mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-01 10:42:11 +00:00
bf8f464ee2
kasan_record_aux_stack_noalloc() was introduced to record a stack trace
without allocating memory in the process. It has been added to callers
which were invoked while a raw_spinlock_t was held. More and more callers
were identified and changed over time. Is it a good thing to have this
while functions try their best to do a locklessly setup? The only
downside of having kasan_record_aux_stack() not allocate any memory is
that we end up without a stacktrace if stackdepot runs out of memory and
at the same stacktrace was not recorded before To quote Marco Elver from
https://lore.kernel.org/all/CANpmjNPmQYJ7pv1N3cuU8cP18u7PP_uoZD8YxwZd4jtbof9nVQ@mail.gmail.com/
| I'd be in favor, it simplifies things. And stack depot should be
| able to replenish its pool sufficiently in the "non-aux" cases
| i.e. regular allocations. Worst case we fail to record some
| aux stacks, but I think that's only really bad if there's a bug
| around one of these allocations. In general the probabilities
| of this being a regression are extremely small [...]
Make the kasan_record_aux_stack_noalloc() behaviour default as
kasan_record_aux_stack().
[bigeasy@linutronix.de: dressed the diff as patch]
Link: https://lkml.kernel.org/r/20241122155451.Mb2pmeyJ@linutronix.de
Fixes: 7cb3007ce2
("kasan: generic: introduce kasan_record_aux_stack_noalloc()")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reported-by: syzbot+39f85d612b7c20d8db48@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/67275485.050a0220.3c8d68.0a37.GAE@google.com
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: <kasan-dev@googlegroups.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: syzkaller-bugs@googlegroups.com
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zqiang <qiang.zhang1211@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
581 lines
16 KiB
C
581 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* This file contains core generic KASAN code.
|
|
*
|
|
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
|
|
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
|
|
*
|
|
* Some code borrowed from https://github.com/xairy/kasan-prototype by
|
|
* Andrey Konovalov <andreyknvl@gmail.com>
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kfence.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/stackdepot.h>
|
|
#include <linux/stacktrace.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/bug.h>
|
|
|
|
#include "kasan.h"
|
|
#include "../slab.h"
|
|
|
|
/*
|
|
* All functions below always inlined so compiler could
|
|
* perform better optimizations in each of __asan_loadX/__assn_storeX
|
|
* depending on memory access size X.
|
|
*/
|
|
|
|
static __always_inline bool memory_is_poisoned_1(const void *addr)
|
|
{
|
|
s8 shadow_value = *(s8 *)kasan_mem_to_shadow(addr);
|
|
|
|
if (unlikely(shadow_value)) {
|
|
s8 last_accessible_byte = (unsigned long)addr & KASAN_GRANULE_MASK;
|
|
return unlikely(last_accessible_byte >= shadow_value);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static __always_inline bool memory_is_poisoned_2_4_8(const void *addr,
|
|
unsigned long size)
|
|
{
|
|
u8 *shadow_addr = (u8 *)kasan_mem_to_shadow(addr);
|
|
|
|
/*
|
|
* Access crosses 8(shadow size)-byte boundary. Such access maps
|
|
* into 2 shadow bytes, so we need to check them both.
|
|
*/
|
|
if (unlikely((((unsigned long)addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
|
|
return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
|
|
|
|
return memory_is_poisoned_1(addr + size - 1);
|
|
}
|
|
|
|
static __always_inline bool memory_is_poisoned_16(const void *addr)
|
|
{
|
|
u16 *shadow_addr = (u16 *)kasan_mem_to_shadow(addr);
