mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-06 13:28:18 +00:00
807c6d09cc
In the loop in netfs_rreq_unmark_after_write() that removes the PG_fscache from folios after they've been written to the cache, as soon as we remove the mark from a multipage folio, it can get split - and then we might see a fragment of folio again. Guard against this by advancing the 'unlocked' tracker to the index of the last page in the folio to avoid a double removal of the PG_fscache mark. Reported-by: Marc Dionne <marc.dionne@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com> cc: Matthew Wilcox <willy@infradead.org> cc: linux-afs@lists.infradead.org cc: linux-cachefs@redhat.com cc: linux-fsdevel@vger.kernel.org cc: linux-mm@kvack.org
1254 lines
32 KiB
C
1254 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Network filesystem high-level write support.
|
|
*
|
|
* Copyright (C) 2023 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pagevec.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Determined write method. Adjust netfs_folio_traces if this is changed.
|
|
*/
|
|
enum netfs_how_to_modify {
|
|
NETFS_FOLIO_IS_UPTODATE, /* Folio is uptodate already */
|
|
NETFS_JUST_PREFETCH, /* We have to read the folio anyway */
|
|
NETFS_WHOLE_FOLIO_MODIFY, /* We're going to overwrite the whole folio */
|
|
NETFS_MODIFY_AND_CLEAR, /* We can assume there is no data to be downloaded. */
|
|
NETFS_STREAMING_WRITE, /* Store incomplete data in non-uptodate page. */
|
|
NETFS_STREAMING_WRITE_CONT, /* Continue streaming write. */
|
|
NETFS_FLUSH_CONTENT, /* Flush incompatible content. */
|
|
};
|
|
|
|
static void netfs_cleanup_buffered_write(struct netfs_io_request *wreq);
|
|
|
|
static void netfs_set_group(struct folio *folio, struct netfs_group *netfs_group)
|
|
{
|
|
if (netfs_group && !folio_get_private(folio))
|
|
folio_attach_private(folio, netfs_get_group(netfs_group));
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_FSCACHE)
|
|
static void netfs_folio_start_fscache(bool caching, struct folio *folio)
|
|
{
|
|
if (caching)
|
|
folio_start_fscache(folio);
|
|
}
|
|
#else
|
|
static void netfs_folio_start_fscache(bool caching, struct folio *folio)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Decide how we should modify a folio. We might be attempting to do
|
|
* write-streaming, in which case we don't want to a local RMW cycle if we can
|
|
* avoid it. If we're doing local caching or content crypto, we award that
|
|
* priority over avoiding RMW. If the file is open readably, then we also
|
|
* assume that we may want to read what we wrote.
|
|
*/
|
|
static enum netfs_how_to_modify netfs_how_to_modify(struct netfs_inode *ctx,
|
|
struct file *file,
|
|
struct folio *folio,
|
|
void *netfs_group,
|
|
size_t flen,
|
|
size_t offset,
|
|
size_t len,
|
|
bool maybe_trouble)
|
|
{
|
|
struct netfs_folio *finfo = netfs_folio_info(folio);
|
|
loff_t pos = folio_file_pos(folio);
|
|
|
|
_enter("");
|
|
|
|
if (netfs_folio_group(folio) != netfs_group)
|
|
return NETFS_FLUSH_CONTENT;
|
|
|
|
if (folio_test_uptodate(folio))
|
|
return NETFS_FOLIO_IS_UPTODATE;
|
|
|
|
if (pos >= ctx->zero_point)
|
|
return NETFS_MODIFY_AND_CLEAR;
|
|
|
|
if (!maybe_trouble && offset == 0 && len >= flen)
|
|
return NETFS_WHOLE_FOLIO_MODIFY;
|
|
|
|
if (file->f_mode & FMODE_READ)
|
|
goto no_write_streaming;
|
|
if (test_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags))
|
|
goto no_write_streaming;
|
|
|
|
if (netfs_is_cache_enabled(ctx)) {
|
|
/* We don't want to get a streaming write on a file that loses
|
|
* caching service temporarily because the backing store got
|
|
* culled.
|
|
*/
|
|
if (!test_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags))
|
|
set_bit(NETFS_ICTX_NO_WRITE_STREAMING, &ctx->flags);
|
|
goto no_write_streaming;
|
|
}
|
|
|
|
if (!finfo)
|
|
return NETFS_STREAMING_WRITE;
|
|
|
|
/* We can continue a streaming write only if it continues on from the
|
|
* previous. If it overlaps, we must flush lest we suffer a partial
|
|
* copy and disjoint dirty regions.
|
|
*/
|
|
if (offset == finfo->dirty_offset + finfo->dirty_len)
|
|
return NETFS_STREAMING_WRITE_CONT;
|
|
return NETFS_FLUSH_CONTENT;
|
|
|
|
no_write_streaming:
|
|
if (finfo) {
|
|
netfs_stat(&netfs_n_wh_wstream_conflict);
|
|
return NETFS_FLUSH_CONTENT;
|
|
}
|
|
return NETFS_JUST_PREFETCH;
|
|
}
|
|
|
|
/*
|
|
* Grab a folio for writing and lock it. Attempt to allocate as large a folio
|
|
* as possible to hold as much of the remaining length as possible in one go.
|
|
*/
|
|
static struct folio *netfs_grab_folio_for_write(struct address_space *mapping,
|
|
loff_t pos, size_t part)
|
|
{
|
|
pgoff_t index = pos / PAGE_SIZE;
|
|
fgf_t fgp_flags = FGP_WRITEBEGIN;
|
|
|
|
if (mapping_large_folio_support(mapping))
|
|
fgp_flags |= fgf_set_order(pos % PAGE_SIZE + part);
|
|
|
|
return __filemap_get_folio(mapping, index, fgp_flags,
|
|
mapping_gfp_mask(mapping));
|
|
}
|
|
|
|
/**
|
|
* netfs_perform_write - Copy data into the pagecache.
