linux-next/lib/bitmap.c
Randy Dunlap 2699e5143c lib: bitmap: fix many kernel-doc warnings
Fix kernel-doc warings in lib/bitmap.c:

  lib/bitmap.c:498: warning: Function parameter or member 'buf' not described in 'bitmap_print_to_buf'
  lib/bitmap.c:498: warning: Function parameter or member 'maskp' not described in 'bitmap_print_to_buf'
  lib/bitmap.c:498: warning: Function parameter or member 'nmaskbits' not described in 'bitmap_print_to_buf'
  lib/bitmap.c:498: warning: Function parameter or member 'off' not described in 'bitmap_print_to_buf'
  lib/bitmap.c:498: warning: Function parameter or member 'count' not described in 'bitmap_print_to_buf'
  lib/bitmap.c:561: warning: contents before sections
  lib/bitmap.c:606: warning: Function parameter or member 'buf' not described in 'bitmap_print_list_to_buf'
  lib/bitmap.c:606: warning: Function parameter or member 'maskp' not described in 'bitmap_print_list_to_buf'
  lib/bitmap.c:606: warning: Function parameter or member 'nmaskbits' not described in 'bitmap_print_list_to_buf'
  lib/bitmap.c:606: warning: Function parameter or member 'off' not described in 'bitmap_print_list_to_buf'
  lib/bitmap.c:606: warning: Function parameter or member 'count' not described in 'bitmap_print_list_to_buf'
  lib/bitmap.c:819: warning: missing initial short description on line:
   * bitmap_parselist_user()

This still leaves 15 warnings for function return values not described,
similar to this one:

  bitmap.c:890: warning: No description found for return value of 'bitmap_parse'

Link: https://lkml.kernel.org/r/20220306065823.5153-1-rdunlap@infradead.org
Fixes: 1fae562983ca ("cpumask: introduce cpumap_print_list/bitmask_to_buf to support large bitmask and list")
Fixes: 4b060420a596 ("bitmap, irq: add smp_affinity_list interface to /proc/irq")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Yury Norov <yury.norov@gmail.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Tian Tao <tiantao6@hisilicon.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23 19:00:33 -07:00

1510 lines
45 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* lib/bitmap.c
* Helper functions for bitmap.h.
*/
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/ctype.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/thread_info.h>
#include <linux/uaccess.h>
#include <asm/page.h>
#include "kstrtox.h"
/**
* DOC: bitmap introduction
*
* bitmaps provide an array of bits, implemented using an
* array of unsigned longs. The number of valid bits in a
* given bitmap does _not_ need to be an exact multiple of
* BITS_PER_LONG.
*
* The possible unused bits in the last, partially used word
* of a bitmap are 'don't care'. The implementation makes
* no particular effort to keep them zero. It ensures that
* their value will not affect the results of any operation.
* The bitmap operations that return Boolean (bitmap_empty,
* for example) or scalar (bitmap_weight, for example) results
* carefully filter out these unused bits from impacting their
* results.
*
* The byte ordering of bitmaps is more natural on little
* endian architectures. See the big-endian headers
* include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
* for the best explanations of this ordering.
*/
int __bitmap_equal(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] != bitmap2[k])
return 0;
if (bits % BITS_PER_LONG)
if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return 0;
return 1;
}
EXPORT_SYMBOL(__bitmap_equal);
bool __bitmap_or_equal(const unsigned long *bitmap1,
const unsigned long *bitmap2,
const unsigned long *bitmap3,
unsigned int bits)
{
unsigned int k, lim = bits / BITS_PER_LONG;
unsigned long tmp;
for (k = 0; k < lim; ++k) {
if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
return false;
}
if (!(bits % BITS_PER_LONG))
return true;
tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
}
void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
{
unsigned int k, lim = BITS_TO_LONGS(bits);
for (k = 0; k < lim; ++k)
dst[k] = ~src[k];
}
EXPORT_SYMBOL(__bitmap_complement);
/**
* __bitmap_shift_right - logical right shift of the bits in a bitmap
* @dst : destination bitmap
* @src : source bitmap
* @shift : shift by this many bits
* @nbits : bitmap size, in bits
*
* Shifting right (dividing) means moving bits in the MS -> LS bit
* direction. Zeros are fed into the vacated MS positions and the
* LS bits shifted off the bottom are lost.
*/
void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
unsigned shift, unsigned nbits)
{
unsigned k, lim = BITS_TO_LONGS(nbits);
unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
for (k = 0; off + k < lim; ++k) {
unsigned long upper, lower;
/*
* If shift is not word aligned, take lower rem bits of
* word above and make them the top rem bits of result.
*/
if (!rem || off + k + 1 >= lim)
upper = 0;
else {
upper = src[off + k + 1];
if (off + k + 1 == lim - 1)
upper &= mask;
upper <<= (BITS_PER_LONG - rem);
}
lower = src[off + k];
if (off + k == lim - 1)
lower &= mask;
lower >>= rem;
dst[k] = lower | upper;
}
if (off)
memset(&dst[lim - off], 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_right);
/**
* __bitmap_shift_left - logical left shift of the bits in a bitmap
* @dst : destination bitmap
* @src : source bitmap
* @shift : shift by this many bits
* @nbits : bitmap size, in bits
*
* Shifting left (multiplying) means moving bits in the LS -> MS
* direction. Zeros are fed into the vacated LS bit positions
* and those MS bits shifted off the top are lost.