|
|
|
|
/* Unaligned 16-bytes access maps into 3 shadow bytes. */
|
|
if (unlikely(!IS_ALIGNED((unsigned long)addr, KASAN_GRANULE_SIZE)))
|
|
return *shadow_addr || memory_is_poisoned_1(addr + 15);
|
|
|
|
return *shadow_addr;
|
|
}
|
|
|
|
static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
|
|
size_t size)
|
|
{
|
|
while (size) {
|
|
if (unlikely(*start))
|
|
return (unsigned long)start;
|
|
start++;
|
|
size--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __always_inline unsigned long memory_is_nonzero(const void *start,
|
|
const void *end)
|
|
{
|
|
unsigned int words;
|
|
unsigned long ret;
|
|
unsigned int prefix = (unsigned long)start % 8;
|
|
|
|
if (end - start <= 16)
|
|
return bytes_is_nonzero(start, end - start);
|
|
|
|
if (prefix) {
|
|
prefix = 8 - prefix;
|
|
ret = bytes_is_nonzero(start, prefix);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
start += prefix;
|
|
}
|
|
|
|
words = (end - start) / 8;
|
|
while (words) {
|
|
if (unlikely(*(u64 *)start))
|
|
return bytes_is_nonzero(start, 8);
|
|
start += 8;
|
|
words--;
|
|
}
|
|
|
|
return bytes_is_nonzero(start, (end - start) % 8);
|
|
}
|
|
|
|
static __always_inline bool memory_is_poisoned_n(const void *addr, size_t size)
|
|
{
|
|
unsigned long ret;
|
|
|
|
ret = memory_is_nonzero(kasan_mem_to_shadow(addr),
|
|
kasan_mem_to_shadow(addr + size - 1) + 1);
|
|
|
|
if (unlikely(ret)) {
|
|
const void *last_byte = addr + size - 1;
|
|
s8 *last_shadow = (s8 *)kasan_mem_to_shadow(last_byte);
|
|
s8 last_accessible_byte = (unsigned long)last_byte & KASAN_GRANULE_MASK;
|
|
|
|
if (unlikely(ret != (unsigned long)last_shadow ||
|
|
last_accessible_byte >= *last_shadow))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static __always_inline bool memory_is_poisoned(const void *addr, size_t size)
|
|
{
|
|
if (__builtin_constant_p(size)) {
|
|
switch (size) {
|
|
case 1:
|
|
return memory_is_poisoned_1(addr);
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
return memory_is_poisoned_2_4_8(addr, size);
|
|
case 16:
|
|
return memory_is_poisoned_16(addr);
|
|
default:
|
|
BUILD_BUG();
|
|
}
|
|
}
|
|
|
|
return memory_is_poisoned_n(addr, size);
|
|
}
|
|
|
|
static __always_inline bool check_region_inline(const void *addr,
|
|
size_t size, bool write,
|
|
unsigned long ret_ip)
|
|
{
|
|
if (!kasan_arch_is_ready())
|
|
return true;
|
|
|
|
if (unlikely(size == 0))
|
|
return true;
|
|
|
|
if (unlikely(addr + size < addr))
|
|
return !kasan_report(addr, size, write, ret_ip);
|
|
|
|
if (unlikely(!addr_has_metadata(addr)))
|
|
return !kasan_report(addr, size, write, ret_ip);
|
|
|
|
if (likely(!memory_is_poisoned(addr, size)))
|
|
return true;
|
|
|
|
return !kasan_report(addr, size, write, ret_ip);
|
|
}
|
|
|
|
bool kasan_check_range(const void *addr, size_t size, bool write,
|
|
unsigned long ret_ip)
|
|
{
|
|
return check_region_inline(addr, size, write, ret_ip);
|
|
}
|
|
|
|
bool kasan_byte_accessible(const void *addr)
|
|
{
|
|
s8 shadow_byte;
|
|
|
|
if (!kasan_arch_is_ready())
|
|
return true;
|
|
|
|
shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));
|
|
|
|
return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
|
|
}
|
|
|
|
void kasan_cache_shrink(struct kmem_cache *cache)
|
|
{
|
|
kasan_quarantine_remove_cache(cache);
|
|
}
|
|
|
|
void kasan_cache_shutdown(struct kmem_cache *cache)
|
|
{
|
|
if (!__kmem_cache_empty(cache))
|
|
kasan_quarantine_remove_cache(cache);
|
|
}
|
|
|
|
static void register_global(struct kasan_global *global)
|
|
{
|
|
size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);
|
|
|
|
kasan_unpoison(global->beg, global->size, false);
|
|
|
|
kasan_poison(global->beg + aligned_size,
|
|
