mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-07 22:42:04 +00:00
f5807b0606
Due to an unsigned cast, adjtimex() returns the wrong offest when using
ADJ_MICRO and the offset is negative. In this case a small negative offset
returns approximately 4.29 seconds (~ 2^32/1000 milliseconds) due to the
unsigned cast of the negative offset.
This cast was added when the kernel internal struct timex was changed to
use type long long for the time offset value to address the problem of a
64bit/32bit division on 32bit systems.
The correct cast would have been (s32), which is correct as time_offset can
only be in the range of [INT_MIN..INT_MAX] because the shift constant used
for calculating it is 32. But that's non-obvious.
Remove the cast and use div_s64() to cure the issue.
[ tglx: Fix white space damage, use div_s64() and amend the change log ]
Fixes: ead25417f8
("timex: use __kernel_timex internally")
Signed-off-by: Marcelo Dalmas <marcelo.dalmas@ge.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/SJ0P101MB03687BF7D5A10FD3C49C51E5F42E2@SJ0P101MB0368.NAMP101.PROD.OUTLOOK.COM
1102 lines
32 KiB
C
1102 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* NTP state machine interfaces and logic.
|
|
*
|
|
* This code was mainly moved from kernel/timer.c and kernel/time.c
|
|
* Please see those files for relevant copyright info and historical
|
|
* changelogs.
|
|
*/
|
|
#include <linux/capability.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/time.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/audit.h>
|
|
|
|
#include "ntp_internal.h"
|
|
#include "timekeeping_internal.h"
|
|
|
|
/**
|
|
* struct ntp_data - Structure holding all NTP related state
|
|
* @tick_usec: USER_HZ period in microseconds
|
|
* @tick_length: Adjusted tick length
|
|
* @tick_length_base: Base value for @tick_length
|
|
* @time_state: State of the clock synchronization
|
|
* @time_status: Clock status bits
|
|
* @time_offset: Time adjustment in nanoseconds
|
|
* @time_constant: PLL time constant
|
|
* @time_maxerror: Maximum error in microseconds holding the NTP sync distance
|
|
* (NTP dispersion + delay / 2)
|
|
* @time_esterror: Estimated error in microseconds holding NTP dispersion
|
|
* @time_freq: Frequency offset scaled nsecs/secs
|
|
* @time_reftime: Time at last adjustment in seconds
|
|
* @time_adjust: Adjustment value
|
|
* @ntp_tick_adj: Constant boot-param configurable NTP tick adjustment (upscaled)
|
|
* @ntp_next_leap_sec: Second value of the next pending leapsecond, or TIME64_MAX if no leap
|
|
*
|
|
* @pps_valid: PPS signal watchdog counter
|
|
* @pps_tf: PPS phase median filter
|
|
* @pps_jitter: PPS current jitter in nanoseconds
|
|
* @pps_fbase: PPS beginning of the last freq interval
|
|
* @pps_shift: PPS current interval duration in seconds (shift value)
|
|
* @pps_intcnt: PPS interval counter
|
|
* @pps_freq: PPS frequency offset in scaled ns/s
|
|
* @pps_stabil: PPS current stability in scaled ns/s
|
|
* @pps_calcnt: PPS monitor: calibration intervals
|
|
* @pps_jitcnt: PPS monitor: jitter limit exceeded
|
|
* @pps_stbcnt: PPS monitor: stability limit exceeded
|
|
* @pps_errcnt: PPS monitor: calibration errors
|
|
*
|
|
* Protected by the timekeeping locks.
|
|
*/
|
|
struct ntp_data {
|
|
unsigned long tick_usec;
|
|
u64 tick_length;
|
|
u64 tick_length_base;
|
|
int time_state;
|
|
int time_status;
|
|
s64 time_offset;
|
|
long time_constant;
|
|
long time_maxerror;
|
|
long time_esterror;
|
|
s64 time_freq;
|
|
time64_t time_reftime;
|
|
long time_adjust;
|
|
s64 ntp_tick_adj;
|
|
time64_t ntp_next_leap_sec;
|
|
#ifdef CONFIG_NTP_PPS
|
|
int pps_valid;
|
|
long pps_tf[3];
|
|
long pps_jitter;
|
|
struct timespec64 pps_fbase;
|
|
int pps_shift;
|
|
int pps_intcnt;
|
|
s64 pps_freq;
|
|
long pps_stabil;
|
|
long pps_calcnt;
|
|
long pps_jitcnt;
|
|
long pps_stbcnt;
|
|
long pps_errcnt;
|
|
#endif
|
|
};
|
|
|
|
static struct ntp_data tk_ntp_data = {
|
|
.tick_usec = USER_TICK_USEC,
|
|
.time_state = TIME_OK,
|
|
.time_status = STA_UNSYNC,
|
|
.time_constant = 2,
|
|
.time_maxerror = NTP_PHASE_LIMIT,
|
|
.time_esterror = NTP_PHASE_LIMIT,
|
|
.ntp_next_leap_sec = TIME64_MAX,
|
|
};
|
|
|
|
#define SECS_PER_DAY 86400
|
|
#define MAX_TICKADJ 500LL /* usecs */
|
|
#define MAX_TICKADJ_SCALED \
|
|
(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
|
|
#define MAX_TAI_OFFSET 100000
|
|
|
|
#ifdef CONFIG_NTP_PPS
|
|
|
|
/*
|
|
* The following variables are used when a pulse-per-second (PPS) signal
|
|
* is available. They establish the engineering parameters of the clock
|
|
* discipline loop when controlled by the PPS signal.
