linux-next/drivers/thermal/qcom/qcom-spmi-adc-tm5.c
Rob Herring f6a756e8fb thermal: Explicitly include correct DT includes
The DT of_device.h and of_platform.h date back to the separate
of_platform_bus_type before it as merged into the regular platform bus.
As part of that merge prepping Arm DT support 13 years ago, they
"temporarily" include each other. They also include platform_device.h
and of.h. As a result, there's a pretty much random mix of those include
files used throughout the tree. In order to detangle these headers and
replace the implicit includes with struct declarations, users need to
explicitly include the correct includes.

Signed-off-by: Rob Herring <robh@kernel.org>
Reviewed-by: Alim Akhtar <alim.akhtar@samsung.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2023-07-31 20:03:42 +02:00

1078 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2020 Linaro Limited
*
* Based on original driver:
* Copyright (c) 2012-2020, The Linux Foundation. All rights reserved.
*
* Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/bitfield.h>
#include <linux/iio/adc/qcom-vadc-common.h>
#include <linux/iio/consumer.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/thermal.h>
#include <asm/unaligned.h>
#include "../thermal_hwmon.h"
/*
* Thermal monitoring block consists of 8 (ADC_TM5_NUM_CHANNELS) channels. Each
* channel is programmed to use one of ADC channels for voltage comparison.
* Voltages are programmed using ADC codes, so we have to convert temp to
* voltage and then to ADC code value.
*
* Configuration of TM channels must match configuration of corresponding ADC
* channels.
*/
#define ADC5_MAX_CHANNEL 0xc0
#define ADC_TM5_NUM_CHANNELS 8
#define ADC_TM5_STATUS_LOW 0x0a
#define ADC_TM5_STATUS_HIGH 0x0b
#define ADC_TM5_NUM_BTM 0x0f
#define ADC_TM5_ADC_DIG_PARAM 0x42
#define ADC_TM5_FAST_AVG_CTL (ADC_TM5_ADC_DIG_PARAM + 1)
#define ADC_TM5_FAST_AVG_EN BIT(7)
#define ADC_TM5_MEAS_INTERVAL_CTL (ADC_TM5_ADC_DIG_PARAM + 2)
#define ADC_TM5_TIMER1 3 /* 3.9ms */
#define ADC_TM5_MEAS_INTERVAL_CTL2 (ADC_TM5_ADC_DIG_PARAM + 3)
#define ADC_TM5_MEAS_INTERVAL_CTL2_MASK 0xf0
#define ADC_TM5_TIMER2 10 /* 1 second */
#define ADC_TM5_MEAS_INTERVAL_CTL3_MASK 0xf
#define ADC_TM5_TIMER3 4 /* 4 second */
#define ADC_TM_EN_CTL1 0x46
#define ADC_TM_EN BIT(7)
#define ADC_TM_CONV_REQ 0x47
#define ADC_TM_CONV_REQ_EN BIT(7)
#define ADC_TM5_M_CHAN_BASE 0x60
#define ADC_TM5_M_ADC_CH_SEL_CTL(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 0)
#define ADC_TM5_M_LOW_THR0(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 1)
#define ADC_TM5_M_LOW_THR1(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 2)
#define ADC_TM5_M_HIGH_THR0(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 3)
#define ADC_TM5_M_HIGH_THR1(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 4)
#define ADC_TM5_M_MEAS_INTERVAL_CTL(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 5)
#define ADC_TM5_M_CTL(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 6)
#define ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK 0xf
#define ADC_TM5_M_CTL_CAL_SEL_MASK 0x30
#define ADC_TM5_M_CTL_CAL_VAL 0x40
#define ADC_TM5_M_EN(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 7)
#define ADC_TM5_M_MEAS_EN BIT(7)
#define ADC_TM5_M_HIGH_THR_INT_EN BIT(1)
#define ADC_TM5_M_LOW_THR_INT_EN BIT(0)
#define ADC_TM_GEN2_STATUS1 0x08
#define ADC_TM_GEN2_STATUS_LOW_SET 0x09
#define ADC_TM_GEN2_STATUS_LOW_CLR 0x0a
#define ADC_TM_GEN2_STATUS_HIGH_SET 0x0b
#define ADC_TM_GEN2_STATUS_HIGH_CLR 0x0c
#define ADC_TM_GEN2_CFG_HS_SET 0x0d