global->size_with_redzone - aligned_size,
|
|
KASAN_GLOBAL_REDZONE, false);
|
|
}
|
|
|
|
void __asan_register_globals(void *ptr, ssize_t size)
|
|
{
|
|
int i;
|
|
struct kasan_global *globals = ptr;
|
|
|
|
for (i = 0; i < size; i++)
|
|
register_global(&globals[i]);
|
|
}
|
|
EXPORT_SYMBOL(__asan_register_globals);
|
|
|
|
void __asan_unregister_globals(void *ptr, ssize_t size)
|
|
{
|
|
}
|
|
EXPORT_SYMBOL(__asan_unregister_globals);
|
|
|
|
#define DEFINE_ASAN_LOAD_STORE(size) \
|
|
void __asan_load##size(void *addr) \
|
|
{ \
|
|
check_region_inline(addr, size, false, _RET_IP_); \
|
|
} \
|
|
EXPORT_SYMBOL(__asan_load##size); \
|
|
__alias(__asan_load##size) \
|
|
void __asan_load##size##_noabort(void *); \
|
|
EXPORT_SYMBOL(__asan_load##size##_noabort); \
|
|
void __asan_store##size(void *addr) \
|
|
{ \
|
|
check_region_inline(addr, size, true, _RET_IP_); \
|
|
} \
|
|
EXPORT_SYMBOL(__asan_store##size); \
|
|
__alias(__asan_store##size) \
|
|
void __asan_store##size##_noabort(void *); \
|
|
EXPORT_SYMBOL(__asan_store##size##_noabort)
|
|
|
|
DEFINE_ASAN_LOAD_STORE(1);
|
|
DEFINE_ASAN_LOAD_STORE(2);
|
|
DEFINE_ASAN_LOAD_STORE(4);
|
|
DEFINE_ASAN_LOAD_STORE(8);
|
|
DEFINE_ASAN_LOAD_STORE(16);
|
|
|
|
void __asan_loadN(void *addr, ssize_t size)
|
|
{
|
|
kasan_check_range(addr, size, false, _RET_IP_);
|
|
}
|
|
EXPORT_SYMBOL(__asan_loadN);
|
|
|
|
__alias(__asan_loadN)
|
|
void __asan_loadN_noabort(void *, ssize_t);
|
|
EXPORT_SYMBOL(__asan_loadN_noabort);
|
|
|
|
void __asan_storeN(void *addr, ssize_t size)
|
|
{
|
|
kasan_check_range(addr, size, true, _RET_IP_);
|
|
}
|
|
EXPORT_SYMBOL(__asan_storeN);
|
|
|
|
__alias(__asan_storeN)
|
|
void __asan_storeN_noabort(void *, ssize_t);
|
|
EXPORT_SYMBOL(__asan_storeN_noabort);
|
|
|
|
/* to shut up compiler complaints */
|
|
void __asan_handle_no_return(void) {}
|
|
EXPORT_SYMBOL(__asan_handle_no_return);
|
|
|
|
/* Emitted by compiler to poison alloca()ed objects. */
|
|
void __asan_alloca_poison(void *addr, ssize_t size)
|
|
{
|
|
size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
|
|
size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
|
|
rounded_up_size;
|
|
size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);
|
|
|
|
const void *left_redzone = (const void *)(addr -
|
|
KASAN_ALLOCA_REDZONE_SIZE);
|
|
const void *right_redzone = (const void *)(addr + rounded_up_size);
|
|
|
|
WARN_ON(!IS_ALIGNED((unsigned long)addr, KASAN_ALLOCA_REDZONE_SIZE));
|
|
|
|
kasan_unpoison((const void *)(addr + rounded_down_size),
|
|
size - rounded_down_size, false);
|
|
kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
|
|
KASAN_ALLOCA_LEFT, false);
|
|
kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
|
|
KASAN_ALLOCA_RIGHT, false);
|
|
}
|
|
EXPORT_SYMBOL(__asan_alloca_poison);
|
|
|
|
/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
|
|
void __asan_allocas_unpoison(void *stack_top, ssize_t stack_bottom)
|
|
{
|
|
if (unlikely(!stack_top || stack_top > (void *)stack_bottom))
|
|
return;
|
|
|
|
kasan_unpoison(stack_top, (void *)stack_bottom - stack_top, false);
|
|
}
|
|
EXPORT_SYMBOL(__asan_allocas_unpoison);
|
|
|
|
/* Emitted by the compiler to [un]poison local variables. */
|
|
#define DEFINE_ASAN_SET_SHADOW(byte) \
|
|
void __asan_set_shadow_##byte(const void *addr, ssize_t size) \
|
|
{ \
|
|
__memset((void *)addr, 0x##byte, size); \
|
|
} \
|
|
EXPORT_SYMBOL(__asan_set_shadow_##byte)
|
|
|
|
DEFINE_ASAN_SET_SHADOW(00);
|
|
DEFINE_ASAN_SET_SHADOW(f1);
|
|
DEFINE_ASAN_SET_SHADOW(f2);
|
|
DEFINE_ASAN_SET_SHADOW(f3);
|
|
DEFINE_ASAN_SET_SHADOW(f5);
|
|
DEFINE_ASAN_SET_SHADOW(f8);
|
|
|
|
/*
|
|
* Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
|
|
* For larger allocations larger redzones are used.
