linux-next/include/linux/fsverity.h
Eric Biggers f3db0bed45 fs-verity: use smp_load_acquire() for ->i_verity_info
Normally smp_store_release() or cmpxchg_release() is paired with
smp_load_acquire().  Sometimes smp_load_acquire() can be replaced with
the more lightweight READ_ONCE().  However, for this to be safe, all the
published memory must only be accessed in a way that involves the
pointer itself.  This may not be the case if allocating the object also
involves initializing a static or global variable, for example.

fsverity_info::tree_params.hash_alg->tfm is a crypto_ahash object that's
internal to and is allocated by the crypto subsystem.  So by using
READ_ONCE() for ->i_verity_info, we're relying on internal
implementation details of the crypto subsystem.

Remove this fragile assumption by using smp_load_acquire() instead.

Also fix the cmpxchg logic to correctly execute an ACQUIRE barrier when
losing the cmpxchg race, since cmpxchg doesn't guarantee a memory
barrier on failure.

(Note: I haven't seen any real-world problems here.  This change is just
fixing the code to be guaranteed correct and less fragile.)

Fixes: fd2d1acfcadf ("fs-verity: add the hook for file ->open()")
Link: https://lore.kernel.org/r/20200721225920.114347-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-07-21 16:02:41 -07:00

225 lines
6.5 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* fs-verity: read-only file-based authenticity protection
*
* This header declares the interface between the fs/verity/ support layer and
* filesystems that support fs-verity.
*
* Copyright 2019 Google LLC
*/
#ifndef _LINUX_FSVERITY_H
#define _LINUX_FSVERITY_H
#include <linux/fs.h>
#include <uapi/linux/fsverity.h>
/* Verity operations for filesystems */
struct fsverity_operations {
/**
* Begin enabling verity on the given file.
*
* @filp: a readonly file descriptor for the file
*
* The filesystem must do any needed filesystem-specific preparations
* for enabling verity, e.g. evicting inline data. It also must return
* -EBUSY if verity is already being enabled on the given file.
*
* i_rwsem is held for write.
*
* Return: 0 on success, -errno on failure
*/
int (*begin_enable_verity)(struct file *filp);
/**
* End enabling verity on the given file.
*
* @filp: a readonly file descriptor for the file
* @desc: the verity descriptor to write, or NULL on failure
* @desc_size: size of verity descriptor, or 0 on failure
* @merkle_tree_size: total bytes the Merkle tree took up
*
* If desc == NULL, then enabling verity failed and the filesystem only
* must do any necessary cleanups. Else, it must also store the given
* verity descriptor to a fs-specific location associated with the inode
* and do any fs-specific actions needed to mark the inode as a verity
* inode, e.g. setting a bit in the on-disk inode. The filesystem is
* also responsible for setting the S_VERITY flag in the VFS inode.
*
* i_rwsem is held for write, but it may have been dropped between
* ->begin_enable_verity() and ->end_enable_verity().
*
* Return: 0 on success, -errno on failure
*/
int (*end_enable_verity)(struct file *filp, const void *desc,
size_t desc_size, u64 merkle_tree_size);
/**
* Get the verity descriptor of the given inode.
*
* @inode: an inode with the S_VERITY flag set
* @buf: buffer in which to place the verity descriptor
* @bufsize: size of @buf, or 0 to retrieve the size only
*
* If bufsize == 0, then the size of the verity descriptor is returned.
* Otherwise the verity descriptor is written to 'buf' and its actual
* size is returned; -ERANGE is returned if it's too large. This may be
* called by multiple processes concurrently on the same inode.
*
* Return: the size on success, -errno on failure
*/
int (*get_verity_descriptor)(struct inode *inode, void *buf,
size_t bufsize);
/**
* Read a Merkle tree page of the given inode.
*
