linux-next/drivers/input/keyboard/adp5588-keys.c
Linus Torvalds fb378df57d Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
Pull second round of input updates from Dmitry Torokhov:
 "Mostly simple bug fixes, although we do have one brand new driver for
  Microchip AR1021 i2c touchscreen.

  Also there is the change to stop trying to use i8042 active
  multiplexing by default (it is still possible to activate it via
  i8042.nomux=0 on boxes that implement it)"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input:
  Input: xpad - add Thrustmaster as Xbox 360 controller vendor
  Input: xpad - add USB ID for Thrustmaster Ferrari 458 Racing Wheel
  Input: max77693-haptic - fix state check in imax77693_haptic_disable()
  Input: xen-kbdfront - free grant table entry in xenkbd_disconnect_backend
  Input: alps - fix v4 button press recognition
  Input: i8042 - disable active multiplexing by default
  Input: i8042 - add noloop quirk for Asus X750LN
  Input: synaptics - gate forcepad support by DMI check
  Input: Add Microchip AR1021 i2c touchscreen
  Input: cros_ec_keyb - add of match table
  Input: serio - avoid negative serio device numbers
  Input: avoid negative input device numbers
  Input: automatically set EV_ABS bit in input_set_abs_params
  Input: adp5588-keys - cancel workqueue in failure path
  Input: opencores-kbd - switch to using managed resources
  Input: evdev - fix EVIOCG{type} ioctl
2014-10-19 12:40:24 -07:00

673 lines
16 KiB
C

/*
* File: drivers/input/keyboard/adp5588_keys.c
* Description: keypad driver for ADP5588 and ADP5587
* I2C QWERTY Keypad and IO Expander
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* Copyright (C) 2008-2010 Analog Devices Inc.
* Licensed under the GPL-2 or later.
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/workqueue.h>
#include <linux/errno.h>
#include <linux/pm.h>
#include <linux/platform_device.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/i2c/adp5588.h>
/* Key Event Register xy */
#define KEY_EV_PRESSED (1 << 7)
#define KEY_EV_MASK (0x7F)
#define KP_SEL(x) (0xFFFF >> (16 - x)) /* 2^x-1 */
#define KEYP_MAX_EVENT 10
/*
* Early pre 4.0 Silicon required to delay readout by at least 25ms,
* since the Event Counter Register updated 25ms after the interrupt
* asserted.
*/
#define WA_DELAYED_READOUT_REVID(rev) ((rev) < 4)
struct adp5588_kpad {
struct i2c_client *client;
struct input_dev *input;
struct delayed_work work;
unsigned long delay;
unsigned short keycode[ADP5588_KEYMAPSIZE];
const struct adp5588_gpi_map *gpimap;
unsigned short gpimapsize;
#ifdef CONFIG_GPIOLIB
unsigned char gpiomap[ADP5588_MAXGPIO];
bool export_gpio;
struct gpio_chip gc;
struct mutex gpio_lock; /* Protect cached dir, dat_out */
u8 dat_out[3];
u8 dir[3];
#endif
};
static int adp5588_read(struct i2c_client *client, u8 reg)
{
int ret = i2c_smbus_read_byte_data(client, reg);
if (ret < 0)
dev_err(&client->dev, "Read Error\n");
return ret;
}
static int adp5588_write(struct i2c_client *client, u8 reg, u8 val)
{
return i2c_smbus_write_byte_data(client, reg, val);
}
#ifdef CONFIG_GPIOLIB
static int adp5588_gpio_get_value(struct gpio_chip *chip, unsigned off)
{
struct adp5588_kpad *kpad = container_of(chip, struct adp5588_kpad, gc);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
int val;
mutex_lock(&kpad->gpio_lock);