|
|
*/
|
|
static inline unsigned int optimal_redzone(unsigned int object_size)
|
|
{
|
|
return
|
|
object_size <= 64 - 16 ? 16 :
|
|
object_size <= 128 - 32 ? 32 :
|
|
object_size <= 512 - 64 ? 64 :
|
|
object_size <= 4096 - 128 ? 128 :
|
|
object_size <= (1 << 14) - 256 ? 256 :
|
|
object_size <= (1 << 15) - 512 ? 512 :
|
|
object_size <= (1 << 16) - 1024 ? 1024 : 2048;
|
|
}
|
|
|
|
void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
|
|
slab_flags_t *flags)
|
|
{
|
|
unsigned int ok_size;
|
|
unsigned int optimal_size;
|
|
unsigned int rem_free_meta_size;
|
|
unsigned int orig_alloc_meta_offset;
|
|
|
|
if (!kasan_requires_meta())
|
|
return;
|
|
|
|
/*
|
|
* SLAB_KASAN is used to mark caches that are sanitized by KASAN and
|
|
* that thus have per-object metadata. Currently, this flag is used in
|
|
* slab_ksize() to account for per-object metadata when calculating the
|
|
* size of the accessible memory within the object. Additionally, we use
|
|
* SLAB_NO_MERGE to prevent merging of caches with per-object metadata.
|
|
*/
|
|
*flags |= SLAB_KASAN | SLAB_NO_MERGE;
|
|
|
|
ok_size = *size;
|
|
|
|
/* Add alloc meta into the redzone. */
|
|
cache->kasan_info.alloc_meta_offset = *size;
|
|
*size += sizeof(struct kasan_alloc_meta);
|
|
|
|
/* If alloc meta doesn't fit, don't add it. */
|
|
if (*size > KMALLOC_MAX_SIZE) {
|
|
cache->kasan_info.alloc_meta_offset = 0;
|
|
*size = ok_size;
|
|
/* Continue, since free meta might still fit. */
|
|
}
|
|
|
|
ok_size = *size;
|
|
orig_alloc_meta_offset = cache->kasan_info.alloc_meta_offset;
|
|
|
|
/*
|
|
* Store free meta in the redzone when it's not possible to store
|
|
* it in the object. This is the case when:
|
|
* 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
|
|
* be touched after it was freed, or
|
|
* 2. Object has a constructor, which means it's expected to
|
|
* retain its content until the next allocation, or
|
|
* 3. It is from a kmalloc cache which enables the debug option
|
|
* to store original size.
|
|
*/
|
|
if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
|
|
slub_debug_orig_size(cache)) {
|
|
cache->kasan_info.free_meta_offset = *size;
|
|
*size += sizeof(struct kasan_free_meta);
|
|
goto free_meta_added;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, if the object is large enough to contain free meta,
|
|
* store it within the object.
|
|
*/
|
|
if (sizeof(struct kasan_free_meta) <= cache->object_size) {
|
|
/* cache->kasan_info.free_meta_offset = 0 is implied. */
|
|
goto free_meta_added;
|
|
}
|
|
|
|
/*
|
|
* For smaller objects, store the beginning of free meta within the
|
|
* object and the end in the redzone. And thus shift the location of
|
|
* alloc meta to free up space for free meta.
|
|
* This is only possible when slub_debug is disabled, as otherwise
|
|
* the end of free meta will overlap with slub_debug metadata.
|
|
*/
|
|
if (!__slub_debug_enabled()) {
|
|
rem_free_meta_size = sizeof(struct kasan_free_meta) -
|
|
cache->object_size;
|
|
*size += rem_free_meta_size;
|
|
if (cache->kasan_info.alloc_meta_offset != 0)
|
|
cache->kasan_info.alloc_meta_offset += rem_free_meta_size;
|
|
goto free_meta_added;
|
|
}
|
|
|
|
/*
|
|
* If the object is small and slub_debug is enabled, store free meta
|
|
* in the redzone after alloc meta.