|
|
*/
|
|
#define PPS_VALID 10 /* PPS signal watchdog max (s) */
|
|
#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
|
|
#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
|
|
#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
|
|
#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
|
|
increase pps_shift or consecutive bad
|
|
intervals to decrease it */
|
|
#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
|
|
|
|
/*
|
|
* PPS kernel consumer compensates the whole phase error immediately.
|
|
* Otherwise, reduce the offset by a fixed factor times the time constant.
|
|
*/
|
|
static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
|
|
{
|
|
if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL)
|
|
return offset;
|
|
else
|
|
return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
|
|
}
|
|
|
|
static inline void pps_reset_freq_interval(struct ntp_data *ntpdata)
|
|
{
|
|
/* The PPS calibration interval may end surprisingly early */
|
|
ntpdata->pps_shift = PPS_INTMIN;
|
|
ntpdata->pps_intcnt = 0;
|
|
}
|
|
|
|
/**
|
|
* pps_clear - Clears the PPS state variables
|
|
* @ntpdata: Pointer to ntp data
|
|
*/
|
|
static inline void pps_clear(struct ntp_data *ntpdata)
|
|
{
|
|
pps_reset_freq_interval(ntpdata);
|
|
ntpdata->pps_tf[0] = 0;
|
|
ntpdata->pps_tf[1] = 0;
|
|
ntpdata->pps_tf[2] = 0;
|
|
ntpdata->pps_fbase.tv_sec = ntpdata->pps_fbase.tv_nsec = 0;
|
|
ntpdata->pps_freq = 0;
|
|
}
|
|
|
|
/*
|
|
* Decrease pps_valid to indicate that another second has passed since the
|
|
* last PPS signal. When it reaches 0, indicate that PPS signal is missing.
|
|
*/
|
|
static inline void pps_dec_valid(struct ntp_data *ntpdata)
|
|
{
|
|
if (ntpdata->pps_valid > 0) {
|
|
ntpdata->pps_valid--;
|
|
} else {
|
|
ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
|
|
STA_PPSWANDER | STA_PPSERROR);
|
|
pps_clear(ntpdata);
|
|
}
|
|
}
|
|
|
|
static inline void pps_set_freq(struct ntp_data *ntpdata)
|
|
{
|
|
ntpdata->pps_freq = ntpdata->time_freq;
|
|
}
|
|
|
|
static inline bool is_error_status(int status)
|
|
{
|
|
return (status & (STA_UNSYNC|STA_CLOCKERR))
|
|
/*
|
|
* PPS signal lost when either PPS time or PPS frequency
|
|
* synchronization requested
|
|
*/
|
|
|| ((status & (STA_PPSFREQ|STA_PPSTIME))
|
|
&& !(status & STA_PPSSIGNAL))
|
|
/*
|
|
* PPS jitter exceeded when PPS time synchronization
|
|
* requested
|
|
*/
|
|
|| ((status & (STA_PPSTIME|STA_PPSJITTER))
|
|
== (STA_PPSTIME|STA_PPSJITTER))
|
|
/*
|
|
* PPS wander exceeded or calibration error when PPS
|
|
* frequency synchronization requested
|
|
*/
|
|
|| ((status & STA_PPSFREQ)
|
|
&& (status & (STA_PPSWANDER|STA_PPSERROR)));
|
|
}
|
|
|
|
static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
|
|
{
|
|
txc->ppsfreq = shift_right((ntpdata->pps_freq >> PPM_SCALE_INV_SHIFT) *
|
|
PPM_SCALE_INV, NTP_SCALE_SHIFT);
|
|
txc->jitter = ntpdata->pps_jitter;
|
|
if (!(ntpdata->time_status & STA_NANO))
|
|
txc->jitter = ntpdata->pps_jitter / NSEC_PER_USEC;
|
|
txc->shift = ntpdata->pps_shift;
|
|
txc->stabil = ntpdata->pps_stabil;
|
|
txc->jitcnt = ntpdata->pps_jitcnt;
|
|
txc->calcnt = ntpdata->pps_calcnt;
|
|
txc->errcnt = ntpdata->pps_errcnt;
|
|
txc->stbcnt = ntpdata->pps_stbcnt;
|
|
}
|
|
|
|
#else /* !CONFIG_NTP_PPS */
|
|
|
|
static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
|
|
{
|
|
return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
|
|
}
|
|
|
|
static inline void pps_reset_freq_interval(struct ntp_data *ntpdata) {}
|
|
static inline void pps_clear(struct ntp_data *ntpdata) {}
|
|
static inline void pps_dec_valid(struct ntp_data *ntpdata) {}
|
|
static inline void pps_set_freq(struct ntp_data *ntpdata) {}
|
|
|
|
static inline bool is_error_status(int status)
|
|
{
|
|
return status & (STA_UNSYNC|STA_CLOCKERR);
|
|
}
|
|
|
|
static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
|
|
{
|
|
/* PPS is not implemented, so these are zero */
|
|
txc->ppsfreq = 0;
|
|
txc->jitter = 0;
|
|
txc->shift = 0;
|
|
txc->stabil = 0;
|
|
txc->jitcnt = 0;
|
|
txc->calcnt = 0;
|
|
txc->errcnt = 0;
|
|
txc->stbcnt = 0;
|
|
}
|
|
|
|
#endif /* CONFIG_NTP_PPS */
|
|
|
|
/*
|
|
