Rx DMA request */
stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
spi->cfg->regs->dma_rx_en.mask);
rx_dma_desc = dmaengine_prep_slave_sg(
spi->dma_rx, xfer->rx_sg.sgl,
xfer->rx_sg.nents,
rx_dma_conf.direction,
DMA_PREP_INTERRUPT);
}
tx_dma_desc = NULL;
if (spi->tx_buf && spi->dma_tx) {
stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
tx_dma_desc = dmaengine_prep_slave_sg(
spi->dma_tx, xfer->tx_sg.sgl,
xfer->tx_sg.nents,
tx_dma_conf.direction,
DMA_PREP_INTERRUPT);
}
if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
(spi->rx_buf && spi->dma_rx && !rx_dma_desc))
goto dma_desc_error;
if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
goto dma_desc_error;
if (rx_dma_desc) {
rx_dma_desc->callback = spi->cfg->dma_rx_cb;
rx_dma_desc->callback_param = spi;
if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
dev_err(spi->dev, "Rx DMA submit failed\n");
goto dma_desc_error;
}
/* Enable Rx DMA channel */
dma_async_issue_pending(spi->dma_rx);
}
if (tx_dma_desc) {
if (spi->cur_comm == SPI_SIMPLEX_TX ||
spi->cur_comm == SPI_3WIRE_TX) {
tx_dma_desc->callback = spi->cfg->dma_tx_cb;
tx_dma_desc->callback_param = spi;
}
if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
dev_err(spi->dev, "Tx DMA submit failed\n");
goto dma_submit_error;
}
/* Enable Tx DMA channel */
dma_async_issue_pending(spi->dma_tx);
/* Enable Tx DMA request */
stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
spi->cfg->regs->dma_tx_en.mask);
}
spi->cfg->transfer_one_dma_start(spi);
spin_unlock_irqrestore(&spi->lock, flags);
return 1;
dma_submit_error:
if (spi->dma_rx)
dmaengine_terminate_sync(spi->dma_rx);
dma_desc_error:
stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
spi->cfg->regs->dma_rx_en.mask);
spin_unlock_irqrestore(&spi->lock, flags);
dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
spi->cur_usedma = false;
return spi->cfg->transfer_one_irq(spi);
}
/**
* stm32f4_spi_set_bpw - Configure bits per word
* @spi: pointer to the spi controller data structure
*/
static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
{
if (spi->cur_bpw == 16)
stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
else
stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
}
/**
* stm32h7_spi_set_bpw - configure bits per word
* @spi: pointer to the spi controller data structure
*/
static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
{
u32 bpw, fthlv;
u32 cfg1_clrb = 0, cfg1_setb = 0;
bpw = spi->cur_bpw - 1;
cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
fthlv = spi->cur_fthlv - 1;
cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
writel_relaxed(
(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
~cfg1_clrb) | cfg1_setb,
spi->base + STM32H7_SPI_CFG1);
}
/**
* stm32_spi_set_mbr - Configure baud rate divisor in master mode
* @spi: pointer to the spi controller data structure
* @mbrdiv: baud rate divisor value
*/
static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
{
u32 clrb = 0, setb = 0;
clrb |= spi->cfg->regs->br.mask;
setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
~clrb) | setb,
spi->base + spi->cfg->regs->br.reg);
}
/**
* stm32_spi_communication_type - return transfer communication type
* @spi_dev: pointer to the spi device
* @transfer: pointer to spi transfer
*/
static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
struct spi_transfer *transfer)
{
unsigned int type = SPI_FULL_DUPLEX;
if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
/*
* SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
* is forbidden and unvalidated by SPI subsystem so depending
* on the valid buffer, we can determine the direction of the
* transfer.