#define ADC_TM_GEN2_CFG_HS_FLAG BIT(0)
#define ADC_TM_GEN2_CFG_HS_CLR 0x0e
#define ADC_TM_GEN2_SID 0x40
#define ADC_TM_GEN2_CH_CTL 0x41
#define ADC_TM_GEN2_TM_CH_SEL GENMASK(7, 5)
#define ADC_TM_GEN2_MEAS_INT_SEL GENMASK(3, 2)
#define ADC_TM_GEN2_ADC_DIG_PARAM 0x42
#define ADC_TM_GEN2_CTL_CAL_SEL GENMASK(5, 4)
#define ADC_TM_GEN2_CTL_DEC_RATIO_MASK GENMASK(3, 2)
#define ADC_TM_GEN2_FAST_AVG_CTL 0x43
#define ADC_TM_GEN2_FAST_AVG_EN BIT(7)
#define ADC_TM_GEN2_ADC_CH_SEL_CTL 0x44
#define ADC_TM_GEN2_DELAY_CTL 0x45
#define ADC_TM_GEN2_HW_SETTLE_DELAY GENMASK(3, 0)
#define ADC_TM_GEN2_EN_CTL1 0x46
#define ADC_TM_GEN2_EN BIT(7)
#define ADC_TM_GEN2_CONV_REQ 0x47
#define ADC_TM_GEN2_CONV_REQ_EN BIT(7)
#define ADC_TM_GEN2_LOW_THR0 0x49
#define ADC_TM_GEN2_LOW_THR1 0x4a
#define ADC_TM_GEN2_HIGH_THR0 0x4b
#define ADC_TM_GEN2_HIGH_THR1 0x4c
#define ADC_TM_GEN2_LOWER_MASK(n) ((n) & GENMASK(7, 0))
#define ADC_TM_GEN2_UPPER_MASK(n) (((n) & GENMASK(15, 8)) >> 8)
#define ADC_TM_GEN2_MEAS_IRQ_EN 0x4d
#define ADC_TM_GEN2_MEAS_EN BIT(7)
#define ADC_TM5_GEN2_HIGH_THR_INT_EN BIT(1)
#define ADC_TM5_GEN2_LOW_THR_INT_EN BIT(0)
#define ADC_TM_GEN2_MEAS_INT_LSB 0x50
#define ADC_TM_GEN2_MEAS_INT_MSB 0x51
#define ADC_TM_GEN2_MEAS_INT_MODE 0x52
#define ADC_TM_GEN2_Mn_DATA0(n) ((n * 2) + 0xa0)
#define ADC_TM_GEN2_Mn_DATA1(n) ((n * 2) + 0xa1)
#define ADC_TM_GEN2_DATA_SHIFT 8
enum adc5_timer_select {
ADC5_TIMER_SEL_1 = 0,
ADC5_TIMER_SEL_2,
ADC5_TIMER_SEL_3,
ADC5_TIMER_SEL_NONE,
};
enum adc5_gen {
ADC_TM5,
ADC_TM_HC,
ADC_TM5_GEN2,
ADC_TM5_MAX
};
enum adc_tm5_cal_method {
ADC_TM5_NO_CAL = 0,
ADC_TM5_RATIOMETRIC_CAL,
ADC_TM5_ABSOLUTE_CAL
};
enum adc_tm_gen2_time_select {
MEAS_INT_50MS = 0,
MEAS_INT_100MS,
MEAS_INT_1S,
MEAS_INT_SET,
MEAS_INT_NONE,
};
struct adc_tm5_chip;
struct adc_tm5_channel;
struct adc_tm5_data {
const u32 full_scale_code_volt;
unsigned int *decimation;
unsigned int *hw_settle;
int (*disable_channel)(struct adc_tm5_channel *channel);
int (*configure)(struct adc_tm5_channel *channel, int low, int high);
irqreturn_t (*isr)(int irq, void *data);
int (*init)(struct adc_tm5_chip *chip);
char *irq_name;
int gen;
};
/**
* struct adc_tm5_channel - ADC Thermal Monitoring channel data.
* @channel: channel number.
* @adc_channel: corresponding ADC channel number.
* @cal_method: calibration method.
* @prescale: channel scaling performed on the input signal.
* @hw_settle_time: the time between AMUX being configured and the
* start of conversion.
* @decimation: sampling rate supported for the channel.
* @avg_samples: ability to provide single result from the ADC
* that is an average of multiple measurements.
* @high_thr_en: channel upper voltage threshold enable state.
* @low_thr_en: channel lower voltage threshold enable state.
* @meas_en: recurring measurement enable state
* @iio: IIO channel instance used by this channel.
* @chip: ADC TM chip instance.
* @tzd: thermal zone device used by this channel.
*/
struct adc_tm5_channel {
unsigned int channel;
unsigned int adc_channel;
enum adc_tm5_cal_method cal_method;
unsigned int prescale;
unsigned int hw_settle_time;
unsigned int decimation; /* For Gen2 ADC_TM */
unsigned int avg_samples; /* For Gen2 ADC_TM */
bool high_thr_en; /* For Gen2 ADC_TM */
bool low_thr_en; /* For Gen2 ADC_TM */
bool meas_en; /* For Gen2 ADC_TM */
struct iio_channel *iio;
struct adc_tm5_chip *chip;
struct thermal_zone_device *tzd;
};
/**
* struct adc_tm5_chip - ADC Thermal Monitoring properties
* @regmap: SPMI ADC5 Thermal Monitoring peripheral register map field.