* Update tick_length and tick_length_base, based on tick_usec, ntp_tick_adj and
|
|
* time_freq:
|
|
*/
|
|
static void ntp_update_frequency(struct ntp_data *ntpdata)
|
|
{
|
|
u64 second_length, new_base, tick_usec = (u64)ntpdata->tick_usec;
|
|
|
|
second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << NTP_SCALE_SHIFT;
|
|
|
|
second_length += ntpdata->ntp_tick_adj;
|
|
second_length += ntpdata->time_freq;
|
|
|
|
new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
|
|
|
|
/*
|
|
* Don't wait for the next second_overflow, apply the change to the
|
|
* tick length immediately:
|
|
*/
|
|
ntpdata->tick_length += new_base - ntpdata->tick_length_base;
|
|
ntpdata->tick_length_base = new_base;
|
|
}
|
|
|
|
static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs)
|
|
{
|
|
ntpdata->time_status &= ~STA_MODE;
|
|
|
|
if (secs < MINSEC)
|
|
return 0;
|
|
|
|
if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC))
|
|
return 0;
|
|
|
|
ntpdata->time_status |= STA_MODE;
|
|
|
|
return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
|
|
}
|
|
|
|
static void ntp_update_offset(struct ntp_data *ntpdata, long offset)
|
|
{
|
|
s64 freq_adj, offset64;
|
|
long secs, real_secs;
|
|
|
|
if (!(ntpdata->time_status & STA_PLL))
|
|
return;
|
|
|
|
if (!(ntpdata->time_status & STA_NANO)) {
|
|
/* Make sure the multiplication below won't overflow */
|
|
offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
|
|
offset *= NSEC_PER_USEC;
|
|
}
|
|
|
|
/* Scale the phase adjustment and clamp to the operating range. */
|
|
offset = clamp(offset, -MAXPHASE, MAXPHASE);
|
|
|
|
/*
|
|
* Select how the frequency is to be controlled
|
|
* and in which mode (PLL or FLL).
|
|
*/
|
|
real_secs = __ktime_get_real_seconds();
|
|
secs = (long)(real_secs - ntpdata->time_reftime);
|
|
if (unlikely(ntpdata->time_status & STA_FREQHOLD))
|
|
secs = 0;
|
|
|
|
ntpdata->time_reftime = real_secs;
|
|
|
|
offset64 = offset;
|
|
freq_adj = ntp_update_offset_fll(ntpdata, offset64, secs);
|
|
|
|
/*
|
|
* Clamp update interval to reduce PLL gain with low
|
|
* sampling rate (e.g. intermittent network connection)
|
|
* to avoid instability.
|
|
*/
|
|
if (unlikely(secs > 1 << (SHIFT_PLL + 1 + ntpdata->time_constant)))
|
|
secs = 1 << (SHIFT_PLL + 1 + ntpdata->time_constant);
|
|
|
|
freq_adj += (offset64 * secs) <<
|
|
(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + ntpdata->time_constant));
|
|
|
|
freq_adj = min(freq_adj + ntpdata->time_freq, MAXFREQ_SCALED);
|
|
|
|
ntpdata->time_freq = max(freq_adj, -MAXFREQ_SCALED);
|
|
|
|
ntpdata->time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
|
|
}
|
|
|
|
static void __ntp_clear(struct ntp_data *ntpdata)
|
|
{
|
|
/* Stop active adjtime() */
|
|
ntpdata->time_adjust = 0;
|
|
ntpdata->time_status |= STA_UNSYNC;
|
|
ntpdata->time_maxerror = NTP_PHASE_LIMIT;
|
|
ntpdata->time_esterror = NTP_PHASE_LIMIT;
|
|
|
|
ntp_update_frequency(ntpdata);
|
|
|
|
ntpdata->tick_length = ntpdata->tick_length_base;
|
|
ntpdata->time_offset = 0;
|
|
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
/* Clear PPS state variables */
|
|
pps_clear(ntpdata);
|
|
}
|
|
|
|
/**
|
|
* ntp_clear - Clears the NTP state variables
|
|
*/
|
|
void ntp_clear(void)
|
|
{
|
|
__ntp_clear(&tk_ntp_data);
|
|
}
|
|
|
|
|
|
u64 ntp_tick_length(void)
|
|
{
|
|
return tk_ntp_data.tick_length;
|
|
}
|
|
|
|
/**
|
|
* ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
|
|
*
|
|
* Provides the time of the next leapsecond against CLOCK_REALTIME in
|
|
* a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
|
|
*/
|
|
ktime_t ntp_get_next_leap(void)
|
|
{
|
|
struct ntp_data *ntpdata = &tk_ntp_data;
|
|
ktime_t ret;
|
|
|
|
if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
|
|
return ktime_set(ntpdata->ntp_next_leap_sec, 0);
|
|
ret = KTIME_MAX;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This routine handles the overflow of the microsecond field
|
|
*
|
|
* The tricky bits of code to handle the accurate clock support
|
|
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
|
|
* They were originally developed for SUN and DEC kernels.
|
|
* All the kudos should go to Dave for this stuff.