*/
void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
unsigned int shift, unsigned int nbits)
{
int k;
unsigned int lim = BITS_TO_LONGS(nbits);
unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
for (k = lim - off - 1; k >= 0; --k) {
unsigned long upper, lower;
/*
* If shift is not word aligned, take upper rem bits of
* word below and make them the bottom rem bits of result.
*/
if (rem && k > 0)
lower = src[k - 1] >> (BITS_PER_LONG - rem);
else
lower = 0;
upper = src[k] << rem;
dst[k + off] = lower | upper;
}
if (off)
memset(dst, 0, off*sizeof(unsigned long));
}
EXPORT_SYMBOL(__bitmap_shift_left);
/**
* bitmap_cut() - remove bit region from bitmap and right shift remaining bits
* @dst: destination bitmap, might overlap with src
* @src: source bitmap
* @first: start bit of region to be removed
* @cut: number of bits to remove
* @nbits: bitmap size, in bits
*
* Set the n-th bit of @dst iff the n-th bit of @src is set and
* n is less than @first, or the m-th bit of @src is set for any
* m such that @first <= n < nbits, and m = n + @cut.
*
* In pictures, example for a big-endian 32-bit architecture:
*
* The @src bitmap is::
*
* 31 63
* | |
* 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
* | | | |
* 16 14 0 32
*
* if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
*
* 31 63
* | |
* 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
* | | |
* 14 (bit 17 0 32
* from @src)
*
* Note that @dst and @src might overlap partially or entirely.
*
* This is implemented in the obvious way, with a shift and carry
* step for each moved bit. Optimisation is left as an exercise
* for the compiler.
*/
void bitmap_cut(unsigned long *dst, const unsigned long *src,
unsigned int first, unsigned int cut, unsigned int nbits)
{
unsigned int len = BITS_TO_LONGS(nbits);
unsigned long keep = 0, carry;
int i;
if (first % BITS_PER_LONG) {
keep = src[first / BITS_PER_LONG] &
(~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
}
memmove(dst, src, len * sizeof(*dst));
while (cut--) {
for (i = first / BITS_PER_LONG; i < len; i++) {
if (i < len - 1)
carry = dst[i + 1] & 1UL;
else
carry = 0;
dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
}
}
dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
dst[first / BITS_PER_LONG] |= keep;
}
EXPORT_SYMBOL(bitmap_cut);
int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int lim = bits/BITS_PER_LONG;
unsigned long result = 0;
for (k = 0; k < lim; k++)
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
if (bits % BITS_PER_LONG)
result |= (dst[k] = bitmap1[k] & bitmap2[k] &
BITMAP_LAST_WORD_MASK(bits));
return result != 0;
}
EXPORT_SYMBOL(__bitmap_and);
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int nr = BITS_TO_LONGS(bits);
for (k = 0; k < nr; k++)
dst[k] = bitmap1[k] | bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_or);
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int nr = BITS_TO_LONGS(bits);
for (k = 0; k < nr; k++)
dst[k] = bitmap1[k] ^ bitmap2[k];
}
EXPORT_SYMBOL(__bitmap_xor);
int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k;
unsigned int lim = bits/BITS_PER_LONG;
unsigned long result = 0;
for (k = 0; k < lim; k++)
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
if (bits % BITS_PER_LONG)
result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
BITMAP_LAST_WORD_MASK(bits));
return result != 0;
}
EXPORT_SYMBOL(__bitmap_andnot);
void __bitmap_replace(unsigned long *dst,
const unsigned long *old, const unsigned long *new,
const unsigned long *mask, unsigned int nbits)
{
unsigned int k;
unsigned int nr = BITS_TO_LONGS(nbits);
for (k = 0; k < nr; k++)
dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
}
EXPORT_SYMBOL(__bitmap_replace);
int __bitmap_intersects(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] & bitmap2[k])
return 1;
if (bits % BITS_PER_LONG)
if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return 1;
return 0;
}
EXPORT_SYMBOL(__bitmap_intersects);
int __bitmap_subset(const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
for (k = 0; k < lim; ++k)
if (bitmap1[k] & ~bitmap2[k])
return 0;
if (bits % BITS_PER_LONG)
if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
return 0;
return 1;
}
EXPORT_SYMBOL(__bitmap_subset);
int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
{
unsigned int k, lim = bits/BITS_PER_LONG;
int w = 0;
for (k = 0; k < lim; k++)
w += hweight_long(bitmap[k]);
if (bits % BITS_PER_LONG)
w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
return w;
}
EXPORT_SYMBOL(__bitmap_weight);
void __bitmap_set(unsigned long *map, unsigned int start, int len)
{
unsigned long *p = map + BIT_WORD(start);
const unsigned int size = start + len;
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_set >= 0) {
*p |= mask_to_set;
len -= bits_to_set;
bits_to_set = BITS_PER_LONG;
mask_to_set = ~0UL;
p++;
}
if (len) {
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
*p |= mask_to_set;
}
}
EXPORT_SYMBOL(__bitmap_set);
void __bitmap_clear(unsigned long *map, unsigned int start, int len)
{
unsigned long *p = map + BIT_WORD(start);
const unsigned int size = start + len;
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_clear >= 0) {
*p &= ~mask_to_clear;
len -= bits_to_clear;
bits_to_clear = BITS_PER_LONG;
mask_to_clear = ~0UL;
p++;
}
if (len) {
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
*p &= ~mask_to_clear;
}
}
EXPORT_SYMBOL(__bitmap_clear);
/**
* bitmap_find_next_zero_area_off - find a contiguous aligned zero area
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
* @align_mask: Alignment mask for zero area
* @align_offset: Alignment offset for zero area.
