mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-18 06:15:12 +00:00
030e9f9264
The journal stucking check in bch2_journal_space_available() is particularly aggressive and can lead to premature shutdown in some rare cases. This is difficult to reproduce, but also comes along with a fatal error and so is worthwhile to be cautious. For example, we've seen instances where the journal is under heavy reservation pressure, the journal allocation path transitions into the final available journal bucket, the journal write path immediately consumes that bucket and calls into bch2_journal_space_available(), which then in turn flags the journal as stuck because there is no available space and shuts down the filesystem instead of submitting the journal write (that would have otherwise succeeded). To avoid this problem, simplify the journal stuck checking by just relying on the higher level logic in the journal reservation path. This produces more useful debug output and is a more reliable indicator that things have bogged down. Signed-off-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
864 lines
20 KiB
C
864 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "bcachefs.h"
|
|
#include "btree_key_cache.h"
|
|
#include "btree_update.h"
|
|
#include "errcode.h"
|
|
#include "error.h"
|
|
#include "journal.h"
|
|
#include "journal_io.h"
|
|
#include "journal_reclaim.h"
|
|
#include "replicas.h"
|
|
#include "super.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/kthread.h>
|
|
#include <linux/sched/mm.h>
|
|
|
|
/* Free space calculations: */
|
|
|
|
static unsigned journal_space_from(struct journal_device *ja,
|
|
enum journal_space_from from)
|
|
{
|
|
switch (from) {
|
|
case journal_space_discarded:
|
|
return ja->discard_idx;
|
|
case journal_space_clean_ondisk:
|
|
return ja->dirty_idx_ondisk;
|
|
case journal_space_clean:
|
|
return ja->dirty_idx;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
unsigned bch2_journal_dev_buckets_available(struct journal *j,
|
|
struct journal_device *ja,
|
|
enum journal_space_from from)
|
|
{
|
|
unsigned available = (journal_space_from(ja, from) -
|
|
ja->cur_idx - 1 + ja->nr) % ja->nr;
|
|
|
|
/*
|
|
* Don't use the last bucket unless writing the new last_seq
|
|
* will make another bucket available:
|
|
*/
|
|
if (available && ja->dirty_idx_ondisk == ja->dirty_idx)
|
|
--available;
|
|
|
|
return available;
|
|
}
|
|
|
|
static void journal_set_remaining(struct journal *j, unsigned u64s_remaining)
|
|
{
|
|
union journal_preres_state old, new;
|
|
u64 v = atomic64_read(&j->prereserved.counter);
|
|
|
|
do {
|
|
old.v = new.v = v;
|
|
new.remaining = u64s_remaining;
|
|
} while ((v = atomic64_cmpxchg(&j->prereserved.counter,
|
|
old.v, new.v)) != old.v);
|
|
}
|
|
|
|
static struct journal_space
|
|
journal_dev_space_available(struct journal *j, struct bch_dev *ca,
|
|
enum journal_space_from from)
|
|
{
|
|
struct journal_device *ja = &ca->journal;
|
|
unsigned sectors, buckets, unwritten;
|
|
u64 seq;
|
|
|
|
if (from == journal_space_total)
|
|
return (struct journal_space) {
|
|
.next_entry = ca->mi.bucket_size,
|
|
.total = ca->mi.bucket_size * ja->nr,
|
|
};
|
|
|
|
