linux-next/arch/powerpc/oprofile/op_model_fsl_emb.c
Andy Fleming 39aef685af [POWERPC] Made FSL Book-E PMC support more generic
Some of the more recent e300 cores have the same performance monitor
implementation as the e500.  e300 isn't book-e, so the name isn't
really appropriate.  In preparation for e300 support, rename a bunch
of fsl_booke things to say fsl_emb (Freescale Embedded Performance Monitors).

Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2008-02-05 23:34:14 -06:00

370 lines
6.8 KiB
C

/*
* Freescale Embedded oprofile support, based on ppc64 oprofile support
* Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
*
* Copyright (c) 2004 Freescale Semiconductor, Inc
*
* Author: Andy Fleming
* Maintainer: Kumar Gala <galak@kernel.crashing.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/oprofile.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/processor.h>
#include <asm/cputable.h>
#include <asm/reg_fsl_emb.h>
#include <asm/page.h>
#include <asm/pmc.h>
#include <asm/oprofile_impl.h>
static unsigned long reset_value[OP_MAX_COUNTER];
static int num_counters;
static int oprofile_running;
static inline u32 get_pmlca(int ctr)
{
u32 pmlca;
switch (ctr) {
case 0:
pmlca = mfpmr(PMRN_PMLCA0);
break;
case 1:
pmlca = mfpmr(PMRN_PMLCA1);
break;
case 2:
pmlca = mfpmr(PMRN_PMLCA2);
break;
case 3:
pmlca = mfpmr(PMRN_PMLCA3);
break;
default:
panic("Bad ctr number\n");
}
return pmlca;
}
static inline void set_pmlca(int ctr, u32 pmlca)
{
switch (ctr) {
case 0:
mtpmr(PMRN_PMLCA0, pmlca);
break;
case 1:
mtpmr(PMRN_PMLCA1, pmlca);
break;
case 2:
mtpmr(PMRN_PMLCA2, pmlca);
break;
case 3:
mtpmr(PMRN_PMLCA3, pmlca);
break;
default:
panic("Bad ctr number\n");
}
}
static inline unsigned int ctr_read(unsigned int i)
{
switch(i) {
case 0:
return mfpmr(PMRN_PMC0);
case 1:
return mfpmr(PMRN_PMC1);
case 2:
return mfpmr(PMRN_PMC2);
case 3:
return mfpmr(PMRN_PMC3);
default:
return 0;
}
}
static inline void ctr_write(unsigned int i, unsigned int val)
{
switch(i) {
case 0:
mtpmr(PMRN_PMC0, val);
break;
case 1:
mtpmr(PMRN_PMC1, val);
break;
case 2:
mtpmr(PMRN_PMC2, val);
break;
case 3:
mtpmr(PMRN_PMC3, val);
break;
default:
break;
}
}
static void init_pmc_stop(int ctr)
{
u32 pmlca = (PMLCA_FC | PMLCA_FCS | PMLCA_FCU |
PMLCA_FCM1 | PMLCA_FCM0);
u32 pmlcb = 0;
switch (ctr) {
case 0:
mtpmr(PMRN_PMLCA0, pmlca);
mtpmr(PMRN_PMLCB0, pmlcb);
break;
case 1:
mtpmr(PMRN_PMLCA1, pmlca);
mtpmr(PMRN_PMLCB1, pmlcb);
break;
case 2:
mtpmr(PMRN_PMLCA2, pmlca);
mtpmr(PMRN_PMLCB2, pmlcb);
break;
case 3:
mtpmr(PMRN_PMLCA3, pmlca);
mtpmr(PMRN_PMLCB3, pmlcb);
break;
default:
panic("Bad ctr number!\n");
}
}
static void set_pmc_event(int ctr, int event)
{
u32 pmlca;
pmlca = get_pmlca(ctr);
pmlca = (pmlca & ~PMLCA_EVENT_MASK) |
((event << PMLCA_EVENT_SHIFT) &
PMLCA_EVENT_MASK);
set_pmlca(ctr, pmlca);
}
static void set_pmc_user_kernel(int ctr, int user, int kernel)
{
u32 pmlca;
pmlca = get_pmlca(ctr);
if(user)
pmlca &= ~PMLCA_FCU;
else
pmlca |= PMLCA_FCU;
if(kernel)
pmlca &= ~PMLCA_FCS;
else
pmlca |= PMLCA_FCS;
set_pmlca(ctr, pmlca);
}
static void set_pmc_marked(int ctr, int mark0, int mark1)
{
u32 pmlca = get_pmlca(ctr);
if(mark0)
pmlca &= ~PMLCA_FCM0;
else
pmlca |= PMLCA_FCM0;
if(mark1)
pmlca &= ~PMLCA_FCM1;
else
pmlca |= PMLCA_FCM1;
set_pmlca(ctr, pmlca);
}
static void pmc_start_ctr(int ctr, int enable)
{
u32 pmlca = get_pmlca(ctr);