* @dev: SPMI ADC5 device.
* @data: software configuration data.
* @channels: array of ADC TM channel data.
* @nchannels: amount of channels defined/allocated
* @decimation: sampling rate supported for the channel.
* Applies to all channels, used only on Gen1 ADC_TM.
* @avg_samples: ability to provide single result from the ADC
* that is an average of multiple measurements. Applies to all
* channels, used only on Gen1 ADC_TM.
* @base: base address of TM registers.
* @adc_mutex_lock: ADC_TM mutex lock, used only on Gen2 ADC_TM.
* It is used to ensure only one ADC channel configuration
* is done at a time using the shared set of configuration
* registers.
*/
struct adc_tm5_chip {
struct regmap *regmap;
struct device *dev;
const struct adc_tm5_data *data;
struct adc_tm5_channel *channels;
unsigned int nchannels;
unsigned int decimation;
unsigned int avg_samples;
u16 base;
struct mutex adc_mutex_lock;
};
static int adc_tm5_read(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len)
{
return regmap_bulk_read(adc_tm->regmap, adc_tm->base + offset, data, len);
}
static int adc_tm5_write(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len)
{
return regmap_bulk_write(adc_tm->regmap, adc_tm->base + offset, data, len);
}
static int adc_tm5_reg_update(struct adc_tm5_chip *adc_tm, u16 offset, u8 mask, u8 val)
{
return regmap_write_bits(adc_tm->regmap, adc_tm->base + offset, mask, val);
}
static irqreturn_t adc_tm5_isr(int irq, void *data)
{
struct adc_tm5_chip *chip = data;
u8 status_low, status_high, ctl;
int ret, i;
ret = adc_tm5_read(chip, ADC_TM5_STATUS_LOW, &status_low, sizeof(status_low));
if (unlikely(ret)) {
dev_err(chip->dev, "read status low failed: %d\n", ret);
return IRQ_HANDLED;
}
ret = adc_tm5_read(chip, ADC_TM5_STATUS_HIGH, &status_high, sizeof(status_high));
if (unlikely(ret)) {
dev_err(chip->dev, "read status high failed: %d\n", ret);
return IRQ_HANDLED;
}
for (i = 0; i < chip->nchannels; i++) {
bool upper_set = false, lower_set = false;
unsigned int ch = chip->channels[i].channel;
/* No TZD, we warned at the boot time */
if (!chip->channels[i].tzd)
continue;
ret = adc_tm5_read(chip, ADC_TM5_M_EN(ch), &ctl, sizeof(ctl));
if (unlikely(ret)) {
dev_err(chip->dev, "ctl read failed: %d, channel %d\n", ret, i);
continue;
}
if (!(ctl & ADC_TM5_M_MEAS_EN))
continue;
lower_set = (status_low & BIT(ch)) &&
(ctl & ADC_TM5_M_LOW_THR_INT_EN);
upper_set = (status_high & BIT(ch)) &&
(ctl & ADC_TM5_M_HIGH_THR_INT_EN);
if (upper_set || lower_set)
thermal_zone_device_update(chip->channels[i].tzd,
THERMAL_EVENT_UNSPECIFIED);
}
return IRQ_HANDLED;
}
static irqreturn_t adc_tm5_gen2_isr(int irq, void *data)
{
struct adc_tm5_chip *chip = data;
u8 status_low, status_high;
int ret, i;
ret = adc_tm5_read(chip, ADC_TM_GEN2_STATUS_LOW_CLR, &status_low, sizeof(status_low));
if (ret) {
dev_err(chip->dev, "read status_low failed: %d\n", ret);
return IRQ_HANDLED;
}
ret = adc_tm5_read(chip, ADC_TM_GEN2_STATUS_HIGH_CLR, &status_high, sizeof(status_high));
if (ret) {
dev_err(chip->dev, "read status_high failed: %d\n", ret);
return IRQ_HANDLED;
}
ret = adc_tm5_write(chip, ADC_TM_GEN2_STATUS_LOW_CLR, &status_low, sizeof(status_low));
if (ret < 0) {
dev_err(chip->dev, "clear status low failed with %d\n", ret);
return IRQ_HANDLED;
}
ret = adc_tm5_write(chip, ADC_TM_GEN2_STATUS_HIGH_CLR, &status_high, sizeof(status_high));
if (ret < 0) {
dev_err(chip->dev, "clear status high failed with %d\n", ret);
return IRQ_HANDLED;
}
for (i = 0; i < chip->nchannels; i++) {
bool upper_set = false, lower_set = false;
unsigned int ch = chip->channels[i].channel;
/* No TZD, we warned at the boot time */
if (!chip->channels[i].tzd)
continue;
if (!chip->channels[i].meas_en)
continue;
lower_set = (status_low & BIT(ch)) &&