*
* The @align_mask should be one less than a power of 2; the effect is that
* the bit offset of all zero areas this function finds plus @align_offset
* is multiple of that power of 2.
*/
unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned int nr,
unsigned long align_mask,
unsigned long align_offset)
{
unsigned long index, end, i;
again:
index = find_next_zero_bit(map, size, start);
/* Align allocation */
index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
end = index + nr;
if (end > size)
return end;
i = find_next_bit(map, end, index);
if (i < end) {
start = i + 1;
goto again;
}
return index;
}
EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
/*
* Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
* second version by Paul Jackson, third by Joe Korty.
*/
/**
* bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
*
* @ubuf: pointer to user buffer containing string.
* @ulen: buffer size in bytes. If string is smaller than this
* then it must be terminated with a \0.
* @maskp: pointer to bitmap array that will contain result.
* @nmaskbits: size of bitmap, in bits.
*/
int bitmap_parse_user(const char __user *ubuf,
unsigned int ulen, unsigned long *maskp,
int nmaskbits)
{
char *buf;
int ret;
buf = memdup_user_nul(ubuf, ulen);
if (IS_ERR(buf))
return PTR_ERR(buf);
ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
kfree(buf);
return ret;
}
EXPORT_SYMBOL(bitmap_parse_user);
/**
* bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
* @list: indicates whether the bitmap must be list
* @buf: page aligned buffer into which string is placed
* @maskp: pointer to bitmap to convert
* @nmaskbits: size of bitmap, in bits
*
* Output format is a comma-separated list of decimal numbers and
* ranges if list is specified or hex digits grouped into comma-separated
* sets of 8 digits/set. Returns the number of characters written to buf.
*
* It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
* area and that sufficient storage remains at @buf to accommodate the
* bitmap_print_to_pagebuf() output. Returns the number of characters
* actually printed to @buf, excluding terminating '\0'.
*/
int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
int nmaskbits)
{
ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
}
EXPORT_SYMBOL(bitmap_print_to_pagebuf);
/**
* bitmap_print_to_buf - convert bitmap to list or hex format ASCII string
* @list: indicates whether the bitmap must be list
* true: print in decimal list format
* false: print in hexadecimal bitmask format
* @buf: buffer into which string is placed
* @maskp: pointer to bitmap to convert
* @nmaskbits: size of bitmap, in bits
* @off: in the string from which we are copying, We copy to @buf
* @count: the maximum number of bytes to print
*/
static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp,
int nmaskbits, loff_t off, size_t count)
{
const char *fmt = list ? "%*pbl\n" : "%*pb\n";
ssize_t size;
void *data;
data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp);
if (!data)
return -ENOMEM;
size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1);
kfree(data);
return size;
}
/**
* bitmap_print_bitmask_to_buf - convert bitmap to hex bitmask format ASCII string
* @buf: buffer into which string is placed
* @maskp: pointer to bitmap to convert
* @nmaskbits: size of bitmap, in bits
* @off: in the string from which we are copying, We copy to @buf
* @count: the maximum number of bytes to print
*
* The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper
* cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal
* bitmask and decimal list to userspace by sysfs ABI.
* Drivers might be using a normal attribute for this kind of ABIs. A
* normal attribute typically has show entry as below:
* static ssize_t example_attribute_show(struct device *dev,
* struct device_attribute *attr, char *buf)
* {
* ...
* return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max);
* }
* show entry of attribute has no offset and count parameters and this
* means the file is limited to one page only.
* bitmap_print_to_pagebuf() API works terribly well for this kind of
* normal attribute with buf parameter and without offset, count:
* bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
* int nmaskbits)
* {
* }
* The problem is once we have a large bitmap, we have a chance to get a
* bitmask or list more than one page. Especially for list, it could be
* as complex as 0,3,5,7,9,... We have no simple way to know it exact size.
* It turns out bin_attribute is a way to break this limit. bin_attribute
* has show entry as below:
* static ssize_t
* example_bin_attribute_show(struct file *filp, struct kobject *kobj,
* struct bin_attribute *attr, char *buf,
* loff_t offset, size_t count)
* {
* ...
* }
* With the new offset and count parameters, this makes sysfs ABI be able
* to support file size more than one page. For example, offset could be
* >= 4096.
* bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their
* cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf()
* make those drivers be able to support large bitmask and list after they
* move to use bin_attribute. In result, we have to pass the corresponding
* parameters such as off, count from bin_attribute show entry to this API.
*
* The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf()
* is similar with cpumap_print_to_pagebuf(), the difference is that
* bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption
* the destination buffer is exactly one page and won't be more than one page.
* cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other
* hand, mainly serves bin_attribute which doesn't work with exact one page,
* and it can break the size limit of converted decimal list and hexadecimal
* bitmask.
*
* WARNING!