|
|
* @iocb: The operation parameters
|
|
* @iter: The source buffer
|
|
* @netfs_group: Grouping for dirty pages (eg. ceph snaps).
|
|
*
|
|
* Copy data into pagecache pages attached to the inode specified by @iocb.
|
|
* The caller must hold appropriate inode locks.
|
|
*
|
|
* Dirty pages are tagged with a netfs_folio struct if they're not up to date
|
|
* to indicate the range modified. Dirty pages may also be tagged with a
|
|
* netfs-specific grouping such that data from an old group gets flushed before
|
|
* a new one is started.
|
|
*/
|
|
ssize_t netfs_perform_write(struct kiocb *iocb, struct iov_iter *iter,
|
|
struct netfs_group *netfs_group)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file_inode(file);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct netfs_inode *ctx = netfs_inode(inode);
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_NONE,
|
|
.for_sync = true,
|
|
.nr_to_write = LONG_MAX,
|
|
.range_start = iocb->ki_pos,
|
|
.range_end = iocb->ki_pos + iter->count,
|
|
};
|
|
struct netfs_io_request *wreq = NULL;
|
|
struct netfs_folio *finfo;
|
|
struct folio *folio;
|
|
enum netfs_how_to_modify howto;
|
|
enum netfs_folio_trace trace;
|
|
unsigned int bdp_flags = (iocb->ki_flags & IOCB_SYNC) ? 0: BDP_ASYNC;
|
|
ssize_t written = 0, ret;
|
|
loff_t i_size, pos = iocb->ki_pos, from, to;
|
|
size_t max_chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
|
|
bool maybe_trouble = false;
|
|
|
|
if (unlikely(test_bit(NETFS_ICTX_WRITETHROUGH, &ctx->flags) ||
|
|
iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC))
|
|
) {
|
|
if (pos < i_size_read(inode)) {
|
|
ret = filemap_write_and_wait_range(mapping, pos, pos + iter->count);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
wbc_attach_fdatawrite_inode(&wbc, mapping->host);
|
|
|
|
wreq = netfs_begin_writethrough(iocb, iter->count);
|
|
if (IS_ERR(wreq)) {
|
|
wbc_detach_inode(&wbc);
|
|
ret = PTR_ERR(wreq);
|
|
wreq = NULL;
|
|
goto out;
|
|
}
|
|
if (!is_sync_kiocb(iocb))
|
|
wreq->iocb = iocb;
|
|
wreq->cleanup = netfs_cleanup_buffered_write;
|
|
}
|
|
|
|
do {
|
|
size_t flen;
|
|
size_t offset; /* Offset into pagecache folio */
|
|
size_t part; /* Bytes to write to folio */
|
|
size_t copied; /* Bytes copied from user */
|
|
|
|
ret = balance_dirty_pages_ratelimited_flags(mapping, bdp_flags);
|
|
if (unlikely(ret < 0))
|
|
break;
|
|
|
|
offset = pos & (max_chunk - 1);
|
|
part = min(max_chunk - offset, iov_iter_count(iter));
|
|
|
|
/* Bring in the user pages that we will copy from _first_ lest
|
|
* we hit a nasty deadlock on copying from the same page as
|
|
* we're writing to, without it being marked uptodate.
|
|
*
|
|
* Not only is this an optimisation, but it is also required to
|
|
* check that the address is actually valid, when atomic
|
|
* usercopies are used below.
|
|
*
|
|
* We rely on the page being held onto long enough by the LRU
|
|
* that we can grab it below if this causes it to be read.
|
|
*/
|
|
ret = -EFAULT;
|
|
if (unlikely(fault_in_iov_iter_readable(iter, part) == part))
|
|
break;
|
|
|
|
ret = -ENOMEM;
|
|
folio = netfs_grab_folio_for_write(mapping, pos, part);
|
|
if (!folio)
|
|
break;
|
|
|
|
flen = folio_size(folio);
|
|
offset = pos & (flen - 1);
|
|
part = min_t(size_t, flen - offset, part);
|
|
|
|
if (signal_pending(current)) {
|
|
ret = written ? -EINTR : -ERESTARTSYS;
|
|
goto error_folio_unlock;
|
|
}
|
|
|
|
/* See if we need to prefetch the area we're going to modify.
|
|
* We need to do this before we get a lock on the folio in case
|
|
* there's more than one writer competing for the same cache
|
|
* block.