(chip->channels[i].low_thr_en);
upper_set = (status_high & BIT(ch)) &&
(chip->channels[i].high_thr_en);
if (upper_set || lower_set)
thermal_zone_device_update(chip->channels[i].tzd,
THERMAL_EVENT_UNSPECIFIED);
}
return IRQ_HANDLED;
}
static int adc_tm5_get_temp(struct thermal_zone_device *tz, int *temp)
{
struct adc_tm5_channel *channel = thermal_zone_device_priv(tz);
int ret;
if (!channel || !channel->iio)
return -EINVAL;
ret = iio_read_channel_processed(channel->iio, temp);
if (ret < 0)
return ret;
if (ret != IIO_VAL_INT)
return -EINVAL;
return 0;
}
static int adc_tm5_disable_channel(struct adc_tm5_channel *channel)
{
struct adc_tm5_chip *chip = channel->chip;
unsigned int reg = ADC_TM5_M_EN(channel->channel);
return adc_tm5_reg_update(chip, reg,
ADC_TM5_M_MEAS_EN |
ADC_TM5_M_HIGH_THR_INT_EN |
ADC_TM5_M_LOW_THR_INT_EN,
0);
}
#define ADC_TM_GEN2_POLL_DELAY_MIN_US 100
#define ADC_TM_GEN2_POLL_DELAY_MAX_US 110
#define ADC_TM_GEN2_POLL_RETRY_COUNT 3
static int32_t adc_tm5_gen2_conv_req(struct adc_tm5_chip *chip)
{
int ret;
u8 data;
unsigned int count;
data = ADC_TM_GEN2_EN;
ret = adc_tm5_write(chip, ADC_TM_GEN2_EN_CTL1, &data, 1);
if (ret < 0) {
dev_err(chip->dev, "adc-tm enable failed with %d\n", ret);
return ret;
}
data = ADC_TM_GEN2_CFG_HS_FLAG;
ret = adc_tm5_write(chip, ADC_TM_GEN2_CFG_HS_SET, &data, 1);
if (ret < 0) {
dev_err(chip->dev, "adc-tm handshake failed with %d\n", ret);
return ret;
}
data = ADC_TM_GEN2_CONV_REQ_EN;
ret = adc_tm5_write(chip, ADC_TM_GEN2_CONV_REQ, &data, 1);
if (ret < 0) {
dev_err(chip->dev, "adc-tm request conversion failed with %d\n", ret);
return ret;
}
/*
* SW sets a handshake bit and waits for PBS to clear it
* before the next conversion request can be queued.
*/
for (count = 0; count < ADC_TM_GEN2_POLL_RETRY_COUNT; count++) {
ret = adc_tm5_read(chip, ADC_TM_GEN2_CFG_HS_SET, &data, sizeof(data));
if (ret < 0) {
dev_err(chip->dev, "adc-tm read failed with %d\n", ret);
return ret;
}
if (!(data & ADC_TM_GEN2_CFG_HS_FLAG))
return ret;
usleep_range(ADC_TM_GEN2_POLL_DELAY_MIN_US,
ADC_TM_GEN2_POLL_DELAY_MAX_US);
}
dev_err(chip->dev, "adc-tm conversion request handshake timed out\n");
return -ETIMEDOUT;
}
static int adc_tm5_gen2_disable_channel(struct adc_tm5_channel *channel)
{
struct adc_tm5_chip *chip = channel->chip;
int ret;
u8 val;
mutex_lock(&chip->adc_mutex_lock);
channel->meas_en = false;
channel->high_thr_en = false;
channel->low_thr_en = false;
ret = adc_tm5_read(chip, ADC_TM_GEN2_CH_CTL, &val, sizeof(val));
if (ret < 0) {
dev_err(chip->dev, "adc-tm block read failed with %d\n", ret);
goto disable_fail;
}
val &= ~ADC_TM_GEN2_TM_CH_SEL;
val |= FIELD_PREP(ADC_TM_GEN2_TM_CH_SEL, channel->channel);
ret = adc_tm5_write(chip, ADC_TM_GEN2_CH_CTL, &val, 1);
if (ret < 0) {
dev_err(chip->dev, "adc-tm channel disable failed with %d\n", ret);
goto disable_fail;
}
val = 0;
ret = adc_tm5_write(chip, ADC_TM_GEN2_MEAS_IRQ_EN, &val, 1);
if (ret < 0) {
dev_err(chip->dev, "adc-tm interrupt disable failed with %d\n", ret);
goto disable_fail;
}
ret = adc_tm5_gen2_conv_req(channel->chip);
if (ret < 0)
dev_err(chip->dev, "adc-tm channel configure failed with %d\n", ret);
disable_fail:
mutex_unlock(&chip->adc_mutex_lock);
return ret;
}
static int adc_tm5_enable(struct adc_tm5_chip *chip)
{
int ret;
u8 data;
data = ADC_TM_EN;
ret = adc_tm5_write(chip, ADC_TM_EN_CTL1, &data, sizeof(data));
if (ret < 0) {
dev_err(chip->dev, "adc-tm enable failed\n");
return ret;
}
data = ADC_TM_CONV_REQ_EN;
ret = adc_tm5_write(chip, ADC_TM_CONV_REQ, &data, sizeof(data));
if (ret < 0) {
dev_err(chip->dev, "adc-tm request conversion failed\n");
return ret;
}
return 0;
}
static int adc_tm5_configure(struct adc_tm5_channel *channel, int low, int high)
{
struct adc_tm5_chip *chip = channel->chip;