*
* This function is not a replacement for sprintf() or bitmap_print_to_pagebuf().
* It is intended to workaround sysfs limitations discussed above and should be
* used carefully in general case for the following reasons:
* - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf().
* - Memory complexity is O(nbits), comparing to O(1) for snprintf().
* - @off and @count are NOT offset and number of bits to print.
* - If printing part of bitmap as list, the resulting string is not a correct
* list representation of bitmap. Particularly, some bits within or out of
* related interval may be erroneously set or unset. The format of the string
* may be broken, so bitmap_parselist-like parser may fail parsing it.
* - If printing the whole bitmap as list by parts, user must ensure the order
* of calls of the function such that the offset is incremented linearly.
* - If printing the whole bitmap as list by parts, user must keep bitmap
* unchanged between the very first and very last call. Otherwise concatenated
* result may be incorrect, and format may be broken.
*
* Returns the number of characters actually printed to @buf
*/
int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp,
int nmaskbits, loff_t off, size_t count)
{
return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count);
}
EXPORT_SYMBOL(bitmap_print_bitmask_to_buf);
/**
* bitmap_print_list_to_buf - convert bitmap to decimal list format ASCII string
* @buf: buffer into which string is placed
* @maskp: pointer to bitmap to convert
* @nmaskbits: size of bitmap, in bits
* @off: in the string from which we are copying, We copy to @buf
* @count: the maximum number of bytes to print
*
* Everything is same with the above bitmap_print_bitmask_to_buf() except
* the print format.
*/
int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp,
int nmaskbits, loff_t off, size_t count)
{
return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count);
}
EXPORT_SYMBOL(bitmap_print_list_to_buf);
/*
* Region 9-38:4/10 describes the following bitmap structure:
* 0 9 12 18 38 N
* .........****......****......****..................
* ^ ^ ^ ^ ^
* start off group_len end nbits
*/
struct region {
unsigned int start;
unsigned int off;
unsigned int group_len;
unsigned int end;
unsigned int nbits;
};
static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
{
unsigned int start;
for (start = r->start; start <= r->end; start += r->group_len)
bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
}
static int bitmap_check_region(const struct region *r)
{
if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
return -EINVAL;
if (r->end >= r->nbits)
return -ERANGE;
return 0;
}
static const char *bitmap_getnum(const char *str, unsigned int *num,
unsigned int lastbit)
{
unsigned long long n;
unsigned int len;
if (str[0] == 'N') {
*num = lastbit;
return str + 1;
}
len = _parse_integer(str, 10, &n);
if (!len)
return ERR_PTR(-EINVAL);
if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
return ERR_PTR(-EOVERFLOW);
*num = n;
return str + len;
}
static inline bool end_of_str(char c)
{
return c == '\0' || c == '\n';
}
static inline bool __end_of_region(char c)
{
return isspace(c) || c == ',';
}
static inline bool end_of_region(char c)
{
return __end_of_region(c) || end_of_str(c);
}
/*
* The format allows commas and whitespaces at the beginning
* of the region.
*/
static const char *bitmap_find_region(const char *str)
{
while (__end_of_region(*str))
str++;
return end_of_str(*str) ? NULL : str;
}
static const char *bitmap_find_region_reverse(const char *start, const char *end)
{
while (start <= end && __end_of_region(*end))
end--;
return end;
}
static const char *bitmap_parse_region(const char *str, struct region *r)
{
unsigned int lastbit = r->nbits - 1;
if (!strncasecmp(str, "all", 3)) {
r->start = 0;
r->end = lastbit;
str += 3;
goto check_pattern;
}
str = bitmap_getnum(str, &r->start, lastbit);
if (IS_ERR(str))
return str;
if (end_of_region(*str))
goto no_end;
if (*str != '-')
return ERR_PTR(-EINVAL);
str = bitmap_getnum(str + 1, &r->end, lastbit);
if (IS_ERR(str))
return str;
check_pattern:
if (end_of_region(*str))
goto no_pattern;
if (*str != ':')
return ERR_PTR(-EINVAL);
str = bitmap_getnum(str + 1, &r->off, lastbit);
if (IS_ERR(str))
return str;
if (*str != '/')
return ERR_PTR(-EINVAL);
return bitmap_getnum(str + 1, &r->group_len, lastbit);
no_end:
r->end = r->start;
no_pattern:
r->off = r->end + 1;
r->group_len = r->end + 1;
return end_of_str(*str) ? NULL : str;
}
/**
* bitmap_parselist - convert list format ASCII string to bitmap
* @buf: read user string from this buffer; must be terminated
* with a \0 or \n.
* @maskp: write resulting mask here
* @nmaskbits: number of bits in mask to be written
*
* Input format is a comma-separated list of decimal numbers and
* ranges. Consecutively set bits are shown as two hyphen-separated
* decimal numbers, the smallest and largest bit numbers set in
* the range.
* Optionally each range can be postfixed to denote that only parts of it
* should be set. The range will divided to groups of specific size.
* From each group will be used only defined amount of bits.
* Syntax: range:used_size/group_size
* Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
* The value 'N' can be used as a dynamically substituted token for the
* maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is
* dynamic, so if system changes cause the bitmap width to change, such
* as more cores in a CPU list, then any ranges using N will also change.