|
|
*/
|
|
cache->kasan_info.free_meta_offset = *size;
|
|
*size += sizeof(struct kasan_free_meta);
|
|
|
|
free_meta_added:
|
|
/* If free meta doesn't fit, don't add it. */
|
|
if (*size > KMALLOC_MAX_SIZE) {
|
|
cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
|
|
cache->kasan_info.alloc_meta_offset = orig_alloc_meta_offset;
|
|
*size = ok_size;
|
|
}
|
|
|
|
/* Calculate size with optimal redzone. */
|
|
optimal_size = cache->object_size + optimal_redzone(cache->object_size);
|
|
/* Limit it with KMALLOC_MAX_SIZE. */
|
|
if (optimal_size > KMALLOC_MAX_SIZE)
|
|
optimal_size = KMALLOC_MAX_SIZE;
|
|
/* Use optimal size if the size with added metas is not large enough. */
|
|
if (*size < optimal_size)
|
|
*size = optimal_size;
|
|
}
|
|
|
|
struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
|
|
const void *object)
|
|
{
|
|
if (!cache->kasan_info.alloc_meta_offset)
|
|
return NULL;
|
|
return (void *)object + cache->kasan_info.alloc_meta_offset;
|
|
}
|
|
|
|
struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
|
|
const void *object)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
|
|
if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
|
|
return NULL;
|
|
return (void *)object + cache->kasan_info.free_meta_offset;
|
|
}
|
|
|
|
void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
|
|
{
|
|
struct kasan_alloc_meta *alloc_meta;
|
|
|
|
alloc_meta = kasan_get_alloc_meta(cache, object);
|
|
if (alloc_meta) {
|
|
/* Zero out alloc meta to mark it as invalid. */
|
|
__memset(alloc_meta, 0, sizeof(*alloc_meta));
|
|
}
|
|
|
|
/*
|
|
* Explicitly marking free meta as invalid is not required: the shadow
|
|
* value for the first 8 bytes of a newly allocated object is not
|
|
* KASAN_SLAB_FREE_META.
|
|
*/
|
|
}
|
|
|
|
static void release_alloc_meta(struct kasan_alloc_meta *meta)
|
|
{
|
|
/* Zero out alloc meta to mark it as invalid. */
|
|
__memset(meta, 0, sizeof(*meta));
|
|
}
|
|
|
|
static void release_free_meta(const void *object, struct kasan_free_meta *meta)
|
|
{
|
|
if (!kasan_arch_is_ready())
|
|
return;
|
|
|
|
/* Check if free meta is valid. */
|
|
if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_SLAB_FREE_META)
|
|
return;
|
|
|
|
/* Mark free meta as invalid. */
|
|
*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE;
|
|
}
|
|
|
|
size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object)
|
|
{
|
|
struct kasan_cache *info = &cache->kasan_info;
|
|
|
|
if (!kasan_requires_meta())
|
|
return 0;
|
|
|
|
if (in_object)
|
|
return (info->free_meta_offset ?
|
|
0 : sizeof(struct kasan_free_meta));
|
|
else
|
|
return (info->alloc_meta_offset ?
|
|
sizeof(struct kasan_alloc_meta) : 0) +
|
|
((info->free_meta_offset &&
|
|
info->free_meta_offset != KASAN_NO_FREE_META) ?
|
|
sizeof(struct kasan_free_meta) : 0);
|
|
}
|
|
|
|
/*
|
|
* This function avoids dynamic memory allocations and thus can be called from
|
|
* contexts that do not allow allocating memory.
|
|
*/
|
|
void kasan_record_aux_stack(void *addr)
|
|
{
|
|
struct slab *slab = kasan_addr_to_slab(addr);
|
|
struct kmem_cache *cache;
|
|
struct kasan_alloc_meta *alloc_meta;
|
|
void *object;
|
|
|
|
if (is_kfence_address(addr) || !slab)
|
|
return;
|
|
|
|
cache = slab->slab_cache;
|
|
object = nearest_obj(cache, slab, addr);
|
|
alloc_meta = kasan_get_alloc_meta(cache, object);
|
|
if (!alloc_meta)
|
|
return;
|
|
|
|
alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
|
|
alloc_meta->aux_stack[0] = kasan_save_stack(0, 0);
|
|
}
|
|
|
|
void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
|
|
{
|
|
struct kasan_alloc_meta *alloc_meta;
|
|
|
|
alloc_meta = kasan_get_alloc_meta(cache, object);
|
|
if (!alloc_meta)
|
|
return;
|
|
|
|
/* Invalidate previous stack traces (might exist for krealloc or mempool). */
|
|
release_alloc_meta(alloc_meta);
|
|
|
|
kasan_save_track(&alloc_meta->alloc_track, flags);
|
|
}
|
|
|
|
void kasan_save_free_info(struct kmem_cache *cache, void *object)
|
|
{
|
|
struct kasan_free_meta *free_meta;
|
|
|
|
free_meta = kasan_get_free_meta(cache, object);
|
|
if (!free_meta)
|
|
return;
|
|
|
|
/* Invalidate previous stack trace (might exist for mempool). */
|
|
release_free_meta(object, free_meta);
|
|
|
|
kasan_save_track(&free_meta->free_track, 0);
|
|
|
|
/* Mark free meta as valid. */
|
|
*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE_META;
|
|
}
|