u8 buf[8];
u16 reg = ADC_TM5_M_ADC_CH_SEL_CTL(channel->channel);
int ret;
ret = adc_tm5_read(chip, reg, buf, sizeof(buf));
if (ret) {
dev_err(chip->dev, "channel %d params read failed: %d\n", channel->channel, ret);
return ret;
}
buf[0] = channel->adc_channel;
/* High temperature corresponds to low voltage threshold */
if (high != INT_MAX) {
u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale,
chip->data->full_scale_code_volt, high);
put_unaligned_le16(adc_code, &buf[1]);
buf[7] |= ADC_TM5_M_LOW_THR_INT_EN;
} else {
buf[7] &= ~ADC_TM5_M_LOW_THR_INT_EN;
}
/* Low temperature corresponds to high voltage threshold */
if (low != -INT_MAX) {
u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale,
chip->data->full_scale_code_volt, low);
put_unaligned_le16(adc_code, &buf[3]);
buf[7] |= ADC_TM5_M_HIGH_THR_INT_EN;
} else {
buf[7] &= ~ADC_TM5_M_HIGH_THR_INT_EN;
}
buf[5] = ADC5_TIMER_SEL_2;
/* Set calibration select, hw_settle delay */
buf[6] &= ~ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK;
buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK, channel->hw_settle_time);
buf[6] &= ~ADC_TM5_M_CTL_CAL_SEL_MASK;
buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_CAL_SEL_MASK, channel->cal_method);
buf[7] |= ADC_TM5_M_MEAS_EN;
ret = adc_tm5_write(chip, reg, buf, sizeof(buf));
if (ret) {
dev_err(chip->dev, "channel %d params write failed: %d\n", channel->channel, ret);
return ret;
}
return adc_tm5_enable(chip);
}
static int adc_tm5_gen2_configure(struct adc_tm5_channel *channel, int low, int high)
{
struct adc_tm5_chip *chip = channel->chip;
int ret;
u8 buf[14];
u16 adc_code;
mutex_lock(&chip->adc_mutex_lock);
channel->meas_en = true;
ret = adc_tm5_read(chip, ADC_TM_GEN2_SID, buf, sizeof(buf));
if (ret < 0) {
dev_err(chip->dev, "adc-tm block read failed with %d\n", ret);
goto config_fail;
}
/* Set SID from virtual channel number */
buf[0] = channel->adc_channel >> 8;
/* Set TM channel number used and measurement interval */
buf[1] &= ~ADC_TM_GEN2_TM_CH_SEL;
buf[1] |= FIELD_PREP(ADC_TM_GEN2_TM_CH_SEL, channel->channel);
buf[1] &= ~ADC_TM_GEN2_MEAS_INT_SEL;
buf[1] |= FIELD_PREP(ADC_TM_GEN2_MEAS_INT_SEL, MEAS_INT_1S);
buf[2] &= ~ADC_TM_GEN2_CTL_DEC_RATIO_MASK;
buf[2] |= FIELD_PREP(ADC_TM_GEN2_CTL_DEC_RATIO_MASK, channel->decimation);
buf[2] &= ~ADC_TM_GEN2_CTL_CAL_SEL;
buf[2] |= FIELD_PREP(ADC_TM_GEN2_CTL_CAL_SEL, channel->cal_method);
buf[3] = channel->avg_samples | ADC_TM_GEN2_FAST_AVG_EN;
buf[4] = channel->adc_channel & 0xff;
buf[5] = channel->hw_settle_time & ADC_TM_GEN2_HW_SETTLE_DELAY;
/* High temperature corresponds to low voltage threshold */
if (high != INT_MAX) {
channel->low_thr_en = true;
adc_code = qcom_adc_tm5_gen2_temp_res_scale(high);
put_unaligned_le16(adc_code, &buf[9]);
} else {
channel->low_thr_en = false;
}
/* Low temperature corresponds to high voltage threshold */
if (low != -INT_MAX) {
channel->high_thr_en = true;
adc_code = qcom_adc_tm5_gen2_temp_res_scale(low);
put_unaligned_le16(adc_code, &buf[11]);
} else {
channel->high_thr_en = false;
}
buf[13] = ADC_TM_GEN2_MEAS_EN;
if (channel->high_thr_en)
buf[13] |= ADC_TM5_GEN2_HIGH_THR_INT_EN;
if (channel->low_thr_en)
buf[13] |= ADC_TM5_GEN2_LOW_THR_INT_EN;
ret = adc_tm5_write(chip, ADC_TM_GEN2_SID, buf, sizeof(buf));
if (ret) {
dev_err(chip->dev, "channel %d params write failed: %d\n", channel->channel, ret);
goto config_fail;
}
ret = adc_tm5_gen2_conv_req(channel->chip);
if (ret < 0)
dev_err(chip->dev, "adc-tm channel configure failed with %d\n", ret);
config_fail:
mutex_unlock(&chip->adc_mutex_lock);
return ret;
}
static int adc_tm5_set_trips(struct thermal_zone_device *tz, int low, int high)
{
struct adc_tm5_channel *channel = thermal_zone_device_priv(tz);
struct adc_tm5_chip *chip;