*
* Returns: 0 on success, -errno on invalid input strings. Error values:
*
* - ``-EINVAL``: wrong region format
* - ``-EINVAL``: invalid character in string
* - ``-ERANGE``: bit number specified too large for mask
* - ``-EOVERFLOW``: integer overflow in the input parameters
*/
int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
{
struct region r;
long ret;
r.nbits = nmaskbits;
bitmap_zero(maskp, r.nbits);
while (buf) {
buf = bitmap_find_region(buf);
if (buf == NULL)
return 0;
buf = bitmap_parse_region(buf, &r);
if (IS_ERR(buf))
return PTR_ERR(buf);
ret = bitmap_check_region(&r);
if (ret)
return ret;
bitmap_set_region(&r, maskp);
}
return 0;
}
EXPORT_SYMBOL(bitmap_parselist);
/**
* bitmap_parselist_user() - convert user buffer's list format ASCII
* string to bitmap
*
* @ubuf: pointer to user buffer containing string.
* @ulen: buffer size in bytes. If string is smaller than this
* then it must be terminated with a \0.
* @maskp: pointer to bitmap array that will contain result.
* @nmaskbits: size of bitmap, in bits.
*
* Wrapper for bitmap_parselist(), providing it with user buffer.
*/
int bitmap_parselist_user(const char __user *ubuf,
unsigned int ulen, unsigned long *maskp,
int nmaskbits)
{
char *buf;
int ret;
buf = memdup_user_nul(ubuf, ulen);
if (IS_ERR(buf))
return PTR_ERR(buf);
ret = bitmap_parselist(buf, maskp, nmaskbits);
kfree(buf);
return ret;
}
EXPORT_SYMBOL(bitmap_parselist_user);
static const char *bitmap_get_x32_reverse(const char *start,
const char *end, u32 *num)
{
u32 ret = 0;
int c, i;
for (i = 0; i < 32; i += 4) {
c = hex_to_bin(*end--);
if (c < 0)
return ERR_PTR(-EINVAL);
ret |= c << i;
if (start > end || __end_of_region(*end))
goto out;
}
if (hex_to_bin(*end--) >= 0)
return ERR_PTR(-EOVERFLOW);
out:
*num = ret;
return end;
}
/**
* bitmap_parse - convert an ASCII hex string into a bitmap.
* @start: pointer to buffer containing string.
* @buflen: buffer size in bytes. If string is smaller than this
* then it must be terminated with a \0 or \n. In that case,
* UINT_MAX may be provided instead of string length.
* @maskp: pointer to bitmap array that will contain result.
* @nmaskbits: size of bitmap, in bits.
*
* Commas group hex digits into chunks. Each chunk defines exactly 32
* bits of the resultant bitmask. No chunk may specify a value larger
* than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
* then leading 0-bits are prepended. %-EINVAL is returned for illegal
* characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
* Leading, embedded and trailing whitespace accepted.
*/
int bitmap_parse(const char *start, unsigned int buflen,
unsigned long *maskp, int nmaskbits)
{
const char *end = strnchrnul(start, buflen, '\n') - 1;
int chunks = BITS_TO_U32(nmaskbits);
u32 *bitmap = (u32 *)maskp;
int unset_bit;
int chunk;
for (chunk = 0; ; chunk++) {
end = bitmap_find_region_reverse(start, end);
if (start > end)
break;
if (!chunks--)
return -EOVERFLOW;
#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
#else
end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
#endif
if (IS_ERR(end))
return PTR_ERR(end);
}
unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
if (unset_bit < nmaskbits) {
bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
return 0;
}
if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
return -EOVERFLOW;
return 0;
}
EXPORT_SYMBOL(bitmap_parse);
/**
* bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
* @buf: pointer to a bitmap
* @pos: a bit position in @buf (0 <= @pos < @nbits)
* @nbits: number of valid bit positions in @buf
*
* Map the bit at position @pos in @buf (of length @nbits) to the
* ordinal of which set bit it is. If it is not set or if @pos
* is not a valid bit position, map to -1.
*
* If for example, just bits 4 through 7 are set in @buf, then @pos
* values 4 through 7 will get mapped to 0 through 3, respectively,
* and other @pos values will get mapped to -1. When @pos value 7
* gets mapped to (returns) @ord value 3 in this example, that means
* that bit 7 is the 3rd (starting with 0th) set bit in @buf.
*
* The bit positions 0 through @bits are valid positions in @buf.
*/
static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
{
if (pos >= nbits || !test_bit(pos, buf))
return -1;
return __bitmap_weight(buf, pos);
}
/**
* bitmap_ord_to_pos - find position of n-th set bit in bitmap
* @buf: pointer to bitmap
* @ord: ordinal bit position (n-th set bit, n >= 0)
* @nbits: number of valid bit positions in @buf
*
* Map the ordinal offset of bit @ord in @buf to its position in @buf.
* Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
* >= weight(buf), returns @nbits.
*
* If for example, just bits 4 through 7 are set in @buf, then @ord
* values 0 through 3 will get mapped to 4 through 7, respectively,
* and all other @ord values returns @nbits. When @ord value 3
* gets mapped to (returns) @pos value 7 in this example, that means
* that the 3rd set bit (starting with 0th) is at position 7 in @buf.
*
* The bit positions 0 through @nbits-1 are valid positions in @buf.