*/
if (!transfer->tx_buf)
type = SPI_3WIRE_RX;
else
type = SPI_3WIRE_TX;
} else {
if (!transfer->tx_buf)
type = SPI_SIMPLEX_RX;
else if (!transfer->rx_buf)
type = SPI_SIMPLEX_TX;
}
return type;
}
/**
* stm32f4_spi_set_mode - configure communication mode
* @spi: pointer to the spi controller data structure
* @comm_type: type of communication to configure
*/
static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
{
if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
STM32F4_SPI_CR1_BIDIMODE |
STM32F4_SPI_CR1_BIDIOE);
} else if (comm_type == SPI_FULL_DUPLEX ||
comm_type == SPI_SIMPLEX_RX) {
stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
STM32F4_SPI_CR1_BIDIMODE |
STM32F4_SPI_CR1_BIDIOE);
} else if (comm_type == SPI_3WIRE_RX) {
stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
STM32F4_SPI_CR1_BIDIMODE);
stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
STM32F4_SPI_CR1_BIDIOE);
} else {
return -EINVAL;
}
return 0;
}
/**
* stm32h7_spi_set_mode - configure communication mode
* @spi: pointer to the spi controller data structure
* @comm_type: type of communication to configure
*/
static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
{
u32 mode;
u32 cfg2_clrb = 0, cfg2_setb = 0;
if (comm_type == SPI_3WIRE_RX) {
mode = STM32H7_SPI_HALF_DUPLEX;
stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
} else if (comm_type == SPI_3WIRE_TX) {
mode = STM32H7_SPI_HALF_DUPLEX;
stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
} else if (comm_type == SPI_SIMPLEX_RX) {
mode = STM32H7_SPI_SIMPLEX_RX;
} else if (comm_type == SPI_SIMPLEX_TX) {
mode = STM32H7_SPI_SIMPLEX_TX;
} else {
mode = STM32H7_SPI_FULL_DUPLEX;
}
cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
writel_relaxed(
(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
~cfg2_clrb) | cfg2_setb,
spi->base + STM32H7_SPI_CFG2);
return 0;
}
/**
* stm32h7_spi_data_idleness - configure minimum time delay inserted between two
* consecutive data frames in master mode
* @spi: pointer to the spi controller data structure
* @len: transfer len
*/
static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
{
u32 cfg2_clrb = 0, cfg2_setb = 0;
cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
if ((len > 1) && (spi->cur_midi > 0)) {
u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
u32 midi = min_t(u32,
DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
FIELD_GET(STM32H7_SPI_CFG2_MIDI,
STM32H7_SPI_CFG2_MIDI));
dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
sck_period_ns, midi, midi * sck_period_ns);
cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
}
writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
~cfg2_clrb) | cfg2_setb,
spi->base + STM32H7_SPI_CFG2);
}
/**
* stm32h7_spi_number_of_data - configure number of data at current transfer
* @spi: pointer to the spi controller data structure
* @nb_words: transfer length (in words)
*/
static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
{
if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
spi->base + STM32H7_SPI_CR2);
} else {
return -EMSGSIZE;
}
return 0;
}
/**
* stm32_spi_transfer_one_setup - common setup to transfer a single
* spi_transfer either using DMA or
* interrupts.
* @spi: pointer to the spi controller data structure
* @spi_dev: pointer to the spi device
* @transfer: pointer to spi transfer
*/
static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
struct spi_device *spi_dev,
struct spi_transfer *transfer)
{
unsigned long flags;
unsigned int comm_type;
int nb_words, ret = 0;
int mbr;
spin_lock_irqsave(&spi->lock, flags);
spi->cur_xferlen = transfer->len;
spi->cur_bpw = transfer->bits_per_word;
spi->cfg->set_bpw(spi);
/* Update spi->cur_speed with real clock speed */
if (STM32_SPI_MASTER_MODE(spi)) {
mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
spi->cfg->baud_rate_div_min,
spi->cfg->baud_rate_div_max);
if (mbr < 0) {
ret = mbr;
goto out;
}
transfer->speed_hz = spi->cur_speed;
stm32_spi_set_mbr(spi, mbr);
}
comm_type = stm32_spi_communication_type(spi_dev, transfer);
ret = spi->cfg->set_mode(spi, comm_type);
if (ret < 0)
goto out;
spi->cur_comm = comm_type;
if (STM32_SPI_MASTER_MODE(spi) && spi->cfg->set_data_idleness)
spi->cfg->set_data_idleness(spi, transfer->len);
if (spi->cur_bpw <= 8)
nb_words = transfer->len;
else if (spi->cur_bpw <= 16)
nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
else
nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
if (spi->cfg->set_number_of_data) {
ret = spi->cfg->set_number_of_data(spi, nb_words);
if (ret < 0)
goto out;
}
dev_dbg(spi->dev, "transfer communication mode set to %d\n",
spi->cur_comm);
dev_dbg(spi->dev,
"data frame of %d-bit, data packet of %d data frames\n",
spi->cur_bpw, spi->cur_fthlv);
if (STM32_SPI_MASTER_MODE(spi))
dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
spi->cur_xferlen, nb_words);
dev_dbg(spi->dev, "dma %s\n",
(spi->cur_usedma) ? "enabled" : "disabled");
out:
spin_unlock_irqrestore(&spi->lock, flags);
return ret;
}
/**
* stm32_spi_transfer_one - transfer a single spi_transfer
* @ctrl: controller interface
* @spi_dev: pointer to the spi device
* @transfer: pointer to spi transfer
*
* It must return 0 if the transfer is finished or 1 if the transfer is still
* in progress.