int ret;
if (!channel)
return -EINVAL;
chip = channel->chip;
dev_dbg(chip->dev, "%d:low(mdegC):%d, high(mdegC):%d\n",
channel->channel, low, high);
if (high == INT_MAX && low <= -INT_MAX)
ret = chip->data->disable_channel(channel);
else
ret = chip->data->configure(channel, low, high);
return ret;
}
static const struct thermal_zone_device_ops adc_tm5_thermal_ops = {
.get_temp = adc_tm5_get_temp,
.set_trips = adc_tm5_set_trips,
};
static int adc_tm5_register_tzd(struct adc_tm5_chip *adc_tm)
{
unsigned int i;
struct thermal_zone_device *tzd;
for (i = 0; i < adc_tm->nchannels; i++) {
adc_tm->channels[i].chip = adc_tm;
tzd = devm_thermal_of_zone_register(adc_tm->dev,
adc_tm->channels[i].channel,
&adc_tm->channels[i],
&adc_tm5_thermal_ops);
if (IS_ERR(tzd)) {
if (PTR_ERR(tzd) == -ENODEV) {
dev_dbg(adc_tm->dev, "thermal sensor on channel %d is not used\n",
adc_tm->channels[i].channel);
continue;
}
dev_err(adc_tm->dev, "Error registering TZ zone for channel %d: %ld\n",
adc_tm->channels[i].channel, PTR_ERR(tzd));
return PTR_ERR(tzd);
}
adc_tm->channels[i].tzd = tzd;
devm_thermal_add_hwmon_sysfs(adc_tm->dev, tzd);
}
return 0;
}
static int adc_tm_hc_init(struct adc_tm5_chip *chip)
{
unsigned int i;
u8 buf[2];
int ret;
for (i = 0; i < chip->nchannels; i++) {
if (chip->channels[i].channel >= ADC_TM5_NUM_CHANNELS) {
dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel);
return -EINVAL;
}
}
buf[0] = chip->decimation;
buf[1] = chip->avg_samples | ADC_TM5_FAST_AVG_EN;
ret = adc_tm5_write(chip, ADC_TM5_ADC_DIG_PARAM, buf, sizeof(buf));
if (ret)
dev_err(chip->dev, "block write failed: %d\n", ret);
return ret;
}
static int adc_tm5_init(struct adc_tm5_chip *chip)
{
u8 buf[4], channels_available;
int ret;
unsigned int i;
ret = adc_tm5_read(chip, ADC_TM5_NUM_BTM,
&channels_available, sizeof(channels_available));
if (ret) {
dev_err(chip->dev, "read failed for BTM channels\n");
return ret;
}
for (i = 0; i < chip->nchannels; i++) {
if (chip->channels[i].channel >= channels_available) {
dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel);
return -EINVAL;
}
}
buf[0] = chip->decimation;
buf[1] = chip->avg_samples | ADC_TM5_FAST_AVG_EN;
buf[2] = ADC_TM5_TIMER1;
buf[3] = FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL2_MASK, ADC_TM5_TIMER2) |
FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL3_MASK, ADC_TM5_TIMER3);
ret = adc_tm5_write(chip, ADC_TM5_ADC_DIG_PARAM, buf, sizeof(buf));
if (ret) {
dev_err(chip->dev, "block write failed: %d\n", ret);
return ret;
}
return ret;
}
static int adc_tm5_gen2_init(struct adc_tm5_chip *chip)
{
u8 channels_available;
int ret;
unsigned int i;
ret = adc_tm5_read(chip, ADC_TM5_NUM_BTM,
&channels_available, sizeof(channels_available));
if (ret) {
dev_err(chip->dev, "read failed for BTM channels\n");
return ret;
}
for (i = 0; i < chip->nchannels; i++) {
if (chip->channels[i].channel >= channels_available) {
dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel);
return -EINVAL;
}
}
mutex_init(&chip->adc_mutex_lock);
return ret;
}
static int adc_tm5_get_dt_channel_data(struct adc_tm5_chip *adc_tm,
struct adc_tm5_channel *channel,
struct device_node *node)
{
const char *name = node->name;
u32 chan, value, adc_channel, varr[2];
int ret;
struct device *dev = adc_tm->dev;
struct of_phandle_args args;
ret = of_property_read_u32(node, "reg", &chan);
if (ret) {
dev_err(dev, "%s: invalid channel number %d\n", name, ret);
return ret;
}
if (chan >= ADC_TM5_NUM_CHANNELS) {
dev_err(dev, "%s: channel number too big: %d\n", name, chan);
return -EINVAL;
}
channel->channel = chan;
/*
* We are tied to PMIC's ADC controller, which always use single
* argument for channel number. So don't bother parsing
* #io-channel-cells, just enforce cell_count = 1.