|
|
*
|
|
* Also handles leap second processing, and returns leap offset
|
|
*/
|
|
int second_overflow(time64_t secs)
|
|
{
|
|
struct ntp_data *ntpdata = &tk_ntp_data;
|
|
s64 delta;
|
|
int leap = 0;
|
|
s32 rem;
|
|
|
|
/*
|
|
* Leap second processing. If in leap-insert state at the end of the
|
|
* day, the system clock is set back one second; if in leap-delete
|
|
* state, the system clock is set ahead one second.
|
|
*/
|
|
switch (ntpdata->time_state) {
|
|
case TIME_OK:
|
|
if (ntpdata->time_status & STA_INS) {
|
|
ntpdata->time_state = TIME_INS;
|
|
div_s64_rem(secs, SECS_PER_DAY, &rem);
|
|
ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
|
|
} else if (ntpdata->time_status & STA_DEL) {
|
|
ntpdata->time_state = TIME_DEL;
|
|
div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
|
|
ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
|
|
}
|
|
break;
|
|
case TIME_INS:
|
|
if (!(ntpdata->time_status & STA_INS)) {
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
ntpdata->time_state = TIME_OK;
|
|
} else if (secs == ntpdata->ntp_next_leap_sec) {
|
|
leap = -1;
|
|
ntpdata->time_state = TIME_OOP;
|
|
pr_notice("Clock: inserting leap second 23:59:60 UTC\n");
|
|
}
|
|
break;
|
|
case TIME_DEL:
|
|
if (!(ntpdata->time_status & STA_DEL)) {
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
ntpdata->time_state = TIME_OK;
|
|
} else if (secs == ntpdata->ntp_next_leap_sec) {
|
|
leap = 1;
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
ntpdata->time_state = TIME_WAIT;
|
|
pr_notice("Clock: deleting leap second 23:59:59 UTC\n");
|
|
}
|
|
break;
|
|
case TIME_OOP:
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
ntpdata->time_state = TIME_WAIT;
|
|
break;
|
|
case TIME_WAIT:
|
|
if (!(ntpdata->time_status & (STA_INS | STA_DEL)))
|
|
ntpdata->time_state = TIME_OK;
|
|
break;
|
|
}
|
|
|
|
/* Bump the maxerror field */
|
|
ntpdata->time_maxerror += MAXFREQ / NSEC_PER_USEC;
|
|
if (ntpdata->time_maxerror > NTP_PHASE_LIMIT) {
|
|
ntpdata->time_maxerror = NTP_PHASE_LIMIT;
|
|
ntpdata->time_status |= STA_UNSYNC;
|
|
}
|
|
|
|
/* Compute the phase adjustment for the next second */
|
|
ntpdata->tick_length = ntpdata->tick_length_base;
|
|
|
|
delta = ntp_offset_chunk(ntpdata, ntpdata->time_offset);
|
|
ntpdata->time_offset -= delta;
|
|
ntpdata->tick_length += delta;
|
|
|
|
/* Check PPS signal */
|
|
pps_dec_valid(ntpdata);
|
|
|
|
if (!ntpdata->time_adjust)
|
|
goto out;
|
|
|
|
if (ntpdata->time_adjust > MAX_TICKADJ) {
|
|
ntpdata->time_adjust -= MAX_TICKADJ;
|
|
ntpdata->tick_length += MAX_TICKADJ_SCALED;
|
|
goto out;
|
|
}
|
|
|
|
if (ntpdata->time_adjust < -MAX_TICKADJ) {
|
|
ntpdata->time_adjust += MAX_TICKADJ;
|
|
ntpdata->tick_length -= MAX_TICKADJ_SCALED;
|
|
goto out;
|
|
}
|
|
|
|
ntpdata->tick_length += (s64)(ntpdata->time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
|
|
<< NTP_SCALE_SHIFT;
|
|
ntpdata->time_adjust = 0;
|
|
|
|
out:
|
|
return leap;
|
|
}
|
|
|
|
#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
|
|
static void sync_hw_clock(struct work_struct *work);
|
|
static DECLARE_WORK(sync_work, sync_hw_clock);
|
|
static struct hrtimer sync_hrtimer;
|
|
#define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
|
|
|
|
static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
|
|
{
|
|
queue_work(system_freezable_power_efficient_wq, &sync_work);
|
|
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
|
|
{
|
|
ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
|
|
|
|
if (retry)
|
|
exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
|
|
else
|
|
exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
|
|
|
|
hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
/*
|
|
* Check whether @now is correct versus the required time to update the RTC
|
|
* and calculate the value which needs to be written to the RTC so that the
|
|
* next seconds increment of the RTC after the write is aligned with the next
|
|
* seconds increment of clock REALTIME.
|
|
*
|
|
* tsched t1 write(t2.tv_sec - 1sec)) t2 RTC increments seconds
|
|
*
|
|
* t2.tv_nsec == 0
|
|
* tsched = t2 - set_offset_nsec
|
|
* newval = t2 - NSEC_PER_SEC
|
|
*
|
|
* ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
|
|
*
|
|
* As the execution of this code is not guaranteed to happen exactly at
|
|
* tsched this allows it to happen within a fuzzy region:
|
|
*
|
|
* abs(now - tsched) < FUZZ
|
|
*
|
|
* If @now is not inside the allowed window the function returns false.