|
|
*/
|
|
howto = netfs_how_to_modify(ctx, file, folio, netfs_group,
|
|
flen, offset, part, maybe_trouble);
|
|
_debug("howto %u", howto);
|
|
switch (howto) {
|
|
case NETFS_JUST_PREFETCH:
|
|
ret = netfs_prefetch_for_write(file, folio, offset, part);
|
|
if (ret < 0) {
|
|
_debug("prefetch = %zd", ret);
|
|
goto error_folio_unlock;
|
|
}
|
|
break;
|
|
case NETFS_FOLIO_IS_UPTODATE:
|
|
case NETFS_WHOLE_FOLIO_MODIFY:
|
|
case NETFS_STREAMING_WRITE_CONT:
|
|
break;
|
|
case NETFS_MODIFY_AND_CLEAR:
|
|
zero_user_segment(&folio->page, 0, offset);
|
|
break;
|
|
case NETFS_STREAMING_WRITE:
|
|
ret = -EIO;
|
|
if (WARN_ON(folio_get_private(folio)))
|
|
goto error_folio_unlock;
|
|
break;
|
|
case NETFS_FLUSH_CONTENT:
|
|
trace_netfs_folio(folio, netfs_flush_content);
|
|
from = folio_pos(folio);
|
|
to = from + folio_size(folio) - 1;
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
ret = filemap_write_and_wait_range(mapping, from, to);
|
|
if (ret < 0)
|
|
goto error_folio_unlock;
|
|
continue;
|
|
}
|
|
|
|
if (mapping_writably_mapped(mapping))
|
|
flush_dcache_folio(folio);
|
|
|
|
copied = copy_folio_from_iter_atomic(folio, offset, part, iter);
|
|
|
|
flush_dcache_folio(folio);
|
|
|
|
/* Deal with a (partially) failed copy */
|
|
if (copied == 0) {
|
|
ret = -EFAULT;
|
|
goto error_folio_unlock;
|
|
}
|
|
|
|
trace = (enum netfs_folio_trace)howto;
|
|
switch (howto) {
|
|
case NETFS_FOLIO_IS_UPTODATE:
|
|
case NETFS_JUST_PREFETCH:
|
|
netfs_set_group(folio, netfs_group);
|
|
break;
|
|
case NETFS_MODIFY_AND_CLEAR:
|
|
zero_user_segment(&folio->page, offset + copied, flen);
|
|
netfs_set_group(folio, netfs_group);
|
|
folio_mark_uptodate(folio);
|
|
break;
|
|
case NETFS_WHOLE_FOLIO_MODIFY:
|
|
if (unlikely(copied < part)) {
|
|
maybe_trouble = true;
|
|
iov_iter_revert(iter, copied);
|
|
copied = 0;
|
|
goto retry;
|
|
}
|
|
netfs_set_group(folio, netfs_group);
|
|
folio_mark_uptodate(folio);
|
|
break;
|
|
case NETFS_STREAMING_WRITE:
|
|
if (offset == 0 && copied == flen) {
|
|
netfs_set_group(folio, netfs_group);
|
|
folio_mark_uptodate(folio);
|
|
trace = netfs_streaming_filled_page;
|
|
break;
|
|
}
|
|
finfo = kzalloc(sizeof(*finfo), GFP_KERNEL);
|
|
if (!finfo) {
|
|
iov_iter_revert(iter, copied);
|
|
ret = -ENOMEM;
|
|
goto error_folio_unlock;
|
|
}
|
|
finfo->netfs_group = netfs_get_group(netfs_group);
|
|
finfo->dirty_offset = offset;
|
|
finfo->dirty_len = copied;
|
|
folio_attach_private(folio, (void *)((unsigned long)finfo |
|
|
NETFS_FOLIO_INFO));
|
|
break;
|
|
case NETFS_STREAMING_WRITE_CONT:
|
|
finfo = netfs_folio_info(folio);
|
|
finfo->dirty_len += copied;
|
|
if (finfo->dirty_offset == 0 && finfo->dirty_len == flen) {
|
|
if (finfo->netfs_group)
|
|
folio_change_private(folio, finfo->netfs_group);
|
|
else
|
|
folio_detach_private(folio);
|
|
folio_mark_uptodate(folio);
|
|
kfree(finfo);
|
|
trace = netfs_streaming_cont_filled_page;
|
|
}
|
|
break;
|
|
default:
|
|
WARN(true, "Unexpected modify type %u ix=%lx\n",
|
|
howto, folio_index(folio));
|
|
ret = -EIO;
|
|
goto error_folio_unlock;
|
|
}
|
|
|
|
trace_netfs_folio(folio, trace);
|
|
|
|
/* Update the inode size if we moved the EOF marker */
|
|
i_size = i_size_read(inode);
|
|
pos += copied;
|
|
if (pos > i_size) {
|
|
if (ctx->ops->update_i_size) {
|
|
ctx->ops->update_i_size(inode, pos);
|
|
} else {
|
|
i_size_write(inode, pos);
|
|
#if IS_ENABLED(CONFIG_FSCACHE)
|
|
fscache_update_cookie(ctx->cache, NULL, &pos);
|
|
#endif
|
|
}
|
|
}
|
|
written += copied;
|
|
|
|
if (likely(!wreq)) {
|
|
folio_mark_dirty(folio);
|
|
} else {
|
|
if (folio_test_dirty(folio))
|
|
/* Sigh. mmap. */
|
|
folio_clear_dirty_for_io(folio);
|
|
/* We make multiple writes to the folio... */
|
|
if (!folio_test_writeback(folio)) {
|
|
folio_wait_fscache(folio);
|
|
folio_start_writeback(folio);
|
|
folio_start_fscache(folio);
|
|
if (wreq->iter.count == 0)
|
|
trace_netfs_folio(folio, netfs_folio_trace_wthru);
|
|
else
|
|
trace_netfs_folio(folio, netfs_folio_trace_wthru_plus);
|
|
}
|
|
netfs_advance_writethrough(wreq, copied,
|
|
offset + copied == flen);
|
|
}
|
|
retry:
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
folio = NULL;
|
|
|
|
cond_resched();
|
|
} while (iov_iter_count(iter));
|
|
|
|
out:
|
|
if (unlikely(wreq)) {
|
|
ret = netfs_end_writethrough(wreq, iocb);
|
|
wbc_detach_inode(&wbc);
|
|
if (ret == -EIOCBQUEUED)
|
|
return ret;
|
|
}
|
|
|
|
iocb->ki_pos += written;
|
|
_leave(" = %zd [%zd]", written, ret);
|
|
return written ? written : ret;
|
|
|
|
error_folio_unlock:
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(netfs_perform_write);
|
|
|
|
/**
|
|
* netfs_buffered_write_iter_locked - write data to a file
|
|
* @iocb: IO state structure (file, offset, etc.)
|
|
* @from: iov_iter with data to write
|
|
* @netfs_group: Grouping for dirty pages (eg. ceph snaps).
|
|
*
|
|
* This function does all the work needed for actually writing data to a
|
|
* file. It does all basic checks, removes SUID from the file, updates
|
|
* modification times and calls proper subroutines depending on whether we
|
|
* do direct IO or a standard buffered write.