*/
ret = of_parse_phandle_with_fixed_args(node, "io-channels", 1, 0, &args);
if (ret < 0) {
dev_err(dev, "%s: error parsing ADC channel number %d: %d\n", name, chan, ret);
return ret;
}
of_node_put(args.np);
if (args.args_count != 1) {
dev_err(dev, "%s: invalid args count for ADC channel %d\n", name, chan);
return -EINVAL;
}
adc_channel = args.args[0];
if (adc_tm->data->gen == ADC_TM5_GEN2)
adc_channel &= 0xff;
if (adc_channel >= ADC5_MAX_CHANNEL) {
dev_err(dev, "%s: invalid ADC channel number %d\n", name, chan);
return -EINVAL;
}
channel->adc_channel = args.args[0];
channel->iio = devm_fwnode_iio_channel_get_by_name(adc_tm->dev,
of_fwnode_handle(node), NULL);
if (IS_ERR(channel->iio)) {
ret = PTR_ERR(channel->iio);
if (ret != -EPROBE_DEFER)
dev_err(dev, "%s: error getting channel: %d\n", name, ret);
return ret;
}
ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
if (!ret) {
ret = qcom_adc5_prescaling_from_dt(varr[0], varr[1]);
if (ret < 0) {
dev_err(dev, "%s: invalid pre-scaling <%d %d>\n",
name, varr[0], varr[1]);
return ret;
}
channel->prescale = ret;
} else {
/* 1:1 prescale is index 0 */
channel->prescale = 0;
}
ret = of_property_read_u32(node, "qcom,hw-settle-time-us", &value);
if (!ret) {
ret = qcom_adc5_hw_settle_time_from_dt(value, adc_tm->data->hw_settle);
if (ret < 0) {
dev_err(dev, "%s invalid hw-settle-time-us %d us\n",
name, value);
return ret;
}
channel->hw_settle_time = ret;
} else {
channel->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
}
if (of_property_read_bool(node, "qcom,ratiometric"))
channel->cal_method = ADC_TM5_RATIOMETRIC_CAL;
else
channel->cal_method = ADC_TM5_ABSOLUTE_CAL;
if (adc_tm->data->gen == ADC_TM5_GEN2) {
ret = of_property_read_u32(node, "qcom,decimation", &value);
if (!ret) {
ret = qcom_adc5_decimation_from_dt(value, adc_tm->data->decimation);
if (ret < 0) {
dev_err(dev, "invalid decimation %d\n", value);
return ret;
}
channel->decimation = ret;
} else {
channel->decimation = ADC5_DECIMATION_DEFAULT;
}
ret = of_property_read_u32(node, "qcom,avg-samples", &value);
if (!ret) {
ret = qcom_adc5_avg_samples_from_dt(value);
if (ret < 0) {
dev_err(dev, "invalid avg-samples %d\n", value);
return ret;
}
channel->avg_samples = ret;
} else {
channel->avg_samples = VADC_DEF_AVG_SAMPLES;
}
}
return 0;
}
static const struct adc_tm5_data adc_tm5_data_pmic = {
.full_scale_code_volt = 0x70e4,
.decimation = (unsigned int []) { 250, 420, 840 },
.hw_settle = (unsigned int []) { 15, 100, 200, 300, 400, 500, 600, 700,
1000, 2000, 4000, 8000, 16000, 32000,
64000, 128000 },
.disable_channel = adc_tm5_disable_channel,
.configure = adc_tm5_configure,
.isr = adc_tm5_isr,
.init = adc_tm5_init,
.irq_name = "pm-adc-tm5",
.gen = ADC_TM5,
};
static const struct adc_tm5_data adc_tm_hc_data_pmic = {
.full_scale_code_volt = 0x70e4,
.decimation = (unsigned int []) { 256, 512, 1024 },
.hw_settle = (unsigned int []) { 0, 100, 200, 300, 400, 500, 600, 700,
1000, 2000, 4000, 6000, 8000, 10000 },
.disable_channel = adc_tm5_disable_channel,
.configure = adc_tm5_configure,
.isr = adc_tm5_isr,
.init = adc_tm_hc_init,
.irq_name = "pm-adc-tm5",
.gen = ADC_TM_HC,
};
static const struct adc_tm5_data adc_tm5_gen2_data_pmic = {
.full_scale_code_volt = 0x70e4,