*/
static int stm32_spi_transfer_one(struct spi_controller *ctrl,
struct spi_device *spi_dev,
struct spi_transfer *transfer)
{
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
int ret;
spi->tx_buf = transfer->tx_buf;
spi->rx_buf = transfer->rx_buf;
spi->tx_len = spi->tx_buf ? transfer->len : 0;
spi->rx_len = spi->rx_buf ? transfer->len : 0;
spi->cur_usedma = (ctrl->can_dma &&
ctrl->can_dma(ctrl, spi_dev, transfer));
ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
if (ret) {
dev_err(spi->dev, "SPI transfer setup failed\n");
return ret;
}
if (spi->cur_usedma)
return stm32_spi_transfer_one_dma(spi, transfer);
else
return spi->cfg->transfer_one_irq(spi);
}
/**
* stm32_spi_unprepare_msg - relax the hardware
* @ctrl: controller interface
* @msg: pointer to the spi message
*/
static int stm32_spi_unprepare_msg(struct spi_controller *ctrl,
struct spi_message *msg)
{
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
spi->cfg->disable(spi);
return 0;
}
/**
* stm32f4_spi_config - Configure SPI controller as SPI master
* @spi: pointer to the spi controller data structure
*/
static int stm32f4_spi_config(struct stm32_spi *spi)
{
unsigned long flags;
spin_lock_irqsave(&spi->lock, flags);
/* Ensure I2SMOD bit is kept cleared */
stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
STM32F4_SPI_I2SCFGR_I2SMOD);
/*
* - SS input value high
* - transmitter half duplex direction
* - Set the master mode (default Motorola mode)
* - Consider 1 master/n slaves configuration and
* SS input value is determined by the SSI bit
*/
stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
STM32F4_SPI_CR1_BIDIOE |
STM32F4_SPI_CR1_MSTR |
STM32F4_SPI_CR1_SSM);
spin_unlock_irqrestore(&spi->lock, flags);
return 0;
}
/**
* stm32h7_spi_config - Configure SPI controller
* @spi: pointer to the spi controller data structure
*/
static int stm32h7_spi_config(struct stm32_spi *spi)
{
unsigned long flags;
u32 cr1 = 0, cfg2 = 0;
spin_lock_irqsave(&spi->lock, flags);
/* Ensure I2SMOD bit is kept cleared */
stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
STM32H7_SPI_I2SCFGR_I2SMOD);
if (STM32_SPI_DEVICE_MODE(spi)) {
/* Use native device select */
cfg2 &= ~STM32H7_SPI_CFG2_SSM;
} else {
/*
* - Transmitter half duplex direction
* - Automatic communication suspend when RX-Fifo is full
* - SS input value high
*/
cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI;
/*
* - Set the master mode (default Motorola mode)
* - Consider 1 master/n devices configuration and
* SS input value is determined by the SSI bit
* - keep control of all associated GPIOs
*/
cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR;
}
stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1);
stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2);
spin_unlock_irqrestore(&spi->lock, flags);
return 0;
}
static const struct stm32_spi_cfg stm32f4_spi_cfg = {
.regs = &stm32f4_spi_regspec,
.get_bpw_mask = stm32f4_spi_get_bpw_mask,
.disable = stm32f4_spi_disable,
.config = stm32f4_spi_config,
.set_bpw = stm32f4_spi_set_bpw,
.set_mode = stm32f4_spi_set_mode,
.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
.dma_tx_cb = stm32f4_spi_dma_tx_cb,
.dma_rx_cb = stm32_spi_dma_rx_cb,
.transfer_one_irq = stm32f4_spi_transfer_one_irq,
.irq_handler_event = stm32f4_spi_irq_event,
.irq_handler_thread = stm32f4_spi_irq_thread,
.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
.has_fifo = false,
.has_device_mode = false,
.flags = SPI_CONTROLLER_MUST_TX,
};
static const struct stm32_spi_cfg stm32h7_spi_cfg = {