buckets = bch2_journal_dev_buckets_available(j, ja, from);
|
|
sectors = ja->sectors_free;
|
|
|
|
/*
|
|
* We that we don't allocate the space for a journal entry
|
|
* until we write it out - thus, account for it here:
|
|
*/
|
|
for (seq = journal_last_unwritten_seq(j);
|
|
seq <= journal_cur_seq(j);
|
|
seq++) {
|
|
unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors;
|
|
|
|
if (!unwritten)
|
|
continue;
|
|
|
|
/* entry won't fit on this device, skip: */
|
|
if (unwritten > ca->mi.bucket_size)
|
|
continue;
|
|
|
|
if (unwritten >= sectors) {
|
|
if (!buckets) {
|
|
sectors = 0;
|
|
break;
|
|
}
|
|
|
|
buckets--;
|
|
sectors = ca->mi.bucket_size;
|
|
}
|
|
|
|
sectors -= unwritten;
|
|
}
|
|
|
|
if (sectors < ca->mi.bucket_size && buckets) {
|
|
buckets--;
|
|
sectors = ca->mi.bucket_size;
|
|
}
|
|
|
|
return (struct journal_space) {
|
|
.next_entry = sectors,
|
|
.total = sectors + buckets * ca->mi.bucket_size,
|
|
};
|
|
}
|
|
|
|
static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want,
|
|
enum journal_space_from from)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct bch_dev *ca;
|
|
unsigned i, pos, nr_devs = 0;
|
|
struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX];
|
|
|
|
BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space));
|
|
|
|
rcu_read_lock();
|
|
for_each_member_device_rcu(ca, c, i,
|
|
&c->rw_devs[BCH_DATA_journal]) {
|
|
if (!ca->journal.nr)
|
|
continue;
|
|
|
|
space = journal_dev_space_available(j, ca, from);
|
|
if (!space.next_entry)
|
|
continue;
|
|
|
|
for (pos = 0; pos < nr_devs; pos++)
|
|
if (space.total > dev_space[pos].total)
|
|
break;
|
|
|
|
array_insert_item(dev_space, nr_devs, pos, space);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (nr_devs < nr_devs_want)
|
|
return (struct journal_space) { 0, 0 };
|
|
|
|
/*
|
|
* We sorted largest to smallest, and we want the smallest out of the
|
|
* @nr_devs_want largest devices:
|
|
*/
|
|
return dev_space[nr_devs_want - 1];
|
|
}
|
|
|
|
void bch2_journal_space_available(struct journal *j)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct bch_dev *ca;
|
|
unsigned clean, clean_ondisk, total;
|
|
s64 u64s_remaining = 0;
|
|
unsigned max_entry_size = min(j->buf[0].buf_size >> 9,
|
|
j->buf[1].buf_size >> 9);
|
|
unsigned i, nr_online = 0, nr_devs_want;
|
|
bool can_discard = false;
|
|
int ret = 0;
|
|
|
|
lockdep_assert_held(&j->lock);
|
|
|
|
rcu_read_lock();
|
|
for_each_member_device_rcu(ca, c, i,
|
|
&c->rw_devs[BCH_DATA_journal]) {
|
|
struct journal_device *ja = &ca->journal;
|
|
|
|
if (!ja->nr)
|
|
continue;
|
|
|
|
while (ja->dirty_idx != ja->cur_idx &&
|
|
ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j))
|
|
ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr;
|
|
|
|
while (ja->dirty_idx_ondisk != ja->dirty_idx &&
|
|
ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk)
|
|
ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr;
|
|
|
|
if (ja->discard_idx != ja->dirty_idx_ondisk)
|
|
can_discard = true;
|
|
|
|
max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size);
|
|
nr_online++;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
j->can_discard = can_discard;
|
|