if (kpad->dir[bank] & bit)
val = kpad->dat_out[bank];
else
val = adp5588_read(kpad->client, GPIO_DAT_STAT1 + bank);
mutex_unlock(&kpad->gpio_lock);
return !!(val & bit);
}
static void adp5588_gpio_set_value(struct gpio_chip *chip,
unsigned off, int val)
{
struct adp5588_kpad *kpad = container_of(chip, struct adp5588_kpad, gc);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
mutex_lock(&kpad->gpio_lock);
if (val)
kpad->dat_out[bank] |= bit;
else
kpad->dat_out[bank] &= ~bit;
adp5588_write(kpad->client, GPIO_DAT_OUT1 + bank,
kpad->dat_out[bank]);
mutex_unlock(&kpad->gpio_lock);
}
static int adp5588_gpio_direction_input(struct gpio_chip *chip, unsigned off)
{
struct adp5588_kpad *kpad = container_of(chip, struct adp5588_kpad, gc);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
int ret;
mutex_lock(&kpad->gpio_lock);
kpad->dir[bank] &= ~bit;
ret = adp5588_write(kpad->client, GPIO_DIR1 + bank, kpad->dir[bank]);
mutex_unlock(&kpad->gpio_lock);
return ret;
}
static int adp5588_gpio_direction_output(struct gpio_chip *chip,
unsigned off, int val)
{
struct adp5588_kpad *kpad = container_of(chip, struct adp5588_kpad, gc);
unsigned int bank = ADP5588_BANK(kpad->gpiomap[off]);
unsigned int bit = ADP5588_BIT(kpad->gpiomap[off]);
int ret;
mutex_lock(&kpad->gpio_lock);
kpad->dir[bank] |= bit;
if (val)
kpad->dat_out[bank] |= bit;
else
kpad->dat_out[bank] &= ~bit;
ret = adp5588_write(kpad->client, GPIO_DAT_OUT1 + bank,
kpad->dat_out[bank]);
ret |= adp5588_write(kpad->client, GPIO_DIR1 + bank,
kpad->dir[bank]);
mutex_unlock(&kpad->gpio_lock);
return ret;
}
static int adp5588_build_gpiomap(struct adp5588_kpad *kpad,
const struct adp5588_kpad_platform_data *pdata)
{
bool pin_used[ADP5588_MAXGPIO];
int n_unused = 0;
int i;
memset(pin_used, 0, sizeof(pin_used));
for (i = 0; i < pdata->rows; i++)
pin_used[i] = true;
for (i = 0; i < pdata->cols; i++)
pin_used[i + GPI_PIN_COL_BASE - GPI_PIN_BASE] = true;
for (i = 0; i < kpad->gpimapsize; i++)
pin_used[kpad->gpimap[i].pin - GPI_PIN_BASE] = true;
for (i = 0; i < ADP5588_MAXGPIO; i++)
if (!pin_used[i])
kpad->gpiomap[n_unused++] = i;
return n_unused;
}
static int adp5588_gpio_add(struct adp5588_kpad *kpad)
{
struct device *dev = &kpad->client->dev;
const struct adp5588_kpad_platform_data *pdata = dev_get_platdata(dev);
const struct adp5588_gpio_platform_data *gpio_data = pdata->gpio_data;
int i, error;
if (!gpio_data)
return 0;
kpad->gc.ngpio = adp5588_build_gpiomap(kpad, pdata);
if (kpad->gc.ngpio == 0) {
dev_info(dev, "No unused gpios left to export\n");
return 0;
}
kpad->export_gpio = true;
kpad->gc.direction_input = adp5588_gpio_direction_input;
kpad->gc.direction_output = adp5588_gpio_direction_output;
kpad->gc.get = adp5588_gpio_get_value;
kpad->gc.set = adp5588_gpio_set_value;
kpad->gc.can_sleep = 1;
kpad->gc.base = gpio_data->gpio_start;
kpad->gc.label = kpad->client->name;
kpad->gc.owner = THIS_MODULE;
kpad->gc.names = gpio_data->names;
mutex_init(&kpad->gpio_lock);
error = gpiochip_add(&kpad->gc);
if (error) {
dev_err(dev, "gpiochip_add failed, err: %d\n", error);
return error;
}
for (i = 0; i <= ADP5588_BANK(ADP5588_MAXGPIO); i++) {
kpad->dat_out[i] = adp5588_read(kpad->client,
GPIO_DAT_OUT1 + i);
kpad->dir[i] = adp5588_read(kpad->client, GPIO_DIR1 + i);
}
if (gpio_data->setup) {
error = gpio_data->setup(kpad->client,