*/
unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
{
unsigned int pos;
for (pos = find_first_bit(buf, nbits);
pos < nbits && ord;
pos = find_next_bit(buf, nbits, pos + 1))
ord--;
return pos;
}
/**
* bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
* @dst: remapped result
* @src: subset to be remapped
* @old: defines domain of map
* @new: defines range of map
* @nbits: number of bits in each of these bitmaps
*
* Let @old and @new define a mapping of bit positions, such that
* whatever position is held by the n-th set bit in @old is mapped
* to the n-th set bit in @new. In the more general case, allowing
* for the possibility that the weight 'w' of @new is less than the
* weight of @old, map the position of the n-th set bit in @old to
* the position of the m-th set bit in @new, where m == n % w.
*
* If either of the @old and @new bitmaps are empty, or if @src and
* @dst point to the same location, then this routine copies @src
* to @dst.
*
* The positions of unset bits in @old are mapped to themselves
* (the identify map).
*
* Apply the above specified mapping to @src, placing the result in
* @dst, clearing any bits previously set in @dst.
*
* For example, lets say that @old has bits 4 through 7 set, and
* @new has bits 12 through 15 set. This defines the mapping of bit
* position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
* bit positions unchanged. So if say @src comes into this routine
* with bits 1, 5 and 7 set, then @dst should leave with bits 1,
* 13 and 15 set.
*/
void bitmap_remap(unsigned long *dst, const unsigned long *src,
const unsigned long *old, const unsigned long *new,
unsigned int nbits)
{
unsigned int oldbit, w;
if (dst == src) /* following doesn't handle inplace remaps */
return;
bitmap_zero(dst, nbits);
w = bitmap_weight(new, nbits);
for_each_set_bit(oldbit, src, nbits) {
int n = bitmap_pos_to_ord(old, oldbit, nbits);
if (n < 0 || w == 0)
set_bit(oldbit, dst); /* identity map */
else
set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
}
}
EXPORT_SYMBOL(bitmap_remap);
/**
* bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
* @oldbit: bit position to be mapped
* @old: defines domain of map
* @new: defines range of map
* @bits: number of bits in each of these bitmaps
*
* Let @old and @new define a mapping of bit positions, such that
* whatever position is held by the n-th set bit in @old is mapped
* to the n-th set bit in @new. In the more general case, allowing
* for the possibility that the weight 'w' of @new is less than the
* weight of @old, map the position of the n-th set bit in @old to
* the position of the m-th set bit in @new, where m == n % w.
*
* The positions of unset bits in @old are mapped to themselves
* (the identify map).
*
* Apply the above specified mapping to bit position @oldbit, returning
* the new bit position.
*
* For example, lets say that @old has bits 4 through 7 set, and
* @new has bits 12 through 15 set. This defines the mapping of bit
* position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
* bit positions unchanged. So if say @oldbit is 5, then this routine
* returns 13.
*/
int bitmap_bitremap(int oldbit, const unsigned long *old,
const unsigned long *new, int bits)
{
int w = bitmap_weight(new, bits);
int n = bitmap_pos_to_ord(old, oldbit, bits);
if (n < 0 || w == 0)
return oldbit;
else
return bitmap_ord_to_pos(new, n % w, bits);
}
EXPORT_SYMBOL(bitmap_bitremap);
#ifdef CONFIG_NUMA
/**
* bitmap_onto - translate one bitmap relative to another
* @dst: resulting translated bitmap
* @orig: original untranslated bitmap
* @relmap: bitmap relative to which translated
* @bits: number of bits in each of these bitmaps
*
* Set the n-th bit of @dst iff there exists some m such that the
* n-th bit of @relmap is set, the m-th bit of @orig is set, and
* the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
* (If you understood the previous sentence the first time your
* read it, you're overqualified for your current job.)
*
* In other words, @orig is mapped onto (surjectively) @dst,
* using the map { <n, m> | the n-th bit of @relmap is the
* m-th set bit of @relmap }.
*
* Any set bits in @orig above bit number W, where W is the
* weight of (number of set bits in) @relmap are mapped nowhere.
* In particular, if for all bits m set in @orig, m >= W, then
* @dst will end up empty. In situations where the possibility
* of such an empty result is not desired, one way to avoid it is
* to use the bitmap_fold() operator, below, to first fold the
* @orig bitmap over itself so that all its set bits x are in the
* range 0 <= x < W. The bitmap_fold() operator does this by
* setting the bit (m % W) in @dst, for each bit (m) set in @orig.
*
* Example [1] for bitmap_onto():
* Let's say @relmap has bits 30-39 set, and @orig has bits
* 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
* @dst will have bits 31, 33, 35, 37 and 39 set.
*
* When bit 0 is set in @orig, it means turn on the bit in
* @dst corresponding to whatever is the first bit (if any)
* that is turned on in @relmap. Since bit 0 was off in the
* above example, we leave off that bit (bit 30) in @dst.
*
* When bit 1 is set in @orig (as in the above example), it
* means turn on the bit in @dst corresponding to whatever
* is the second bit that is turned on in @relmap. The second
* bit in @relmap that was turned on in the above example was
* bit 31, so we turned on bit 31 in @dst.
*
* Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
* because they were the 4th, 6th, 8th and 10th set bits
* set in @relmap, and the 4th, 6th, 8th and 10th bits of
* @orig (i.e. bits 3, 5, 7 and 9) were also set.