|
|
if (nr_online < c->opts.metadata_replicas_required) {
|
|
ret = JOURNAL_ERR_insufficient_devices;
|
|
goto out;
|
|
}
|
|
|
|
nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas);
|
|
|
|
for (i = 0; i < journal_space_nr; i++)
|
|
j->space[i] = __journal_space_available(j, nr_devs_want, i);
|
|
|
|
clean_ondisk = j->space[journal_space_clean_ondisk].total;
|
|
clean = j->space[journal_space_clean].total;
|
|
total = j->space[journal_space_total].total;
|
|
|
|
if (!j->space[journal_space_discarded].next_entry)
|
|
ret = JOURNAL_ERR_journal_full;
|
|
|
|
if ((j->space[journal_space_clean_ondisk].next_entry <
|
|
j->space[journal_space_clean_ondisk].total) &&
|
|
(clean - clean_ondisk <= total / 8) &&
|
|
(clean_ondisk * 2 > clean))
|
|
set_bit(JOURNAL_MAY_SKIP_FLUSH, &j->flags);
|
|
else
|
|
clear_bit(JOURNAL_MAY_SKIP_FLUSH, &j->flags);
|
|
|
|
u64s_remaining = (u64) clean << 6;
|
|
u64s_remaining -= (u64) total << 3;
|
|
u64s_remaining = max(0LL, u64s_remaining);
|
|
u64s_remaining /= 4;
|
|
u64s_remaining = min_t(u64, u64s_remaining, U32_MAX);
|
|
out:
|
|
j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0;
|
|
j->cur_entry_error = ret;
|
|
journal_set_remaining(j, u64s_remaining);
|
|
journal_set_watermark(j);
|
|
|
|
if (!ret)
|
|
journal_wake(j);
|
|
}
|
|
|
|
/* Discards - last part of journal reclaim: */
|
|
|
|
static bool should_discard_bucket(struct journal *j, struct journal_device *ja)
|
|
{
|
|
bool ret;
|
|
|
|
spin_lock(&j->lock);
|
|
ret = ja->discard_idx != ja->dirty_idx_ondisk;
|
|
spin_unlock(&j->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Advance ja->discard_idx as long as it points to buckets that are no longer
|
|
* dirty, issuing discards if necessary:
|
|
*/
|
|
void bch2_journal_do_discards(struct journal *j)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct bch_dev *ca;
|
|
unsigned iter;
|
|
|
|
mutex_lock(&j->discard_lock);
|
|
|
|
for_each_rw_member(ca, c, iter) {
|
|
struct journal_device *ja = &ca->journal;
|
|
|
|
while (should_discard_bucket(j, ja)) {
|
|
if (!c->opts.nochanges &&
|
|
ca->mi.discard &&
|
|
bdev_max_discard_sectors(ca->disk_sb.bdev))
|
|
blkdev_issue_discard(ca->disk_sb.bdev,
|
|
bucket_to_sector(ca,
|
|
ja->buckets[ja->discard_idx]),
|
|
ca->mi.bucket_size, GFP_NOIO);
|
|
|
|
spin_lock(&j->lock);
|
|
ja->discard_idx = (ja->discard_idx + 1) % ja->nr;
|
|
|
|
bch2_journal_space_available(j);
|
|
spin_unlock(&j->lock);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&j->discard_lock);
|
|
}
|
|
|
|
/*
|
|
* Journal entry pinning - machinery for holding a reference on a given journal
|
|
* entry, holding it open to ensure it gets replayed during recovery:
|
|
*/
|
|
|
|
static void bch2_journal_reclaim_fast(struct journal *j)
|
|
{
|
|
struct journal_entry_pin_list temp;
|
|
bool popped = false;
|
|
|
|
lockdep_assert_held(&j->lock);
|
|
|
|
/*
|
|
* Unpin journal entries whose reference counts reached zero, meaning
|
|
* all btree nodes got written out
|
|
*/
|
|
while (!fifo_empty(&j->pin) &&
|
|
!atomic_read(&fifo_peek_front(&j->pin).count)) {
|
|
fifo_pop(&j->pin, temp);
|
|
popped = true;
|
|
}
|
|
|
|
if (popped)
|
|
bch2_journal_space_available(j);