|
|
*
|
|
* The caller must hold appropriate locks around this function and have called
|
|
* generic_write_checks() already. The caller is also responsible for doing
|
|
* any necessary syncing afterwards.
|
|
*
|
|
* This function does *not* take care of syncing data in case of O_SYNC write.
|
|
* A caller has to handle it. This is mainly due to the fact that we want to
|
|
* avoid syncing under i_rwsem.
|
|
*
|
|
* Return:
|
|
* * number of bytes written, even for truncated writes
|
|
* * negative error code if no data has been written at all
|
|
*/
|
|
ssize_t netfs_buffered_write_iter_locked(struct kiocb *iocb, struct iov_iter *from,
|
|
struct netfs_group *netfs_group)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
ssize_t ret;
|
|
|
|
trace_netfs_write_iter(iocb, from);
|
|
|
|
ret = file_remove_privs(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = file_update_time(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return netfs_perform_write(iocb, from, netfs_group);
|
|
}
|
|
EXPORT_SYMBOL(netfs_buffered_write_iter_locked);
|
|
|
|
/**
|
|
* netfs_file_write_iter - write data to a file
|
|
* @iocb: IO state structure
|
|
* @from: iov_iter with data to write
|
|
*
|
|
* Perform a write to a file, writing into the pagecache if possible and doing
|
|
* an unbuffered write instead if not.
|
|
*
|
|
* Return:
|
|
* * Negative error code if no data has been written at all of
|
|
* vfs_fsync_range() failed for a synchronous write
|
|
* * Number of bytes written, even for truncated writes
|
|
*/
|
|
ssize_t netfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file->f_mapping->host;
|
|
struct netfs_inode *ictx = netfs_inode(inode);
|
|
ssize_t ret;
|
|
|
|
_enter("%llx,%zx,%llx", iocb->ki_pos, iov_iter_count(from), i_size_read(inode));
|
|
|
|
if ((iocb->ki_flags & IOCB_DIRECT) ||
|
|
test_bit(NETFS_ICTX_UNBUFFERED, &ictx->flags))
|
|
return netfs_unbuffered_write_iter(iocb, from);
|
|
|
|
ret = netfs_start_io_write(inode);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = generic_write_checks(iocb, from);
|
|
if (ret > 0)
|
|
ret = netfs_buffered_write_iter_locked(iocb, from, NULL);
|
|
netfs_end_io_write(inode);
|
|
if (ret > 0)
|
|
ret = generic_write_sync(iocb, ret);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_file_write_iter);
|
|
|
|
/*
|
|
* Notification that a previously read-only page is about to become writable.
|
|
* Note that the caller indicates a single page of a multipage folio.
|
|
*/
|
|
vm_fault_t netfs_page_mkwrite(struct vm_fault *vmf, struct netfs_group *netfs_group)
|
|
{
|
|
struct folio *folio = page_folio(vmf->page);
|
|
struct file *file = vmf->vma->vm_file;
|
|
struct inode *inode = file_inode(file);
|
|
vm_fault_t ret = VM_FAULT_RETRY;
|
|
int err;
|
|
|
|
_enter("%lx", folio->index);
|
|
|
|
sb_start_pagefault(inode->i_sb);
|
|
|
|
if (folio_wait_writeback_killable(folio))
|
|
goto out;
|
|
|
|
if (folio_lock_killable(folio) < 0)
|
|
goto out;
|
|
|
|
/* Can we see a streaming write here? */
|
|
if (WARN_ON(!folio_test_uptodate(folio))) {
|
|
ret = VM_FAULT_SIGBUS | VM_FAULT_LOCKED;
|
|
goto out;
|
|
}
|
|
|
|
if (netfs_folio_group(folio) != netfs_group) {
|
|
folio_unlock(folio);
|
|
err = filemap_fdatawait_range(inode->i_mapping,
|
|
folio_pos(folio),
|
|
folio_pos(folio) + folio_size(folio));
|
|
switch (err) {
|
|
case 0:
|
|
ret = VM_FAULT_RETRY;
|
|
goto out;
|
|
case -ENOMEM:
|
|
ret = VM_FAULT_OOM;
|
|
goto out;
|
|
default:
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (folio_test_dirty(folio))
|
|
trace_netfs_folio(folio, netfs_folio_trace_mkwrite_plus);
|
|
else
|
|
trace_netfs_folio(folio, netfs_folio_trace_mkwrite);
|
|
netfs_set_group(folio, netfs_group);
|
|
file_update_time(file);
|
|
ret = VM_FAULT_LOCKED;
|
|
out:
|
|
sb_end_pagefault(inode->i_sb);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_page_mkwrite);
|
|
|
|
/*
|
|
* Kill all the pages in the given range
|
|
*/
|
|
static void netfs_kill_pages(struct address_space *mapping,
|
|
loff_t start, loff_t len)
|
|
{
|
|
struct folio *folio;
|
|
pgoff_t index = start / PAGE_SIZE;
|
|
pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
|
|
|
|
_enter("%llx-%llx", start, start + len - 1);
|
|
|
|
do {
|
|
_debug("kill %lx (to %lx)", index, last);
|
|
|
|
folio = filemap_get_folio(mapping, index);
|
|
if (IS_ERR(folio)) {
|
|
next = index + 1;
|
|
continue;
|
|
}
|
|
|
|
next = folio_next_index(folio);
|
|
|
|
trace_netfs_folio(folio, netfs_folio_trace_kill);
|
|
folio_clear_uptodate(folio);
|
|
if (folio_test_fscache(folio))
|
|
folio_end_fscache(folio);
|
|
folio_end_writeback(folio);
|
|
folio_lock(folio);
|
|
generic_error_remove_page(mapping, &folio->page);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
|
|
} while (index = next, index <= last);
|
|
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* Redirty all the pages in a given range.