*
* When bit 11 is set in @orig, it means turn on the bit in
* @dst corresponding to whatever is the twelfth bit that is
* turned on in @relmap. In the above example, there were
* only ten bits turned on in @relmap (30..39), so that bit
* 11 was set in @orig had no affect on @dst.
*
* Example [2] for bitmap_fold() + bitmap_onto():
* Let's say @relmap has these ten bits set::
*
* 40 41 42 43 45 48 53 61 74 95
*
* (for the curious, that's 40 plus the first ten terms of the
* Fibonacci sequence.)
*
* Further lets say we use the following code, invoking
* bitmap_fold() then bitmap_onto, as suggested above to
* avoid the possibility of an empty @dst result::
*
* unsigned long *tmp; // a temporary bitmap's bits
*
* bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
* bitmap_onto(dst, tmp, relmap, bits);
*
* Then this table shows what various values of @dst would be, for
* various @orig's. I list the zero-based positions of each set bit.
* The tmp column shows the intermediate result, as computed by
* using bitmap_fold() to fold the @orig bitmap modulo ten
* (the weight of @relmap):
*
* =============== ============== =================
* @orig tmp @dst
* 0 0 40
* 1 1 41
* 9 9 95
* 10 0 40 [#f1]_
* 1 3 5 7 1 3 5 7 41 43 48 61
* 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
* 0 9 18 27 0 9 8 7 40 61 74 95
* 0 10 20 30 0 40
* 0 11 22 33 0 1 2 3 40 41 42 43
* 0 12 24 36 0 2 4 6 40 42 45 53
* 78 102 211 1 2 8 41 42 74 [#f1]_
* =============== ============== =================
*
* .. [#f1]
*
* For these marked lines, if we hadn't first done bitmap_fold()
* into tmp, then the @dst result would have been empty.
*
* If either of @orig or @relmap is empty (no set bits), then @dst
* will be returned empty.
*
* If (as explained above) the only set bits in @orig are in positions
* m where m >= W, (where W is the weight of @relmap) then @dst will
* once again be returned empty.
*
* All bits in @dst not set by the above rule are cleared.
*/
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
const unsigned long *relmap, unsigned int bits)
{
unsigned int n, m; /* same meaning as in above comment */
if (dst == orig) /* following doesn't handle inplace mappings */
return;
bitmap_zero(dst, bits);
/*
* The following code is a more efficient, but less
* obvious, equivalent to the loop:
* for (m = 0; m < bitmap_weight(relmap, bits); m++) {
* n = bitmap_ord_to_pos(orig, m, bits);
* if (test_bit(m, orig))
* set_bit(n, dst);
* }
*/
m = 0;
for_each_set_bit(n, relmap, bits) {
/* m == bitmap_pos_to_ord(relmap, n, bits) */
if (test_bit(m, orig))
set_bit(n, dst);
m++;
}
}
/**
* bitmap_fold - fold larger bitmap into smaller, modulo specified size
* @dst: resulting smaller bitmap
* @orig: original larger bitmap
* @sz: specified size
* @nbits: number of bits in each of these bitmaps
*
* For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
* Clear all other bits in @dst. See further the comment and
* Example [2] for bitmap_onto() for why and how to use this.
*/
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
unsigned int sz, unsigned int nbits)
{
unsigned int oldbit;
if (dst == orig) /* following doesn't handle inplace mappings */
return;
bitmap_zero(dst, nbits);
for_each_set_bit(oldbit, orig, nbits)
set_bit(oldbit % sz, dst);
}
#endif /* CONFIG_NUMA */
/*
* Common code for bitmap_*_region() routines.
* bitmap: array of unsigned longs corresponding to the bitmap
* pos: the beginning of the region
* order: region size (log base 2 of number of bits)
* reg_op: operation(s) to perform on that region of bitmap
*
* Can set, verify and/or release a region of bits in a bitmap,
* depending on which combination of REG_OP_* flag bits is set.
*
* A region of a bitmap is a sequence of bits in the bitmap, of
* some size '1 << order' (a power of two), aligned to that same
* '1 << order' power of two.
*
* Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
* Returns 0 in all other cases and reg_ops.
*/
enum {
REG_OP_ISFREE, /* true if region is all zero bits */
REG_OP_ALLOC, /* set all bits in region */
REG_OP_RELEASE, /* clear all bits in region */
};
static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
{
int nbits_reg; /* number of bits in region */
int index; /* index first long of region in bitmap */
int offset; /* bit offset region in bitmap[index] */
int nlongs_reg; /* num longs spanned by region in bitmap */
int nbitsinlong; /* num bits of region in each spanned long */
unsigned long mask; /* bitmask for one long of region */
int i; /* scans bitmap by longs */
int ret = 0; /* return value */
/*
* Either nlongs_reg == 1 (for small orders that fit in one long)
* or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
*/
nbits_reg = 1 << order;
index = pos / BITS_PER_LONG;
offset = pos - (index * BITS_PER_LONG);
nlongs_reg = BITS_TO_LONGS(nbits_reg);
nbitsinlong = min(nbits_reg, BITS_PER_LONG);
/*
* Can't do "mask = (1UL << nbitsinlong) - 1", as that
* overflows if nbitsinlong == BITS_PER_LONG.