.decimation = (unsigned int []) { 85, 340, 1360 },
.hw_settle = (unsigned int []) { 15, 100, 200, 300, 400, 500, 600, 700,
1000, 2000, 4000, 8000, 16000, 32000,
64000, 128000 },
.disable_channel = adc_tm5_gen2_disable_channel,
.configure = adc_tm5_gen2_configure,
.isr = adc_tm5_gen2_isr,
.init = adc_tm5_gen2_init,
.irq_name = "pm-adc-tm5-gen2",
.gen = ADC_TM5_GEN2,
};
static int adc_tm5_get_dt_data(struct adc_tm5_chip *adc_tm, struct device_node *node)
{
struct adc_tm5_channel *channels;
struct device_node *child;
u32 value;
int ret;
struct device *dev = adc_tm->dev;
adc_tm->nchannels = of_get_available_child_count(node);
if (!adc_tm->nchannels)
return -EINVAL;
adc_tm->channels = devm_kcalloc(dev, adc_tm->nchannels,
sizeof(*adc_tm->channels), GFP_KERNEL);
if (!adc_tm->channels)
return -ENOMEM;
channels = adc_tm->channels;
adc_tm->data = of_device_get_match_data(dev);
if (!adc_tm->data)
adc_tm->data = &adc_tm5_data_pmic;
ret = of_property_read_u32(node, "qcom,decimation", &value);
if (!ret) {
ret = qcom_adc5_decimation_from_dt(value, adc_tm->data->decimation);
if (ret < 0) {
dev_err(dev, "invalid decimation %d\n", value);
return ret;
}
adc_tm->decimation = ret;
} else {
adc_tm->decimation = ADC5_DECIMATION_DEFAULT;
}
ret = of_property_read_u32(node, "qcom,avg-samples", &value);
if (!ret) {
ret = qcom_adc5_avg_samples_from_dt(value);
if (ret < 0) {
dev_err(dev, "invalid avg-samples %d\n", value);
return ret;
}
adc_tm->avg_samples = ret;
} else {
adc_tm->avg_samples = VADC_DEF_AVG_SAMPLES;
}
for_each_available_child_of_node(node, child) {
ret = adc_tm5_get_dt_channel_data(adc_tm, channels, child);
if (ret) {
of_node_put(child);
return ret;
}
channels++;
}
return 0;
}
static int adc_tm5_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct adc_tm5_chip *adc_tm;
struct regmap *regmap;
int ret, irq;
u32 reg;
regmap = dev_get_regmap(dev->parent, NULL);
if (!regmap)
return -ENODEV;
ret = of_property_read_u32(node, "reg", &reg);
if (ret)
return ret;
adc_tm = devm_kzalloc(&pdev->dev, sizeof(*adc_tm), GFP_KERNEL);
if (!adc_tm)
return -ENOMEM;
adc_tm->regmap = regmap;
adc_tm->dev = dev;
adc_tm->base = reg;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = adc_tm5_get_dt_data(adc_tm, node);
if (ret)
return dev_err_probe(dev, ret, "get dt data failed\n");
ret = adc_tm->data->init(adc_tm);
if (ret) {
dev_err(dev, "adc-tm init failed\n");
return ret;
}
ret = adc_tm5_register_tzd(adc_tm);
if (ret) {
dev_err(dev, "tzd register failed\n");
return ret;
}
return devm_request_threaded_irq(dev, irq, NULL, adc_tm->data->isr,
IRQF_ONESHOT, adc_tm->data->irq_name, adc_tm);
}
static const struct of_device_id adc_tm5_match_table[] = {
{
.compatible = "qcom,spmi-adc-tm5",
.data = &adc_tm5_data_pmic,
},
{
.compatible = "qcom,spmi-adc-tm-hc",
.data = &adc_tm_hc_data_pmic,
},
{
.compatible = "qcom,spmi-adc-tm5-gen2",
.data = &adc_tm5_gen2_data_pmic,
},
{ }
};
MODULE_DEVICE_TABLE(of, adc_tm5_match_table);
static struct platform_driver adc_tm5_driver = {
.driver = {
.name = "qcom-spmi-adc-tm5",
.of_match_table = adc_tm5_match_table,
},
.probe = adc_tm5_probe,
};
module_platform_driver(adc_tm5_driver);
MODULE_DESCRIPTION("SPMI PMIC Thermal Monitor ADC driver");
MODULE_LICENSE("GPL v2");