|
|
*/
|
|
static void netfs_redirty_pages(struct address_space *mapping,
|
|
loff_t start, loff_t len)
|
|
{
|
|
struct folio *folio;
|
|
pgoff_t index = start / PAGE_SIZE;
|
|
pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
|
|
|
|
_enter("%llx-%llx", start, start + len - 1);
|
|
|
|
do {
|
|
_debug("redirty %llx @%llx", len, start);
|
|
|
|
folio = filemap_get_folio(mapping, index);
|
|
if (IS_ERR(folio)) {
|
|
next = index + 1;
|
|
continue;
|
|
}
|
|
|
|
next = folio_next_index(folio);
|
|
trace_netfs_folio(folio, netfs_folio_trace_redirty);
|
|
filemap_dirty_folio(mapping, folio);
|
|
if (folio_test_fscache(folio))
|
|
folio_end_fscache(folio);
|
|
folio_end_writeback(folio);
|
|
folio_put(folio);
|
|
} while (index = next, index <= last);
|
|
|
|
balance_dirty_pages_ratelimited(mapping);
|
|
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* Completion of write to server
|
|
*/
|
|
static void netfs_pages_written_back(struct netfs_io_request *wreq)
|
|
{
|
|
struct address_space *mapping = wreq->mapping;
|
|
struct netfs_folio *finfo;
|
|
struct netfs_group *group = NULL;
|
|
struct folio *folio;
|
|
pgoff_t last;
|
|
int gcount = 0;
|
|
|
|
XA_STATE(xas, &mapping->i_pages, wreq->start / PAGE_SIZE);
|
|
|
|
_enter("%llx-%llx", wreq->start, wreq->start + wreq->len);
|
|
|
|
rcu_read_lock();
|
|
|
|
last = (wreq->start + wreq->len - 1) / PAGE_SIZE;
|
|
xas_for_each(&xas, folio, last) {
|
|
WARN(!folio_test_writeback(folio),
|
|
"bad %zx @%llx page %lx %lx\n",
|
|
wreq->len, wreq->start, folio_index(folio), last);
|
|
|
|
if ((finfo = netfs_folio_info(folio))) {
|
|
/* Streaming writes cannot be redirtied whilst under
|
|
* writeback, so discard the streaming record.
|
|
*/
|
|
folio_detach_private(folio);
|
|
group = finfo->netfs_group;
|
|
gcount++;
|
|
trace_netfs_folio(folio, netfs_folio_trace_clear_s);
|
|
kfree(finfo);
|
|
} else if ((group = netfs_folio_group(folio))) {
|
|
/* Need to detach the group pointer if the page didn't
|
|
* get redirtied. If it has been redirtied, then it
|
|
* must be within the same group.
|
|
*/
|
|
if (folio_test_dirty(folio)) {
|
|
trace_netfs_folio(folio, netfs_folio_trace_redirtied);
|
|
goto end_wb;
|
|
}
|
|
if (folio_trylock(folio)) {
|
|
if (!folio_test_dirty(folio)) {
|
|
folio_detach_private(folio);
|
|
gcount++;
|
|
trace_netfs_folio(folio, netfs_folio_trace_clear_g);
|
|
} else {
|
|
trace_netfs_folio(folio, netfs_folio_trace_redirtied);
|
|
}
|
|
folio_unlock(folio);
|
|
goto end_wb;
|
|
}
|
|
|
|
xas_pause(&xas);
|
|
rcu_read_unlock();
|
|
folio_lock(folio);
|
|
if (!folio_test_dirty(folio)) {
|
|
folio_detach_private(folio);
|
|
gcount++;
|
|
trace_netfs_folio(folio, netfs_folio_trace_clear_g);
|
|
} else {
|
|
trace_netfs_folio(folio, netfs_folio_trace_redirtied);
|
|
}
|
|
folio_unlock(folio);
|
|
rcu_read_lock();
|
|
} else {
|
|
trace_netfs_folio(folio, netfs_folio_trace_clear);
|
|
}
|
|
end_wb:
|
|
if (folio_test_fscache(folio))
|
|
folio_end_fscache(folio);
|
|
xas_advance(&xas, folio_next_index(folio) - 1);
|
|
folio_end_writeback(folio);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
netfs_put_group_many(group, gcount);
|
|
_leave("");
|
|
}
|
|
|
|
/*
|
|
* Deal with the disposition of the folios that are under writeback to close
|
|
* out the operation.
|
|
*/
|
|
static void netfs_cleanup_buffered_write(struct netfs_io_request *wreq)
|
|
{
|
|
struct address_space *mapping = wreq->mapping;
|
|
|
|
_enter("");
|
|
|
|
switch (wreq->error) {
|
|
case 0:
|
|
netfs_pages_written_back(wreq);
|
|
break;
|
|
|
|
default:
|
|
pr_notice("R=%08x Unexpected error %d\n", wreq->debug_id, wreq->error);
|
|
fallthrough;
|
|
case -EACCES:
|
|
case -EPERM:
|
|
case -ENOKEY:
|
|
case -EKEYEXPIRED:
|
|
case -EKEYREJECTED:
|
|
case -EKEYREVOKED:
|
|
case -ENETRESET:
|
|
case -EDQUOT:
|
|
case -ENOSPC:
|
|
netfs_redirty_pages(mapping, wreq->start, wreq->len);
|
|
break;
|
|
|
|
case -EROFS:
|
|
case -EIO:
|
|
case -EREMOTEIO:
|
|
case -EFBIG:
|
|
case -ENOENT:
|
|
case -ENOMEDIUM:
|
|
case -ENXIO:
|
|
netfs_kill_pages(mapping, wreq->start, wreq->len);
|
|
break;
|
|
}
|
|
|
|
if (wreq->error)
|
|
mapping_set_error(mapping, wreq->error);
|
|
if (wreq->netfs_ops->done)
|
|
wreq->netfs_ops->done(wreq);
|
|
}
|
|
|
|
/*
|
|
* Extend the region to be written back to include subsequent contiguously
|
|
* dirty pages if possible, but don't sleep while doing so.