|
|
*/
|
|
static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
|
|
struct timespec64 *to_set,
|
|
const struct timespec64 *now)
|
|
{
|
|
/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
|
|
const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
|
|
struct timespec64 delay = {.tv_sec = -1,
|
|
.tv_nsec = set_offset_nsec};
|
|
|
|
*to_set = timespec64_add(*now, delay);
|
|
|
|
if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
|
|
to_set->tv_nsec = 0;
|
|
return true;
|
|
}
|
|
|
|
if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
|
|
to_set->tv_sec++;
|
|
to_set->tv_nsec = 0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_CMOS_UPDATE
|
|
int __weak update_persistent_clock64(struct timespec64 now64)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
#else
|
|
static inline int update_persistent_clock64(struct timespec64 now64)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_RTC_SYSTOHC
|
|
/* Save NTP synchronized time to the RTC */
|
|
static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
|
|
{
|
|
struct rtc_device *rtc;
|
|
struct rtc_time tm;
|
|
int err = -ENODEV;
|
|
|
|
rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
|
|
if (!rtc)
|
|
return -ENODEV;
|
|
|
|
if (!rtc->ops || !rtc->ops->set_time)
|
|
goto out_close;
|
|
|
|
/* First call might not have the correct offset */
|
|
if (*offset_nsec == rtc->set_offset_nsec) {
|
|
rtc_time64_to_tm(to_set->tv_sec, &tm);
|
|
err = rtc_set_time(rtc, &tm);
|
|
} else {
|
|
/* Store the update offset and let the caller try again */
|
|
*offset_nsec = rtc->set_offset_nsec;
|
|
err = -EAGAIN;
|
|
}
|
|
out_close:
|
|
rtc_class_close(rtc);
|
|
return err;
|
|
}
|
|
#else
|
|
static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* ntp_synced - Tells whether the NTP status is not UNSYNC
|
|
* Returns: true if not UNSYNC, false otherwise
|
|
*/
|
|
static inline bool ntp_synced(void)
|
|
{
|
|
return !(tk_ntp_data.time_status & STA_UNSYNC);
|
|
}
|
|
|
|
/*
|
|
* If we have an externally synchronized Linux clock, then update RTC clock
|
|
* accordingly every ~11 minutes. Generally RTCs can only store second
|
|
* precision, but many RTCs will adjust the phase of their second tick to
|
|
* match the moment of update. This infrastructure arranges to call to the RTC
|
|
* set at the correct moment to phase synchronize the RTC second tick over
|
|
* with the kernel clock.
|
|
*/
|
|
static void sync_hw_clock(struct work_struct *work)
|
|
{
|
|
/*
|
|
* The default synchronization offset is 500ms for the deprecated
|
|
* update_persistent_clock64() under the assumption that it uses
|
|
* the infamous CMOS clock (MC146818).
|
|
*/
|
|
static unsigned long offset_nsec = NSEC_PER_SEC / 2;
|
|
struct timespec64 now, to_set;
|
|
int res = -EAGAIN;
|
|
|
|
/*
|
|
* Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
|
|
* managed to schedule the work between the timer firing and the
|
|
* work being able to rearm the timer. Wait for the timer to expire.
|
|
*/
|
|
if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
|
|
return;
|
|
|
|
ktime_get_real_ts64(&now);
|
|
/* If @now is not in the allowed window, try again */
|
|
if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
|
|
goto rearm;
|
|
|
|
/* Take timezone adjusted RTCs into account */
|
|
if (persistent_clock_is_local)
|
|
to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
|
|
|
|
/* Try the legacy RTC first. */
|
|
res = update_persistent_clock64(to_set);
|
|
if (res != -ENODEV)
|
|
goto rearm;
|
|
|
|
/* Try the RTC class */
|
|
res = update_rtc(&to_set, &offset_nsec);
|
|
if (res == -ENODEV)
|
|
return;
|
|
rearm:
|
|
sched_sync_hw_clock(offset_nsec, res != 0);
|
|
}
|
|
|
|
void ntp_notify_cmos_timer(bool offset_set)
|
|
{
|
|
/*
|
|
* If the time jumped (using ADJ_SETOFFSET) cancels sync timer,
|
|
* which may have been running if the time was synchronized
|
|
* prior to the ADJ_SETOFFSET call.
|
|
*/
|
|
if (offset_set)
|
|
hrtimer_cancel(&sync_hrtimer);
|
|
|
|
/*
|
|
* When the work is currently executed but has not yet the timer
|
|
* rearmed this queues the work immediately again. No big issue,
|
|
* just a pointless work scheduled.
|
|
*/
|
|
if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
|
|
queue_work(system_freezable_power_efficient_wq, &sync_work);
|
|
}
|
|
|
|
static void __init ntp_init_cmos_sync(void)
|
|
{
|
|
hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
|
|
sync_hrtimer.function = sync_timer_callback;
|
|
}
|
|
#else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
|
|
static inline void __init ntp_init_cmos_sync(void) { }
|
|
#endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
|
|
|
|
/*
|
|
* Propagate a new txc->status value into the NTP state:
|
|
*/
|
|
static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc)
|
|
{
|
|
if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) {
|
|
ntpdata->time_state = TIME_OK;
|
|
ntpdata->time_status = STA_UNSYNC;
|
|
ntpdata->ntp_next_leap_sec = TIME64_MAX;
|
|
/* Restart PPS frequency calibration */
|
|
pps_reset_freq_interval(ntpdata);
|
|
}
|
|
|
|
/*
|
|
* If we turn on PLL adjustments then reset the
|
|
* reference time to current time.