* @inode: the inode
* @index: 0-based index of the page within the Merkle tree
* @num_ra_pages: The number of Merkle tree pages that should be
* prefetched starting at @index if the page at @index
* isn't already cached. Implementations may ignore this
* argument; it's only a performance optimization.
*
* This can be called at any time on an open verity file, as well as
* between ->begin_enable_verity() and ->end_enable_verity(). It may be
* called by multiple processes concurrently, even with the same page.
*
* Note that this must retrieve a *page*, not necessarily a *block*.
*
* Return: the page on success, ERR_PTR() on failure
*/
struct page *(*read_merkle_tree_page)(struct inode *inode,
pgoff_t index,
unsigned long num_ra_pages);
/**
* Write a Merkle tree block to the given inode.
*
* @inode: the inode for which the Merkle tree is being built
* @buf: block to write
* @index: 0-based index of the block within the Merkle tree
* @log_blocksize: log base 2 of the Merkle tree block size
*
* This is only called between ->begin_enable_verity() and
* ->end_enable_verity().
*
* Return: 0 on success, -errno on failure
*/
int (*write_merkle_tree_block)(struct inode *inode, const void *buf,
u64 index, int log_blocksize);
};
#ifdef CONFIG_FS_VERITY
static inline struct fsverity_info *fsverity_get_info(const struct inode *inode)
{
/*
* Pairs with the cmpxchg_release() in fsverity_set_info().
* I.e., another task may publish ->i_verity_info concurrently,
* executing a RELEASE barrier. We need to use smp_load_acquire() here
* to safely ACQUIRE the memory the other task published.
*/
return smp_load_acquire(&inode->i_verity_info);
}
/* enable.c */
int fsverity_ioctl_enable(struct file *filp, const void __user *arg);
/* measure.c */
int fsverity_ioctl_measure(struct file *filp, void __user *arg);
/* open.c */
int fsverity_file_open(struct inode *inode, struct file *filp);
int fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr);
void fsverity_cleanup_inode(struct inode *inode);
/* verify.c */
bool fsverity_verify_page(struct page *page);
void fsverity_verify_bio(struct bio *bio);
void fsverity_enqueue_verify_work(struct work_struct *work);
#else /* !CONFIG_FS_VERITY */
static inline struct fsverity_info *fsverity_get_info(const struct inode *inode)
{
return NULL;
}
/* enable.c */
static inline int fsverity_ioctl_enable(struct file *filp,
const void __user *arg)
{
return -EOPNOTSUPP;
}
/* measure.c */
static inline int fsverity_ioctl_measure(struct file *filp, void __user *arg)
{
return -EOPNOTSUPP;
}
/* open.c */
static inline int fsverity_file_open(struct inode *inode, struct file *filp)
{
return IS_VERITY(inode) ? -EOPNOTSUPP : 0;
}
static inline int fsverity_prepare_setattr(struct dentry *dentry,
struct iattr *attr)
{
return IS_VERITY(d_inode(dentry)) ? -EOPNOTSUPP : 0;
}
static inline void fsverity_cleanup_inode(struct inode *inode)
{
}
/* verify.c */
static inline bool fsverity_verify_page(struct page *page)
{
WARN_ON(1);
return false;
}
static inline void fsverity_verify_bio(struct bio *bio)
{
WARN_ON(1);
}
static inline void fsverity_enqueue_verify_work(struct work_struct *work)
{
WARN_ON(1);
}
#endif /* !CONFIG_FS_VERITY */
/**
* fsverity_active() - do reads from the inode need to go through fs-verity?
* @inode: inode to check
*
* This checks whether ->i_verity_info has been set.
*
* Filesystems call this from ->readpages() to check whether the pages need to
* be verified or not. Don't use IS_VERITY() for this purpose; it's subject to
* a race condition where the file is being read concurrently with
* FS_IOC_ENABLE_VERITY completing. (S_VERITY is set before ->i_verity_info.)
*
* Return: true if reads need to go through fs-verity, otherwise false
*/
static inline bool fsverity_active(const struct inode *inode)
{
return fsverity_get_info(inode) != NULL;
}
#endif /* _LINUX_FSVERITY_H */