|
|
*
|
|
* If this page holds new content, then we can include filler zeros in the
|
|
* writeback.
|
|
*/
|
|
static void netfs_extend_writeback(struct address_space *mapping,
|
|
struct netfs_group *group,
|
|
struct xa_state *xas,
|
|
long *_count,
|
|
loff_t start,
|
|
loff_t max_len,
|
|
bool caching,
|
|
size_t *_len,
|
|
size_t *_top)
|
|
{
|
|
struct netfs_folio *finfo;
|
|
struct folio_batch fbatch;
|
|
struct folio *folio;
|
|
unsigned int i;
|
|
pgoff_t index = (start + *_len) / PAGE_SIZE;
|
|
size_t len;
|
|
void *priv;
|
|
bool stop = true;
|
|
|
|
folio_batch_init(&fbatch);
|
|
|
|
do {
|
|
/* Firstly, we gather up a batch of contiguous dirty pages
|
|
* under the RCU read lock - but we can't clear the dirty flags
|
|
* there if any of those pages are mapped.
|
|
*/
|
|
rcu_read_lock();
|
|
|
|
xas_for_each(xas, folio, ULONG_MAX) {
|
|
stop = true;
|
|
if (xas_retry(xas, folio))
|
|
continue;
|
|
if (xa_is_value(folio))
|
|
break;
|
|
if (folio_index(folio) != index) {
|
|
xas_reset(xas);
|
|
break;
|
|
}
|
|
|
|
if (!folio_try_get_rcu(folio)) {
|
|
xas_reset(xas);
|
|
continue;
|
|
}
|
|
|
|
/* Has the folio moved or been split? */
|
|
if (unlikely(folio != xas_reload(xas))) {
|
|
folio_put(folio);
|
|
xas_reset(xas);
|
|
break;
|
|
}
|
|
|
|
if (!folio_trylock(folio)) {
|
|
folio_put(folio);
|
|
xas_reset(xas);
|
|
break;
|
|
}
|
|
if (!folio_test_dirty(folio) ||
|
|
folio_test_writeback(folio) ||
|
|
folio_test_fscache(folio)) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
xas_reset(xas);
|
|
break;
|
|
}
|
|
|
|
stop = false;
|
|
len = folio_size(folio);
|
|
priv = folio_get_private(folio);
|
|
if ((const struct netfs_group *)priv != group) {
|
|
stop = true;
|
|
finfo = netfs_folio_info(folio);
|
|
if (finfo->netfs_group != group ||
|
|
finfo->dirty_offset > 0) {
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
xas_reset(xas);
|
|
break;
|
|
}
|
|
len = finfo->dirty_len;
|
|
}
|
|
|
|
*_top += folio_size(folio);
|
|
index += folio_nr_pages(folio);
|
|
*_count -= folio_nr_pages(folio);
|
|
*_len += len;
|
|
if (*_len >= max_len || *_count <= 0)
|
|
stop = true;
|
|
|
|
if (!folio_batch_add(&fbatch, folio))
|
|
break;
|
|
if (stop)
|
|
break;
|
|
}
|
|
|
|
xas_pause(xas);
|
|
rcu_read_unlock();
|
|
|
|
/* Now, if we obtained any folios, we can shift them to being
|
|
* writable and mark them for caching.
|
|
*/
|
|
if (!folio_batch_count(&fbatch))
|
|
break;
|
|
|
|
for (i = 0; i < folio_batch_count(&fbatch); i++) {
|
|
folio = fbatch.folios[i];
|
|
trace_netfs_folio(folio, netfs_folio_trace_store_plus);
|
|
|
|
if (!folio_clear_dirty_for_io(folio))
|
|
BUG();
|
|
folio_start_writeback(folio);
|
|
netfs_folio_start_fscache(caching, folio);
|
|
folio_unlock(folio);
|
|
}
|
|
|
|
folio_batch_release(&fbatch);
|
|
cond_resched();
|
|
} while (!stop);
|
|
}
|
|
|
|
/*
|
|
* Synchronously write back the locked page and any subsequent non-locked dirty
|
|
* pages.
|
|
*/
|
|
static ssize_t netfs_write_back_from_locked_folio(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
struct netfs_group *group,
|
|
struct xa_state *xas,
|
|
struct folio *folio,
|
|
unsigned long long start,
|
|
unsigned long long end)
|
|
{
|
|
struct netfs_io_request *wreq;
|
|
struct netfs_folio *finfo;
|
|
struct netfs_inode *ctx = netfs_inode(mapping->host);
|
|
unsigned long long i_size = i_size_read(&ctx->inode);
|
|
size_t len, max_len;
|
|
bool caching = netfs_is_cache_enabled(ctx);
|
|
long count = wbc->nr_to_write;
|
|
int ret;
|
|
|
|
_enter(",%lx,%llx-%llx,%u", folio_index(folio), start, end, caching);
|
|
|
|
wreq = netfs_alloc_request(mapping, NULL, start, folio_size(folio),
|
|
NETFS_WRITEBACK);
|
|
if (IS_ERR(wreq)) {
|
|
folio_unlock(folio);
|
|
return PTR_ERR(wreq);
|
|
}
|
|
|
|
if (!folio_clear_dirty_for_io(folio))
|
|
BUG();
|
|
folio_start_writeback(folio);
|
|
netfs_folio_start_fscache(caching, folio);
|
|
|
|
count -= folio_nr_pages(folio);
|
|
|
|
/* Find all consecutive lockable dirty pages that have contiguous
|
|
* written regions, stopping when we find a page that is not
|
|
* immediately lockable, is not dirty or is missing, or we reach the
|
|
* end of the range.