|
|
}
|
|
|
|
void __bch2_journal_pin_put(struct journal *j, u64 seq)
|
|
{
|
|
struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq);
|
|
|
|
if (atomic_dec_and_test(&pin_list->count))
|
|
bch2_journal_reclaim_fast(j);
|
|
}
|
|
|
|
void bch2_journal_pin_put(struct journal *j, u64 seq)
|
|
{
|
|
struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq);
|
|
|
|
if (atomic_dec_and_test(&pin_list->count)) {
|
|
spin_lock(&j->lock);
|
|
bch2_journal_reclaim_fast(j);
|
|
spin_unlock(&j->lock);
|
|
}
|
|
}
|
|
|
|
static inline bool __journal_pin_drop(struct journal *j,
|
|
struct journal_entry_pin *pin)
|
|
{
|
|
struct journal_entry_pin_list *pin_list;
|
|
|
|
if (!journal_pin_active(pin))
|
|
return false;
|
|
|
|
if (j->flush_in_progress == pin)
|
|
j->flush_in_progress_dropped = true;
|
|
|
|
pin_list = journal_seq_pin(j, pin->seq);
|
|
pin->seq = 0;
|
|
list_del_init(&pin->list);
|
|
|
|
/*
|
|
* Unpinning a journal entry make make journal_next_bucket() succeed, if
|
|
* writing a new last_seq will now make another bucket available:
|
|
*/
|
|
return atomic_dec_and_test(&pin_list->count) &&
|
|
pin_list == &fifo_peek_front(&j->pin);
|
|
}
|
|
|
|
void bch2_journal_pin_drop(struct journal *j,
|
|
struct journal_entry_pin *pin)
|
|
{
|
|
spin_lock(&j->lock);
|
|
if (__journal_pin_drop(j, pin))
|
|
bch2_journal_reclaim_fast(j);
|
|
spin_unlock(&j->lock);
|
|
}
|
|
|
|
enum journal_pin_type journal_pin_type(journal_pin_flush_fn fn)
|
|
{
|
|
if (fn == bch2_btree_node_flush0 ||
|
|
fn == bch2_btree_node_flush1)
|
|
return JOURNAL_PIN_btree;
|
|
else if (fn == bch2_btree_key_cache_journal_flush)
|
|
return JOURNAL_PIN_key_cache;
|
|
else
|
|
return JOURNAL_PIN_other;
|
|
}
|
|
|
|
void bch2_journal_pin_set(struct journal *j, u64 seq,
|
|
struct journal_entry_pin *pin,
|
|
journal_pin_flush_fn flush_fn)
|
|
{
|
|
struct journal_entry_pin_list *pin_list;
|
|
bool reclaim;
|
|
|
|
spin_lock(&j->lock);
|
|
|
|
if (seq < journal_last_seq(j)) {
|
|
/*
|
|
* bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on
|
|
* the src pin - with the pin dropped, the entry to pin might no
|
|
* longer to exist, but that means there's no longer anything to
|
|
* copy and we can bail out here:
|
|
*/
|
|
spin_unlock(&j->lock);
|
|
return;
|
|
}
|
|
|
|
pin_list = journal_seq_pin(j, seq);
|
|
|
|
reclaim = __journal_pin_drop(j, pin);
|
|
|
|
atomic_inc(&pin_list->count);
|
|
pin->seq = seq;
|
|
pin->flush = flush_fn;
|
|
|
|
if (flush_fn)
|
|
list_add(&pin->list, &pin_list->list[journal_pin_type(flush_fn)]);
|
|
else
|
|
list_add(&pin->list, &pin_list->flushed);
|
|
|
|
if (reclaim)
|
|
bch2_journal_reclaim_fast(j);
|
|
spin_unlock(&j->lock);
|
|
|
|
/*
|
|
* If the journal is currently full, we might want to call flush_fn
|
|
* immediately:
|
|
*/
|
|
journal_wake(j);
|
|
}
|
|
|
|
/**
|
|
* bch2_journal_pin_flush: ensure journal pin callback is no longer running
|
|
*/
|
|
void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin)
|
|
{
|
|
BUG_ON(journal_pin_active(pin));
|
|
|
|
wait_event(j->pin_flush_wait, j->flush_in_progress != pin);
|
|
}
|
|
|
|
/*
|
|
* Journal reclaim: flush references to open journal entries to reclaim space in