kpad->gc.base, kpad->gc.ngpio,
gpio_data->context);
if (error)
dev_warn(dev, "setup failed, %d\n", error);
}
return 0;
}
static void adp5588_gpio_remove(struct adp5588_kpad *kpad)
{
struct device *dev = &kpad->client->dev;
const struct adp5588_kpad_platform_data *pdata = dev_get_platdata(dev);
const struct adp5588_gpio_platform_data *gpio_data = pdata->gpio_data;
int error;
if (!kpad->export_gpio)
return;
if (gpio_data->teardown) {
error = gpio_data->teardown(kpad->client,
kpad->gc.base, kpad->gc.ngpio,
gpio_data->context);
if (error)
dev_warn(dev, "teardown failed %d\n", error);
}
gpiochip_remove(&kpad->gc);
}
#else
static inline int adp5588_gpio_add(struct adp5588_kpad *kpad)
{
return 0;
}
static inline void adp5588_gpio_remove(struct adp5588_kpad *kpad)
{
}
#endif
static void adp5588_report_events(struct adp5588_kpad *kpad, int ev_cnt)
{
int i, j;
for (i = 0; i < ev_cnt; i++) {
int key = adp5588_read(kpad->client, Key_EVENTA + i);
int key_val = key & KEY_EV_MASK;
if (key_val >= GPI_PIN_BASE && key_val <= GPI_PIN_END) {
for (j = 0; j < kpad->gpimapsize; j++) {
if (key_val == kpad->gpimap[j].pin) {
input_report_switch(kpad->input,
kpad->gpimap[j].sw_evt,
key & KEY_EV_PRESSED);
break;
}
}
} else {
input_report_key(kpad->input,
kpad->keycode[key_val - 1],
key & KEY_EV_PRESSED);
}
}
}
static void adp5588_work(struct work_struct *work)
{
struct adp5588_kpad *kpad = container_of(work,
struct adp5588_kpad, work.work);
struct i2c_client *client = kpad->client;
int status, ev_cnt;
status = adp5588_read(client, INT_STAT);
if (status & ADP5588_OVR_FLOW_INT) /* Unlikely and should never happen */
dev_err(&client->dev, "Event Overflow Error\n");
if (status & ADP5588_KE_INT) {
ev_cnt = adp5588_read(client, KEY_LCK_EC_STAT) & ADP5588_KEC;
if (ev_cnt) {
adp5588_report_events(kpad, ev_cnt);
input_sync(kpad->input);
}
}
adp5588_write(client, INT_STAT, status); /* Status is W1C */
}
static irqreturn_t adp5588_irq(int irq, void *handle)
{
struct adp5588_kpad *kpad = handle;
/*
* use keventd context to read the event fifo registers
* Schedule readout at least 25ms after notification for
* REVID < 4
*/
schedule_delayed_work(&kpad->work, kpad->delay);
return IRQ_HANDLED;
}
static int adp5588_setup(struct i2c_client *client)
{
const struct adp5588_kpad_platform_data *pdata =
dev_get_platdata(&client->dev);
const struct adp5588_gpio_platform_data *gpio_data = pdata->gpio_data;
int i, ret;
unsigned char evt_mode1 = 0, evt_mode2 = 0, evt_mode3 = 0;
ret = adp5588_write(client, KP_GPIO1, KP_SEL(pdata->rows));
ret |= adp5588_write(client, KP_GPIO2, KP_SEL(pdata->cols) & 0xFF);
ret |= adp5588_write(client, KP_GPIO3, KP_SEL(pdata->cols) >> 8);
if (pdata->en_keylock) {
ret |= adp5588_write(client, UNLOCK1, pdata->unlock_key1);
ret |= adp5588_write(client, UNLOCK2, pdata->unlock_key2);
ret |= adp5588_write(client, KEY_LCK_EC_STAT, ADP5588_K_LCK_EN);
}
for (i = 0; i < KEYP_MAX_EVENT; i++)
ret |= adp5588_read(client, Key_EVENTA);
for (i = 0; i < pdata->gpimapsize; i++) {
unsigned short pin = pdata->gpimap[i].pin;
if (pin <= GPI_PIN_ROW_END) {
evt_mode1 |= (1 << (pin - GPI_PIN_ROW_BASE));
} else {
evt_mode2 |= ((1 << (pin - GPI_PIN_COL_BASE)) & 0xFF);
evt_mode3 |= ((1 << (pin - GPI_PIN_COL_BASE)) >> 8);
}
}
if (pdata->gpimapsize) {
ret |= adp5588_write(client, GPI_EM1, evt_mode1);
ret |= adp5588_write(client, GPI_EM2, evt_mode2);