|
|
*/
|
|
trace_netfs_folio(folio, netfs_folio_trace_store);
|
|
|
|
len = wreq->len;
|
|
finfo = netfs_folio_info(folio);
|
|
if (finfo) {
|
|
start += finfo->dirty_offset;
|
|
if (finfo->dirty_offset + finfo->dirty_len != len) {
|
|
len = finfo->dirty_len;
|
|
goto cant_expand;
|
|
}
|
|
len = finfo->dirty_len;
|
|
}
|
|
|
|
if (start < i_size) {
|
|
/* Trim the write to the EOF; the extra data is ignored. Also
|
|
* put an upper limit on the size of a single storedata op.
|
|
*/
|
|
max_len = 65536 * 4096;
|
|
max_len = min_t(unsigned long long, max_len, end - start + 1);
|
|
max_len = min_t(unsigned long long, max_len, i_size - start);
|
|
|
|
if (len < max_len)
|
|
netfs_extend_writeback(mapping, group, xas, &count, start,
|
|
max_len, caching, &len, &wreq->upper_len);
|
|
}
|
|
|
|
cant_expand:
|
|
len = min_t(unsigned long long, len, i_size - start);
|
|
|
|
/* We now have a contiguous set of dirty pages, each with writeback
|
|
* set; the first page is still locked at this point, but all the rest
|
|
* have been unlocked.
|
|
*/
|
|
folio_unlock(folio);
|
|
wreq->start = start;
|
|
wreq->len = len;
|
|
|
|
if (start < i_size) {
|
|
_debug("write back %zx @%llx [%llx]", len, start, i_size);
|
|
|
|
/* Speculatively write to the cache. We have to fix this up
|
|
* later if the store fails.
|
|
*/
|
|
wreq->cleanup = netfs_cleanup_buffered_write;
|
|
|
|
iov_iter_xarray(&wreq->iter, ITER_SOURCE, &mapping->i_pages, start,
|
|
wreq->upper_len);
|
|
__set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
|
|
ret = netfs_begin_write(wreq, true, netfs_write_trace_writeback);
|
|
if (ret == 0 || ret == -EIOCBQUEUED)
|
|
wbc->nr_to_write -= len / PAGE_SIZE;
|
|
} else {
|
|
_debug("write discard %zx @%llx [%llx]", len, start, i_size);
|
|
|
|
/* The dirty region was entirely beyond the EOF. */
|
|
fscache_clear_page_bits(mapping, start, len, caching);
|
|
netfs_pages_written_back(wreq);
|
|
ret = 0;
|
|
}
|
|
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
|
|
_leave(" = 1");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Write a region of pages back to the server
|
|
*/
|
|
static ssize_t netfs_writepages_begin(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
struct netfs_group *group,
|
|
struct xa_state *xas,
|
|
unsigned long long *_start,
|
|
unsigned long long end)
|
|
{
|
|
const struct netfs_folio *finfo;
|
|
struct folio *folio;
|
|
unsigned long long start = *_start;
|
|
ssize_t ret;
|
|
void *priv;
|
|
int skips = 0;
|
|
|
|
_enter("%llx,%llx,", start, end);
|
|
|
|
search_again:
|
|
/* Find the first dirty page in the group. */
|
|
rcu_read_lock();
|
|
|
|
for (;;) {
|
|
folio = xas_find_marked(xas, end / PAGE_SIZE, PAGECACHE_TAG_DIRTY);
|
|
if (xas_retry(xas, folio) || xa_is_value(folio))
|
|
continue;
|
|
if (!folio)
|
|
break;
|
|
|
|
if (!folio_try_get_rcu(folio)) {
|
|
xas_reset(xas);
|
|
continue;
|
|
}
|
|
|
|
if (unlikely(folio != xas_reload(xas))) {
|
|
folio_put(folio);
|
|
xas_reset(xas);
|
|
continue;
|
|
}
|
|
|
|
/* Skip any dirty folio that's not in the group of interest. */
|
|
priv = folio_get_private(folio);
|
|
if ((const struct netfs_group *)priv != group) {
|
|
finfo = netfs_folio_info(folio);
|
|
if (finfo->netfs_group != group) {
|
|
folio_put(folio);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
xas_pause(xas);
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
if (!folio)
|
|
return 0;
|
|
|
|
start = folio_pos(folio); /* May regress with THPs */
|
|
|
|
_debug("wback %lx", folio_index(folio));
|
|
|
|
/* At this point we hold neither the i_pages lock nor the page lock:
|
|
* the page may be truncated or invalidated (changing page->mapping to
|
|
* NULL), or even swizzled back from swapper_space to tmpfs file
|
|
* mapping
|
|
*/
|
|
lock_again:
|
|
if (wbc->sync_mode != WB_SYNC_NONE) {
|
|
ret = folio_lock_killable(folio);
|
|
if (ret < 0)
|
|
return ret;
|
|
} else {
|
|
if (!folio_trylock(folio))
|
|
goto search_again;
|
|
}
|
|
|
|
if (folio->mapping != mapping ||
|
|
!folio_test_dirty(folio)) {
|
|
start += folio_size(folio);
|
|
folio_unlock(folio);
|
|
goto search_again;
|
|
}
|
|
|
|
if (folio_test_writeback(folio) ||
|
|
folio_test_fscache(folio)) {
|
|
folio_unlock(folio);
|
|
if (wbc->sync_mode != WB_SYNC_NONE) {
|
|
folio_wait_writeback(folio);
|
|
#ifdef CONFIG_NETFS_FSCACHE
|
|
folio_wait_fscache(folio);
|
|
#endif
|
|
goto lock_again;
|
|
}
|
|
|
|
start += folio_size(folio);
|
|
if (wbc->sync_mode == WB_SYNC_NONE) {
|
|
if (skips >= 5 || need_resched()) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
skips++;
|
|
}
|
|
goto search_again;
|
|
}
|
|
|
|
ret = netfs_write_back_from_locked_folio(mapping, wbc, group, xas,
|
|
folio, start, end);
|
|
out:
|
|
if (ret > 0)
|
|
*_start = start + ret;
|
|
_leave(" = %zd [%llx]", ret, *_start);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write a region of pages back to the server
|
|
*/
|
|
static int netfs_writepages_region(struct address_space *mapping,
|
|
struct writeback_control *wbc,
|
|
struct netfs_group *group,
|
|
unsigned long long *_start,
|
|
unsigned long long end)
|
|
{
|
|
ssize_t ret;
|
|
|
|
XA_STATE(xas, &mapping->i_pages, *_start / PAGE_SIZE);
|
|
|
|
do {
|
|
ret = netfs_writepages_begin(mapping, wbc, group, &xas,
|
|
_start, end);
|
|
if (ret > 0 && wbc->nr_to_write > 0)
|
|
cond_resched();
|
|
} while (ret > 0 && wbc->nr_to_write > 0);
|
|
|
|
return ret > 0 ? 0 : ret;
|
|
}
|
|
|
|
/*
|
|
* write some of the pending data back to the server
|
|
*/
|
|
int netfs_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct netfs_group *group = NULL;
|
|
loff_t start, end;
|
|
int ret;
|
|
|
|
_enter("");
|
|
|
|
/* We have to be careful as we can end up racing with setattr()
|
|
* truncating the pagecache since the caller doesn't take a lock here
|
|
* to prevent it.