.regs = &stm32h7_spi_regspec,
.get_fifo_size = stm32h7_spi_get_fifo_size,
.get_bpw_mask = stm32h7_spi_get_bpw_mask,
.disable = stm32h7_spi_disable,
.config = stm32h7_spi_config,
.set_bpw = stm32h7_spi_set_bpw,
.set_mode = stm32h7_spi_set_mode,
.set_data_idleness = stm32h7_spi_data_idleness,
.set_number_of_data = stm32h7_spi_number_of_data,
.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
.dma_rx_cb = stm32_spi_dma_rx_cb,
/*
* dma_tx_cb is not necessary since in case of TX, dma is followed by
* SPI access hence handling is performed within the SPI interrupt
*/
.transfer_one_irq = stm32h7_spi_transfer_one_irq,
.irq_handler_thread = stm32h7_spi_irq_thread,
.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
.has_fifo = true,
.has_device_mode = true,
};
static const struct of_device_id stm32_spi_of_match[] = {
{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
{},
};
MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
static int stm32h7_spi_device_abort(struct spi_controller *ctrl)
{
spi_finalize_current_transfer(ctrl);
return 0;
}
static int stm32_spi_probe(struct platform_device *pdev)
{
struct spi_controller *ctrl;
struct stm32_spi *spi;
struct resource *res;
struct reset_control *rst;
struct device_node *np = pdev->dev.of_node;
bool device_mode;
int ret;
const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev);
device_mode = of_property_read_bool(np, "spi-slave");
if (!cfg->has_device_mode && device_mode) {
dev_err(&pdev->dev, "spi-slave not supported\n");
return -EPERM;
}
if (device_mode)
ctrl = devm_spi_alloc_slave(&pdev->dev, sizeof(struct stm32_spi));
else
ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
if (!ctrl) {
dev_err(&pdev->dev, "spi controller allocation failed\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, ctrl);
spi = spi_controller_get_devdata(ctrl);
spi->dev = &pdev->dev;
spi->ctrl = ctrl;
spi->device_mode = device_mode;
spin_lock_init(&spi->lock);
spi->cfg = cfg;
spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(spi->base))
return PTR_ERR(spi->base);
spi->phys_addr = (dma_addr_t)res->start;
spi->irq = platform_get_irq(pdev, 0);
if (spi->irq <= 0)
return spi->irq;
ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
spi->cfg->irq_handler_event,
spi->cfg->irq_handler_thread,
IRQF_ONESHOT, pdev->name, ctrl);
if (ret) {
dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
ret);
return ret;
}
spi->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(spi->clk)) {
ret = PTR_ERR(spi->clk);
dev_err(&pdev->dev, "clk get failed: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(spi->clk);
if (ret) {
dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
return ret;
}
spi->clk_rate = clk_get_rate(spi->clk);
if (!spi->clk_rate) {
dev_err(&pdev->dev, "clk rate = 0\n");
ret = -EINVAL;
goto err_clk_disable;
}
rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
if (rst) {
if (IS_ERR(rst)) {
ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
"failed to get reset\n");
goto err_clk_disable;
}
reset_control_assert(rst);
udelay(2);
reset_control_deassert(rst);
}
if (spi->cfg->has_fifo)
spi->fifo_size = spi->cfg->get_fifo_size(spi);
ret = spi->cfg->config(spi);
if (ret) {
dev_err(&pdev->dev, "controller configuration failed: %d\n",
ret);
goto err_clk_disable;
}
ctrl->dev.of_node = pdev->dev.of_node;
ctrl->auto_runtime_pm = true;
ctrl->bus_num = pdev->id;
ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
SPI_3WIRE;
ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