|
|
*/
|
|
if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL))
|
|
ntpdata->time_reftime = __ktime_get_real_seconds();
|
|
|
|
/* only set allowed bits */
|
|
ntpdata->time_status &= STA_RONLY;
|
|
ntpdata->time_status |= txc->status & ~STA_RONLY;
|
|
}
|
|
|
|
static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc,
|
|
s32 *time_tai)
|
|
{
|
|
if (txc->modes & ADJ_STATUS)
|
|
process_adj_status(ntpdata, txc);
|
|
|
|
if (txc->modes & ADJ_NANO)
|
|
ntpdata->time_status |= STA_NANO;
|
|
|
|
if (txc->modes & ADJ_MICRO)
|
|
ntpdata->time_status &= ~STA_NANO;
|
|
|
|
if (txc->modes & ADJ_FREQUENCY) {
|
|
ntpdata->time_freq = txc->freq * PPM_SCALE;
|
|
ntpdata->time_freq = min(ntpdata->time_freq, MAXFREQ_SCALED);
|
|
ntpdata->time_freq = max(ntpdata->time_freq, -MAXFREQ_SCALED);
|
|
/* Update pps_freq */
|
|
pps_set_freq(ntpdata);
|
|
}
|
|
|
|
if (txc->modes & ADJ_MAXERROR)
|
|
ntpdata->time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
|
|
|
|
if (txc->modes & ADJ_ESTERROR)
|
|
ntpdata->time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
|
|
|
|
if (txc->modes & ADJ_TIMECONST) {
|
|
ntpdata->time_constant = clamp(txc->constant, 0, MAXTC);
|
|
if (!(ntpdata->time_status & STA_NANO))
|
|
ntpdata->time_constant += 4;
|
|
ntpdata->time_constant = clamp(ntpdata->time_constant, 0, MAXTC);
|
|
}
|
|
|
|
if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
|
|
*time_tai = txc->constant;
|
|
|
|
if (txc->modes & ADJ_OFFSET)
|
|
ntp_update_offset(ntpdata, txc->offset);
|
|
|
|
if (txc->modes & ADJ_TICK)
|
|
ntpdata->tick_usec = txc->tick;
|
|
|
|
if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
|
|
ntp_update_frequency(ntpdata);
|
|
}
|
|
|
|
/*
|
|
* adjtimex() mainly allows reading (and writing, if superuser) of
|
|
* kernel time-keeping variables. used by xntpd.
|
|
*/
|
|
int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
|
|
s32 *time_tai, struct audit_ntp_data *ad)
|
|
{
|
|
struct ntp_data *ntpdata = &tk_ntp_data;
|
|
int result;
|
|
|
|
if (txc->modes & ADJ_ADJTIME) {
|
|
long save_adjust = ntpdata->time_adjust;
|
|
|
|
if (!(txc->modes & ADJ_OFFSET_READONLY)) {
|
|
/* adjtime() is independent from ntp_adjtime() */
|
|
ntpdata->time_adjust = txc->offset;
|
|
ntp_update_frequency(ntpdata);
|
|
|
|
audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust);
|
|
audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, ntpdata->time_adjust);
|
|
}
|
|
txc->offset = save_adjust;
|
|
} else {
|
|
/* If there are input parameters, then process them: */
|
|
if (txc->modes) {
|
|
audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset);
|
|
audit_ntp_set_old(ad, AUDIT_NTP_FREQ, ntpdata->time_freq);
|
|
audit_ntp_set_old(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
|
|
audit_ntp_set_old(ad, AUDIT_NTP_TAI, *time_tai);
|
|
audit_ntp_set_old(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
|
|
|
|
process_adjtimex_modes(ntpdata, txc, time_tai);
|
|
|
|
audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset);
|
|
audit_ntp_set_new(ad, AUDIT_NTP_FREQ, ntpdata->time_freq);
|
|
audit_ntp_set_new(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
|
|
audit_ntp_set_new(ad, AUDIT_NTP_TAI, *time_tai);
|
|
audit_ntp_set_new(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
|
|
}
|
|
|
|
txc->offset = shift_right(ntpdata->time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT);
|
|
if (!(ntpdata->time_status & STA_NANO))
|
|
txc->offset = div_s64(txc->offset, NSEC_PER_USEC);
|
|
}
|
|
|
|
result = ntpdata->time_state;
|
|
if (is_error_status(ntpdata->time_status))
|
|
result = TIME_ERROR;
|
|
|
|
txc->freq = shift_right((ntpdata->time_freq >> PPM_SCALE_INV_SHIFT) *
|
|
PPM_SCALE_INV, NTP_SCALE_SHIFT);
|
|
txc->maxerror = ntpdata->time_maxerror;
|
|
txc->esterror = ntpdata->time_esterror;
|
|
txc->status = ntpdata->time_status;
|
|
txc->constant = ntpdata->time_constant;
|
|
txc->precision = 1;
|
|
txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
|
|
txc->tick = ntpdata->tick_usec;
|
|
txc->tai = *time_tai;
|
|
|
|
/* Fill PPS status fields */
|
|