|
|
*/
|
|
|
|
if (wbc->range_cyclic && mapping->writeback_index) {
|
|
start = mapping->writeback_index * PAGE_SIZE;
|
|
ret = netfs_writepages_region(mapping, wbc, group,
|
|
&start, LLONG_MAX);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (wbc->nr_to_write <= 0) {
|
|
mapping->writeback_index = start / PAGE_SIZE;
|
|
goto out;
|
|
}
|
|
|
|
start = 0;
|
|
end = mapping->writeback_index * PAGE_SIZE;
|
|
mapping->writeback_index = 0;
|
|
ret = netfs_writepages_region(mapping, wbc, group, &start, end);
|
|
if (ret == 0)
|
|
mapping->writeback_index = start / PAGE_SIZE;
|
|
} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
|
|
start = 0;
|
|
ret = netfs_writepages_region(mapping, wbc, group,
|
|
&start, LLONG_MAX);
|
|
if (wbc->nr_to_write > 0 && ret == 0)
|
|
mapping->writeback_index = start / PAGE_SIZE;
|
|
} else {
|
|
start = wbc->range_start;
|
|
ret = netfs_writepages_region(mapping, wbc, group,
|
|
&start, wbc->range_end);
|
|
}
|
|
|
|
out:
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_writepages);
|
|
|
|
/*
|
|
* Deal with the disposition of a laundered folio.
|
|
*/
|
|
static void netfs_cleanup_launder_folio(struct netfs_io_request *wreq)
|
|
{
|
|
if (wreq->error) {
|
|
pr_notice("R=%08x Laundering error %d\n", wreq->debug_id, wreq->error);
|
|
mapping_set_error(wreq->mapping, wreq->error);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netfs_launder_folio - Clean up a dirty folio that's being invalidated
|
|
* @folio: The folio to clean
|
|
*
|
|
* This is called to write back a folio that's being invalidated when an inode
|
|
* is getting torn down. Ideally, writepages would be used instead.
|
|
*/
|
|
int netfs_launder_folio(struct folio *folio)
|
|
{
|
|
struct netfs_io_request *wreq;
|
|
struct address_space *mapping = folio->mapping;
|
|
struct netfs_folio *finfo = netfs_folio_info(folio);
|
|
struct netfs_group *group = netfs_folio_group(folio);
|
|
struct bio_vec bvec;
|
|
unsigned long long i_size = i_size_read(mapping->host);
|
|
unsigned long long start = folio_pos(folio);
|
|
size_t offset = 0, len;
|
|
int ret = 0;
|
|
|
|
if (finfo) {
|
|
offset = finfo->dirty_offset;
|
|
start += offset;
|
|
len = finfo->dirty_len;
|
|
} else {
|
|
len = folio_size(folio);
|
|
}
|
|
len = min_t(unsigned long long, len, i_size - start);
|
|
|
|
wreq = netfs_alloc_request(mapping, NULL, start, len, NETFS_LAUNDER_WRITE);
|
|
if (IS_ERR(wreq)) {
|
|
ret = PTR_ERR(wreq);
|
|
goto out;
|
|
}
|
|
|
|
if (!folio_clear_dirty_for_io(folio))
|
|
goto out_put;
|
|
|
|
trace_netfs_folio(folio, netfs_folio_trace_launder);
|
|
|
|
_debug("launder %llx-%llx", start, start + len - 1);
|
|
|
|
/* Speculatively write to the cache. We have to fix this up later if
|
|
* the store fails.
|
|
*/
|
|
wreq->cleanup = netfs_cleanup_launder_folio;
|
|
|
|
bvec_set_folio(&bvec, folio, len, offset);
|
|
iov_iter_bvec(&wreq->iter, ITER_SOURCE, &bvec, 1, len);
|
|
__set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags);
|
|
ret = netfs_begin_write(wreq, true, netfs_write_trace_launder);
|
|
|
|
out_put:
|
|
folio_detach_private(folio);
|
|
netfs_put_group(group);
|
|
kfree(finfo);
|
|
netfs_put_request(wreq, false, netfs_rreq_trace_put_return);
|
|
out:
|
|
folio_wait_fscache(folio);
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_launder_folio);
|