ret |= adp5588_write(client, GPI_EM3, evt_mode3);
}
if (gpio_data) {
for (i = 0; i <= ADP5588_BANK(ADP5588_MAXGPIO); i++) {
int pull_mask = gpio_data->pullup_dis_mask;
ret |= adp5588_write(client, GPIO_PULL1 + i,
(pull_mask >> (8 * i)) & 0xFF);
}
}
ret |= adp5588_write(client, INT_STAT,
ADP5588_CMP2_INT | ADP5588_CMP1_INT |
ADP5588_OVR_FLOW_INT | ADP5588_K_LCK_INT |
ADP5588_GPI_INT | ADP5588_KE_INT); /* Status is W1C */
ret |= adp5588_write(client, CFG, ADP5588_INT_CFG |
ADP5588_OVR_FLOW_IEN |
ADP5588_KE_IEN);
if (ret < 0) {
dev_err(&client->dev, "Write Error\n");
return ret;
}
return 0;
}
static void adp5588_report_switch_state(struct adp5588_kpad *kpad)
{
int gpi_stat1 = adp5588_read(kpad->client, GPIO_DAT_STAT1);
int gpi_stat2 = adp5588_read(kpad->client, GPIO_DAT_STAT2);
int gpi_stat3 = adp5588_read(kpad->client, GPIO_DAT_STAT3);
int gpi_stat_tmp, pin_loc;
int i;
for (i = 0; i < kpad->gpimapsize; i++) {
unsigned short pin = kpad->gpimap[i].pin;
if (pin <= GPI_PIN_ROW_END) {
gpi_stat_tmp = gpi_stat1;
pin_loc = pin - GPI_PIN_ROW_BASE;
} else if ((pin - GPI_PIN_COL_BASE) < 8) {
gpi_stat_tmp = gpi_stat2;
pin_loc = pin - GPI_PIN_COL_BASE;
} else {
gpi_stat_tmp = gpi_stat3;
pin_loc = pin - GPI_PIN_COL_BASE - 8;
}
if (gpi_stat_tmp < 0) {
dev_err(&kpad->client->dev,
"Can't read GPIO_DAT_STAT switch %d default to OFF\n",
pin);
gpi_stat_tmp = 0;
}
input_report_switch(kpad->input,
kpad->gpimap[i].sw_evt,
!(gpi_stat_tmp & (1 << pin_loc)));
}
input_sync(kpad->input);
}
static int adp5588_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct adp5588_kpad *kpad;
const struct adp5588_kpad_platform_data *pdata =
dev_get_platdata(&client->dev);
struct input_dev *input;
unsigned int revid;
int ret, i;
int error;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(&client->dev, "SMBUS Byte Data not Supported\n");
return -EIO;
}
if (!pdata) {
dev_err(&client->dev, "no platform data?\n");
return -EINVAL;
}
if (!pdata->rows || !pdata->cols || !pdata->keymap) {
dev_err(&client->dev, "no rows, cols or keymap from pdata\n");
return -EINVAL;
}
if (pdata->keymapsize != ADP5588_KEYMAPSIZE) {
dev_err(&client->dev, "invalid keymapsize\n");
return -EINVAL;
}
if (!pdata->gpimap && pdata->gpimapsize) {
dev_err(&client->dev, "invalid gpimap from pdata\n");
return -EINVAL;
}
if (pdata->gpimapsize > ADP5588_GPIMAPSIZE_MAX) {
dev_err(&client->dev, "invalid gpimapsize\n");
return -EINVAL;
}
for (i = 0; i < pdata->gpimapsize; i++) {
unsigned short pin = pdata->gpimap[i].pin;
if (pin < GPI_PIN_BASE || pin > GPI_PIN_END) {
dev_err(&client->dev, "invalid gpi pin data\n");
return -EINVAL;
}
if (pin <= GPI_PIN_ROW_END) {
if (pin - GPI_PIN_ROW_BASE + 1 <= pdata->rows) {
dev_err(&client->dev, "invalid gpi row data\n");
return -EINVAL;
}
} else {
if (pin - GPI_PIN_COL_BASE + 1 <= pdata->cols) {
dev_err(&client->dev, "invalid gpi col data\n");
return -EINVAL;
}
}
}
if (!client->irq) {
dev_err(&client->dev, "no IRQ?\n");
return -EINVAL;
}
kpad = kzalloc(sizeof(*kpad), GFP_KERNEL);
input = input_allocate_device();
if (!kpad || !input) {
error = -ENOMEM;
goto err_free_mem;
}
kpad->client = client;
kpad->input = input;
INIT_DELAYED_WORK(&kpad->work, adp5588_work);
ret = adp5588_read(client, DEV_ID);
if (ret < 0) {
error = ret;
goto err_free_mem;
}
revid = (u8) ret & ADP5588_DEVICE_ID_MASK;