pps_fill_timex(ntpdata, txc);
|
|
|
|
txc->time.tv_sec = ts->tv_sec;
|
|
txc->time.tv_usec = ts->tv_nsec;
|
|
if (!(ntpdata->time_status & STA_NANO))
|
|
txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
|
|
|
|
/* Handle leapsec adjustments */
|
|
if (unlikely(ts->tv_sec >= ntpdata->ntp_next_leap_sec)) {
|
|
if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) {
|
|
result = TIME_OOP;
|
|
txc->tai++;
|
|
txc->time.tv_sec--;
|
|
}
|
|
if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) {
|
|
result = TIME_WAIT;
|
|
txc->tai--;
|
|
txc->time.tv_sec++;
|
|
}
|
|
if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntpdata->ntp_next_leap_sec))
|
|
result = TIME_WAIT;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#ifdef CONFIG_NTP_PPS
|
|
|
|
/*
|
|
* struct pps_normtime is basically a struct timespec, but it is
|
|
* semantically different (and it is the reason why it was invented):
|
|
* pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
|
|
* while timespec.tv_nsec has a range of [0, NSEC_PER_SEC)
|
|
*/
|
|
struct pps_normtime {
|
|
s64 sec; /* seconds */
|
|
long nsec; /* nanoseconds */
|
|
};
|
|
|
|
/*
|
|
* Normalize the timestamp so that nsec is in the
|
|
* [ -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval
|
|
*/
|
|
static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
|
|
{
|
|
struct pps_normtime norm = {
|
|
.sec = ts.tv_sec,
|
|
.nsec = ts.tv_nsec
|
|
};
|
|
|
|
if (norm.nsec > (NSEC_PER_SEC >> 1)) {
|
|
norm.nsec -= NSEC_PER_SEC;
|
|
norm.sec++;
|
|
}
|
|
|
|
return norm;
|
|
}
|
|
|
|
/* Get current phase correction and jitter */
|
|
static inline long pps_phase_filter_get(struct ntp_data *ntpdata, long *jitter)
|
|
{
|
|
*jitter = ntpdata->pps_tf[0] - ntpdata->pps_tf[1];
|
|
if (*jitter < 0)
|
|
*jitter = -*jitter;
|
|
|
|
/* TODO: test various filters */
|
|
return ntpdata->pps_tf[0];
|
|
}
|
|
|
|
/* Add the sample to the phase filter */
|
|
static inline void pps_phase_filter_add(struct ntp_data *ntpdata, long err)
|
|
{
|
|
ntpdata->pps_tf[2] = ntpdata->pps_tf[1];
|
|
ntpdata->pps_tf[1] = ntpdata->pps_tf[0];
|
|
ntpdata->pps_tf[0] = err;
|
|
}
|
|
|
|
/*
|
|
* Decrease frequency calibration interval length. It is halved after four
|
|
* consecutive unstable intervals.
|
|
*/
|
|
static inline void pps_dec_freq_interval(struct ntp_data *ntpdata)
|
|
{
|
|
if (--ntpdata->pps_intcnt <= -PPS_INTCOUNT) {
|
|
ntpdata->pps_intcnt = -PPS_INTCOUNT;
|
|
if (ntpdata->pps_shift > PPS_INTMIN) {
|
|
ntpdata->pps_shift--;
|
|
ntpdata->pps_intcnt = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Increase frequency calibration interval length. It is doubled after
|
|
* four consecutive stable intervals.
|
|
*/
|
|
static inline void pps_inc_freq_interval(struct ntp_data *ntpdata)
|
|
{
|
|
if (++ntpdata->pps_intcnt >= PPS_INTCOUNT) {
|
|
ntpdata->pps_intcnt = PPS_INTCOUNT;
|
|
if (ntpdata->pps_shift < PPS_INTMAX) {
|
|
ntpdata->pps_shift++;
|
|
ntpdata->pps_intcnt = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update clock frequency based on MONOTONIC_RAW clock PPS signal
|
|
* timestamps
|
|
*
|
|
* At the end of the calibration interval the difference between the
|
|
* first and last MONOTONIC_RAW clock timestamps divided by the length
|
|
* of the interval becomes the frequency update. If the interval was
|
|
* too long, the data are discarded.
|
|
* Returns the difference between old and new frequency values.
|
|
*/
|
|
static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime freq_norm)
|
|
{
|
|
long delta, delta_mod;
|
|
s64 ftemp;
|
|
|
|
/* Check if the frequency interval was too long */
|
|
if (freq_norm.sec > (2 << ntpdata->pps_shift)) {
|
|
ntpdata->time_status |= STA_PPSERROR;
|
|
ntpdata->pps_errcnt++;
|
|
pps_dec_freq_interval(ntpdata);
|
|
printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n",
|
|
freq_norm.sec);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Here the raw frequency offset and wander (stability) is
|
|
* calculated. If the wander is less than the wander threshold the
|
|
* interval is increased; otherwise it is decreased.