*/
mask = (1UL << (nbitsinlong - 1));
mask += mask - 1;
mask <<= offset;
switch (reg_op) {
case REG_OP_ISFREE:
for (i = 0; i < nlongs_reg; i++) {
if (bitmap[index + i] & mask)
goto done;
}
ret = 1; /* all bits in region free (zero) */
break;
case REG_OP_ALLOC:
for (i = 0; i < nlongs_reg; i++)
bitmap[index + i] |= mask;
break;
case REG_OP_RELEASE:
for (i = 0; i < nlongs_reg; i++)
bitmap[index + i] &= ~mask;
break;
}
done:
return ret;
}
/**
* bitmap_find_free_region - find a contiguous aligned mem region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @bits: number of bits in the bitmap
* @order: region size (log base 2 of number of bits) to find
*
* Find a region of free (zero) bits in a @bitmap of @bits bits and
* allocate them (set them to one). Only consider regions of length
* a power (@order) of two, aligned to that power of two, which
* makes the search algorithm much faster.
*
* Return the bit offset in bitmap of the allocated region,
* or -errno on failure.
*/
int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
{
unsigned int pos, end; /* scans bitmap by regions of size order */
for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
continue;
__reg_op(bitmap, pos, order, REG_OP_ALLOC);
return pos;
}
return -ENOMEM;
}
EXPORT_SYMBOL(bitmap_find_free_region);
/**
* bitmap_release_region - release allocated bitmap region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @pos: beginning of bit region to release
* @order: region size (log base 2 of number of bits) to release
*
* This is the complement to __bitmap_find_free_region() and releases
* the found region (by clearing it in the bitmap).
*
* No return value.
*/
void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
{
__reg_op(bitmap, pos, order, REG_OP_RELEASE);
}
EXPORT_SYMBOL(bitmap_release_region);
/**
* bitmap_allocate_region - allocate bitmap region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @pos: beginning of bit region to allocate
* @order: region size (log base 2 of number of bits) to allocate
*
* Allocate (set bits in) a specified region of a bitmap.
*
* Return 0 on success, or %-EBUSY if specified region wasn't
* free (not all bits were zero).
*/
int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
{
if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
return -EBUSY;
return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
}
EXPORT_SYMBOL(bitmap_allocate_region);
/**
* bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
* @dst: destination buffer
* @src: bitmap to copy
* @nbits: number of bits in the bitmap
*
* Require nbits % BITS_PER_LONG == 0.
*/
#ifdef __BIG_ENDIAN
void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
{
unsigned int i;
for (i = 0; i < nbits/BITS_PER_LONG; i++) {
if (BITS_PER_LONG == 64)
dst[i] = cpu_to_le64(src[i]);
else
dst[i] = cpu_to_le32(src[i]);
}
}
EXPORT_SYMBOL(bitmap_copy_le);
#endif
unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
{
return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
flags);
}
EXPORT_SYMBOL(bitmap_alloc);
unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
{
return bitmap_alloc(nbits, flags | __GFP_ZERO);
}
EXPORT_SYMBOL(bitmap_zalloc);
unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
{
return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
flags, node);
}
EXPORT_SYMBOL(bitmap_alloc_node);
unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
{
return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
}
EXPORT_SYMBOL(bitmap_zalloc_node);
void bitmap_free(const unsigned long *bitmap)
{
kfree(bitmap);
}
EXPORT_SYMBOL(bitmap_free);
static void devm_bitmap_free(void *data)
{
unsigned long *bitmap = data;
bitmap_free(bitmap);
}
unsigned long *devm_bitmap_alloc(struct device *dev,
unsigned int nbits, gfp_t flags)
{
unsigned long *bitmap;
int ret;
bitmap = bitmap_alloc(nbits, flags);
if (!bitmap)
return NULL;
ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
if (ret)
return NULL;
return bitmap;
}
EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
unsigned long *devm_bitmap_zalloc(struct device *dev,
unsigned int nbits, gfp_t flags)
{
return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
}
EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
#if BITS_PER_LONG == 64
/**
* bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
* @bitmap: array of unsigned longs, the destination bitmap
* @buf: array of u32 (in host byte order), the source bitmap
* @nbits: number of bits in @bitmap
*/
void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
{
unsigned int i, halfwords;
halfwords = DIV_ROUND_UP(nbits, 32);
for (i = 0; i < halfwords; i++) {
bitmap[i/2] = (unsigned long) buf[i];
if (++i < halfwords)
bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
}
/* Clear tail bits in last word beyond nbits. */
if (nbits % BITS_PER_LONG)
bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
}
EXPORT_SYMBOL(bitmap_from_arr32);
/**
* bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
* @buf: array of u32 (in host byte order), the dest bitmap
* @bitmap: array of unsigned longs, the source bitmap
* @nbits: number of bits in @bitmap
*/
void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
{
unsigned int i, halfwords;
halfwords = DIV_ROUND_UP(nbits, 32);
for (i = 0; i < halfwords; i++) {
buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
if (++i < halfwords)
buf[i] = (u32) (bitmap[i/2] >> 32);
}
/* Clear tail bits in last element of array beyond nbits. */
if (nbits % BITS_PER_LONG)
buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
}
EXPORT_SYMBOL(bitmap_to_arr32);
#endif