pmlca &= ~PMLCA_FC;
if (enable)
pmlca |= PMLCA_CE;
else
pmlca &= ~PMLCA_CE;
set_pmlca(ctr, pmlca);
}
static void pmc_start_ctrs(int enable)
{
u32 pmgc0 = mfpmr(PMRN_PMGC0);
pmgc0 &= ~PMGC0_FAC;
pmgc0 |= PMGC0_FCECE;
if (enable)
pmgc0 |= PMGC0_PMIE;
else
pmgc0 &= ~PMGC0_PMIE;
mtpmr(PMRN_PMGC0, pmgc0);
}
static void pmc_stop_ctrs(void)
{
u32 pmgc0 = mfpmr(PMRN_PMGC0);
pmgc0 |= PMGC0_FAC;
pmgc0 &= ~(PMGC0_PMIE | PMGC0_FCECE);
mtpmr(PMRN_PMGC0, pmgc0);
}
static void dump_pmcs(void)
{
printk("pmgc0: %x\n", mfpmr(PMRN_PMGC0));
printk("pmc\t\tpmlca\t\tpmlcb\n");
printk("%8x\t%8x\t%8x\n", mfpmr(PMRN_PMC0),
mfpmr(PMRN_PMLCA0), mfpmr(PMRN_PMLCB0));
printk("%8x\t%8x\t%8x\n", mfpmr(PMRN_PMC1),
mfpmr(PMRN_PMLCA1), mfpmr(PMRN_PMLCB1));
printk("%8x\t%8x\t%8x\n", mfpmr(PMRN_PMC2),
mfpmr(PMRN_PMLCA2), mfpmr(PMRN_PMLCB2));
printk("%8x\t%8x\t%8x\n", mfpmr(PMRN_PMC3),
mfpmr(PMRN_PMLCA3), mfpmr(PMRN_PMLCB3));
}
static int fsl_emb_cpu_setup(struct op_counter_config *ctr)
{
int i;
/* freeze all counters */
pmc_stop_ctrs();
for (i = 0;i < num_counters;i++) {
init_pmc_stop(i);
set_pmc_event(i, ctr[i].event);
set_pmc_user_kernel(i, ctr[i].user, ctr[i].kernel);
}
return 0;
}
static int fsl_emb_reg_setup(struct op_counter_config *ctr,
struct op_system_config *sys,
int num_ctrs)
{
int i;
num_counters = num_ctrs;
/* Our counters count up, and "count" refers to
* how much before the next interrupt, and we interrupt
* on overflow. So we calculate the starting value
* which will give us "count" until overflow.
* Then we set the events on the enabled counters */
for (i = 0; i < num_counters; ++i)
reset_value[i] = 0x80000000UL - ctr[i].count;
return 0;
}
static int fsl_emb_start(struct op_counter_config *ctr)
{
int i;
mtmsr(mfmsr() | MSR_PMM);
for (i = 0; i < num_counters; ++i) {
if (ctr[i].enabled) {
ctr_write(i, reset_value[i]);
/* Set each enabled counter to only
* count when the Mark bit is *not* set */
set_pmc_marked(i, 1, 0);
pmc_start_ctr(i, 1);
} else {
ctr_write(i, 0);
/* Set the ctr to be stopped */
pmc_start_ctr(i, 0);
}
}
/* Clear the freeze bit, and enable the interrupt.
* The counters won't actually start until the rfi clears
* the PMM bit */
pmc_start_ctrs(1);
oprofile_running = 1;
pr_debug("start on cpu %d, pmgc0 %x\n", smp_processor_id(),
mfpmr(PMRN_PMGC0));
return 0;
}
static void fsl_emb_stop(void)
{
/* freeze counters */
pmc_stop_ctrs();
oprofile_running = 0;
pr_debug("stop on cpu %d, pmgc0 %x\n", smp_processor_id(),
mfpmr(PMRN_PMGC0));
mb();
}
static void fsl_emb_handle_interrupt(struct pt_regs *regs,
struct op_counter_config *ctr)
{
unsigned long pc;
int is_kernel;
int val;
int i;
/* set the PMM bit (see comment below) */
mtmsr(mfmsr() | MSR_PMM);
pc = regs->nip;
is_kernel = is_kernel_addr(pc);
for (i = 0; i < num_counters; ++i) {
val = ctr_read(i);
if (val < 0) {
if (oprofile_running && ctr[i].enabled) {
oprofile_add_ext_sample(pc, regs, i, is_kernel);
ctr_write(i, reset_value[i]);
} else {
ctr_write(i, 0);
}
}
}
/* The freeze bit was set by the interrupt. */
/* Clear the freeze bit, and reenable the interrupt.
* The counters won't actually start until the rfi clears
* the PMM bit */
pmc_start_ctrs(1);
}
struct op_powerpc_model op_model_fsl_emb = {
.reg_setup = fsl_emb_reg_setup,
.cpu_setup = fsl_emb_cpu_setup,
.start = fsl_emb_start,
.stop = fsl_emb_stop,
.handle_interrupt = fsl_emb_handle_interrupt,
};