|
|
*/
|
|
ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
|
|
freq_norm.sec);
|
|
delta = shift_right(ftemp - ntpdata->pps_freq, NTP_SCALE_SHIFT);
|
|
ntpdata->pps_freq = ftemp;
|
|
if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
|
|
printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta);
|
|
ntpdata->time_status |= STA_PPSWANDER;
|
|
ntpdata->pps_stbcnt++;
|
|
pps_dec_freq_interval(ntpdata);
|
|
} else {
|
|
/* Good sample */
|
|
pps_inc_freq_interval(ntpdata);
|
|
}
|
|
|
|
/*
|
|
* The stability metric is calculated as the average of recent
|
|
* frequency changes, but is used only for performance monitoring
|
|
*/
|
|
delta_mod = delta;
|
|
if (delta_mod < 0)
|
|
delta_mod = -delta_mod;
|
|
ntpdata->pps_stabil += (div_s64(((s64)delta_mod) << (NTP_SCALE_SHIFT - SHIFT_USEC),
|
|
NSEC_PER_USEC) - ntpdata->pps_stabil) >> PPS_INTMIN;
|
|
|
|
/* If enabled, the system clock frequency is updated */
|
|
if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) {
|
|
ntpdata->time_freq = ntpdata->pps_freq;
|
|
ntp_update_frequency(ntpdata);
|
|
}
|
|
|
|
return delta;
|
|
}
|
|
|
|
/* Correct REALTIME clock phase error against PPS signal */
|
|
static void hardpps_update_phase(struct ntp_data *ntpdata, long error)
|
|
{
|
|
long correction = -error;
|
|
long jitter;
|
|
|
|
/* Add the sample to the median filter */
|
|
pps_phase_filter_add(ntpdata, correction);
|
|
correction = pps_phase_filter_get(ntpdata, &jitter);
|
|
|
|
/*
|
|
* Nominal jitter is due to PPS signal noise. If it exceeds the
|
|
* threshold, the sample is discarded; otherwise, if so enabled,
|
|
* the time offset is updated.
|
|
*/
|
|
if (jitter > (ntpdata->pps_jitter << PPS_POPCORN)) {
|
|
printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
|
|
jitter, (ntpdata->pps_jitter << PPS_POPCORN));
|
|
ntpdata->time_status |= STA_PPSJITTER;
|
|
ntpdata->pps_jitcnt++;
|
|
} else if (ntpdata->time_status & STA_PPSTIME) {
|
|
/* Correct the time using the phase offset */
|
|
ntpdata->time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
|
|
NTP_INTERVAL_FREQ);
|
|
/* Cancel running adjtime() */
|
|
ntpdata->time_adjust = 0;
|
|
}
|
|
/* Update jitter */
|
|
ntpdata->pps_jitter += (jitter - ntpdata->pps_jitter) >> PPS_INTMIN;
|
|
}
|
|
|
|
/*
|
|
* __hardpps() - discipline CPU clock oscillator to external PPS signal
|
|
*
|
|
* This routine is called at each PPS signal arrival in order to
|
|
* discipline the CPU clock oscillator to the PPS signal. It takes two
|
|
* parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
|
|
* is used to correct clock phase error and the latter is used to
|
|
* correct the frequency.
|
|
*
|
|
* This code is based on David Mills's reference nanokernel
|
|
* implementation. It was mostly rewritten but keeps the same idea.
|
|
*/
|
|
void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
|
|
{
|
|
struct pps_normtime pts_norm, freq_norm;
|
|
struct ntp_data *ntpdata = &tk_ntp_data;
|
|
|
|
pts_norm = pps_normalize_ts(*phase_ts);
|
|
|
|
/* Clear the error bits, they will be set again if needed */
|
|
ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
|
|
|
|
/* indicate signal presence */
|
|
ntpdata->time_status |= STA_PPSSIGNAL;
|
|
ntpdata->pps_valid = PPS_VALID;
|
|
|
|
/*
|
|
* When called for the first time, just start the frequency
|
|
* interval
|
|
*/
|
|
if (unlikely(ntpdata->pps_fbase.tv_sec == 0)) {
|
|
ntpdata->pps_fbase = *raw_ts;
|
|
return;
|
|
}
|
|
|
|
/* Ok, now we have a base for frequency calculation */
|
|
freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, ntpdata->pps_fbase));
|
|
|
|
/*
|
|
* Check that the signal is in the range
|
|
* [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it
|
|
*/
|
|
if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
|
|
(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
|
|
ntpdata->time_status |= STA_PPSJITTER;
|
|
/* Restart the frequency calibration interval */
|
|
ntpdata->pps_fbase = *raw_ts;
|
|
printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
|
|
return;
|
|
}
|
|
|
|
/* Signal is ok. Check if the current frequency interval is finished */
|
|
if (freq_norm.sec >= (1 << ntpdata->pps_shift)) {
|
|
ntpdata->pps_calcnt++;
|
|
/* Restart the frequency calibration interval */
|
|
ntpdata->pps_fbase = *raw_ts;
|
|
hardpps_update_freq(ntpdata, freq_norm);
|
|
}
|
|
|
|
hardpps_update_phase(ntpdata, pts_norm.nsec);
|
|
|
|
}
|
|
#endif /* CONFIG_NTP_PPS */
|
|
|
|
static int __init ntp_tick_adj_setup(char *str)
|
|
{
|
|
int rc = kstrtos64(str, 0, &tk_ntp_data.ntp_tick_adj);
|
|
if (rc)
|
|
return rc;
|
|
|
|
tk_ntp_data.ntp_tick_adj <<= NTP_SCALE_SHIFT;
|
|
return 1;
|
|
}
|
|
|
|
__setup("ntp_tick_adj=", ntp_tick_adj_setup);
|
|
|
|
void __init ntp_init(void)
|
|
{
|
|
ntp_clear();
|
|
ntp_init_cmos_sync();
|
|
}
|