ctrl->use_gpio_descriptors = true;
ctrl->prepare_message = stm32_spi_prepare_msg;
ctrl->transfer_one = stm32_spi_transfer_one;
ctrl->unprepare_message = stm32_spi_unprepare_msg;
ctrl->flags = spi->cfg->flags;
if (STM32_SPI_DEVICE_MODE(spi))
ctrl->slave_abort = stm32h7_spi_device_abort;
spi->dma_tx = dma_request_chan(spi->dev, "tx");
if (IS_ERR(spi->dma_tx)) {
ret = PTR_ERR(spi->dma_tx);
spi->dma_tx = NULL;
if (ret == -EPROBE_DEFER)
goto err_clk_disable;
dev_warn(&pdev->dev, "failed to request tx dma channel\n");
} else {
ctrl->dma_tx = spi->dma_tx;
}
spi->dma_rx = dma_request_chan(spi->dev, "rx");
if (IS_ERR(spi->dma_rx)) {
ret = PTR_ERR(spi->dma_rx);
spi->dma_rx = NULL;
if (ret == -EPROBE_DEFER)
goto err_dma_release;
dev_warn(&pdev->dev, "failed to request rx dma channel\n");
} else {
ctrl->dma_rx = spi->dma_rx;
}
if (spi->dma_tx || spi->dma_rx)
ctrl->can_dma = stm32_spi_can_dma;
pm_runtime_set_autosuspend_delay(&pdev->dev,
STM32_SPI_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = spi_register_controller(ctrl);
if (ret) {
dev_err(&pdev->dev, "spi controller registration failed: %d\n",
ret);
goto err_pm_disable;
}
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
dev_info(&pdev->dev, "driver initialized (%s mode)\n",
STM32_SPI_MASTER_MODE(spi) ? "master" : "device");
return 0;
err_pm_disable:
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
err_dma_release:
if (spi->dma_tx)
dma_release_channel(spi->dma_tx);
if (spi->dma_rx)
dma_release_channel(spi->dma_rx);
err_clk_disable:
clk_disable_unprepare(spi->clk);
return ret;
}
static void stm32_spi_remove(struct platform_device *pdev)
{
struct spi_controller *ctrl = platform_get_drvdata(pdev);
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
pm_runtime_get_sync(&pdev->dev);
spi_unregister_controller(ctrl);
spi->cfg->disable(spi);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
if (ctrl->dma_tx)
dma_release_channel(ctrl->dma_tx);
if (ctrl->dma_rx)
dma_release_channel(ctrl->dma_rx);
clk_disable_unprepare(spi->clk);
pinctrl_pm_select_sleep_state(&pdev->dev);
}
static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
clk_disable_unprepare(spi->clk);
return pinctrl_pm_select_sleep_state(dev);
}
static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
int ret;
ret = pinctrl_pm_select_default_state(dev);
if (ret)
return ret;
return clk_prepare_enable(spi->clk);
}
static int __maybe_unused stm32_spi_suspend(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
int ret;
ret = spi_controller_suspend(ctrl);
if (ret)
return ret;
return pm_runtime_force_suspend(dev);
}
static int __maybe_unused stm32_spi_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
int ret;
ret = pm_runtime_force_resume(dev);
if (ret)
return ret;
ret = spi_controller_resume(ctrl);
if (ret) {
clk_disable_unprepare(spi->clk);
return ret;
}
ret = pm_runtime_resume_and_get(dev);
if (ret < 0) {
dev_err(dev, "Unable to power device:%d\n", ret);
return ret;
}
spi->cfg->config(spi);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
}
static const struct dev_pm_ops stm32_spi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
stm32_spi_runtime_resume, NULL)
};
static struct platform_driver stm32_spi_driver = {
.probe = stm32_spi_probe,
.remove_new = stm32_spi_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &stm32_spi_pm_ops,
.of_match_table = stm32_spi_of_match,
},
};
module_platform_driver(stm32_spi_driver);
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
MODULE_LICENSE("GPL v2");