if (WA_DELAYED_READOUT_REVID(revid))
kpad->delay = msecs_to_jiffies(30);
input->name = client->name;
input->phys = "adp5588-keys/input0";
input->dev.parent = &client->dev;
input_set_drvdata(input, kpad);
input->id.bustype = BUS_I2C;
input->id.vendor = 0x0001;
input->id.product = 0x0001;
input->id.version = revid;
input->keycodesize = sizeof(kpad->keycode[0]);
input->keycodemax = pdata->keymapsize;
input->keycode = kpad->keycode;
memcpy(kpad->keycode, pdata->keymap,
pdata->keymapsize * input->keycodesize);
kpad->gpimap = pdata->gpimap;
kpad->gpimapsize = pdata->gpimapsize;
/* setup input device */
__set_bit(EV_KEY, input->evbit);
if (pdata->repeat)
__set_bit(EV_REP, input->evbit);
for (i = 0; i < input->keycodemax; i++)
if (kpad->keycode[i] <= KEY_MAX)
__set_bit(kpad->keycode[i], input->keybit);
__clear_bit(KEY_RESERVED, input->keybit);
if (kpad->gpimapsize)
__set_bit(EV_SW, input->evbit);
for (i = 0; i < kpad->gpimapsize; i++)
__set_bit(kpad->gpimap[i].sw_evt, input->swbit);
error = input_register_device(input);
if (error) {
dev_err(&client->dev, "unable to register input device\n");
goto err_free_mem;
}
error = request_irq(client->irq, adp5588_irq,
IRQF_TRIGGER_FALLING,
client->dev.driver->name, kpad);
if (error) {
dev_err(&client->dev, "irq %d busy?\n", client->irq);
goto err_unreg_dev;
}
error = adp5588_setup(client);
if (error)
goto err_free_irq;
if (kpad->gpimapsize)
adp5588_report_switch_state(kpad);
error = adp5588_gpio_add(kpad);
if (error)
goto err_free_irq;
device_init_wakeup(&client->dev, 1);
i2c_set_clientdata(client, kpad);
dev_info(&client->dev, "Rev.%d keypad, irq %d\n", revid, client->irq);
return 0;
err_free_irq:
free_irq(client->irq, kpad);
cancel_delayed_work_sync(&kpad->work);
err_unreg_dev:
input_unregister_device(input);
input = NULL;
err_free_mem:
input_free_device(input);
kfree(kpad);
return error;
}
static int adp5588_remove(struct i2c_client *client)
{
struct adp5588_kpad *kpad = i2c_get_clientdata(client);
adp5588_write(client, CFG, 0);
free_irq(client->irq, kpad);
cancel_delayed_work_sync(&kpad->work);
input_unregister_device(kpad->input);
adp5588_gpio_remove(kpad);
kfree(kpad);
return 0;
}
#ifdef CONFIG_PM
static int adp5588_suspend(struct device *dev)
{
struct adp5588_kpad *kpad = dev_get_drvdata(dev);
struct i2c_client *client = kpad->client;
disable_irq(client->irq);
cancel_delayed_work_sync(&kpad->work);
if (device_may_wakeup(&client->dev))
enable_irq_wake(client->irq);
return 0;
}
static int adp5588_resume(struct device *dev)
{
struct adp5588_kpad *kpad = dev_get_drvdata(dev);
struct i2c_client *client = kpad->client;
if (device_may_wakeup(&client->dev))
disable_irq_wake(client->irq);
enable_irq(client->irq);
return 0;
}
static const struct dev_pm_ops adp5588_dev_pm_ops = {
.suspend = adp5588_suspend,
.resume = adp5588_resume,
};
#endif
static const struct i2c_device_id adp5588_id[] = {
{ "adp5588-keys", 0 },
{ "adp5587-keys", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adp5588_id);
static struct i2c_driver adp5588_driver = {
.driver = {
.name = KBUILD_MODNAME,
#ifdef CONFIG_PM
.pm = &adp5588_dev_pm_ops,
#endif
},
.probe = adp5588_probe,
.remove = adp5588_remove,
.id_table = adp5588_id,
};
module_i2c_driver(adp5588_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
MODULE_DESCRIPTION("ADP5588/87 Keypad driver");