|
|
* the journal
|
|
*
|
|
* May be done by the journal code in the background as needed to free up space
|
|
* for more journal entries, or as part of doing a clean shutdown, or to migrate
|
|
* data off of a specific device:
|
|
*/
|
|
|
|
static struct journal_entry_pin *
|
|
journal_get_next_pin(struct journal *j,
|
|
u64 seq_to_flush,
|
|
unsigned allowed_below_seq,
|
|
unsigned allowed_above_seq,
|
|
u64 *seq)
|
|
{
|
|
struct journal_entry_pin_list *pin_list;
|
|
struct journal_entry_pin *ret = NULL;
|
|
unsigned i;
|
|
|
|
fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) {
|
|
if (*seq > seq_to_flush && !allowed_above_seq)
|
|
break;
|
|
|
|
for (i = 0; i < JOURNAL_PIN_NR; i++)
|
|
if ((((1U << i) & allowed_below_seq) && *seq <= seq_to_flush) ||
|
|
((1U << i) & allowed_above_seq)) {
|
|
ret = list_first_entry_or_null(&pin_list->list[i],
|
|
struct journal_entry_pin, list);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* returns true if we did work */
|
|
static size_t journal_flush_pins(struct journal *j,
|
|
u64 seq_to_flush,
|
|
unsigned allowed_below_seq,
|
|
unsigned allowed_above_seq,
|
|
unsigned min_any,
|
|
unsigned min_key_cache)
|
|
{
|
|
struct journal_entry_pin *pin;
|
|
size_t nr_flushed = 0;
|
|
journal_pin_flush_fn flush_fn;
|
|
u64 seq;
|
|
int err;
|
|
|
|
lockdep_assert_held(&j->reclaim_lock);
|
|
|
|
while (1) {
|
|
unsigned allowed_above = allowed_above_seq;
|
|
unsigned allowed_below = allowed_below_seq;
|
|
|
|
if (min_any) {
|
|
allowed_above |= ~0;
|
|
allowed_below |= ~0;
|
|
}
|
|
|
|
if (min_key_cache) {
|
|
allowed_above |= 1U << JOURNAL_PIN_key_cache;
|
|
allowed_below |= 1U << JOURNAL_PIN_key_cache;
|
|
}
|
|
|
|
cond_resched();
|
|
|
|
j->last_flushed = jiffies;
|
|
|
|
spin_lock(&j->lock);
|
|
pin = journal_get_next_pin(j, seq_to_flush, allowed_below, allowed_above, &seq);
|
|
if (pin) {
|
|
BUG_ON(j->flush_in_progress);
|
|
j->flush_in_progress = pin;
|
|
j->flush_in_progress_dropped = false;
|
|
flush_fn = pin->flush;
|
|
}
|
|
spin_unlock(&j->lock);
|
|
|
|
if (!pin)
|
|
break;
|
|
|
|
if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush)
|
|
min_key_cache--;
|
|
|
|
if (min_any)
|
|
min_any--;
|
|
|
|
err = flush_fn(j, pin, seq);
|
|
|
|
spin_lock(&j->lock);
|
|
/* Pin might have been dropped or rearmed: */
|
|
if (likely(!err && !j->flush_in_progress_dropped))
|
|
list_move(&pin->list, &journal_seq_pin(j, seq)->flushed);
|
|
j->flush_in_progress = NULL;
|
|
j->flush_in_progress_dropped = false;
|
|
spin_unlock(&j->lock);
|
|
|
|
wake_up(&j->pin_flush_wait);
|
|
|
|
if (err)
|
|
break;
|
|
|
|
nr_flushed++;
|
|
}
|
|
|
|
return nr_flushed;
|
|
}
|
|
|
|
static u64 journal_seq_to_flush(struct journal *j)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct bch_dev *ca;
|
|
u64 seq_to_flush = 0;
|
|
unsigned iter;
|
|
|
|
spin_lock(&j->lock);
|
|
|
|
for_each_rw_member(ca, c, iter) {
|
|
struct journal_device *ja = &ca->journal;
|
|
unsigned nr_buckets, bucket_to_flush;
|
|
|
|
if (!ja->nr)
|
|
continue;
|
|
|
|
/* Try to keep the journal at most half full: */
|
|
nr_buckets = ja->nr / 2;
|
|
|
|
/* And include pre-reservations: */
|
|
nr_buckets += DIV_ROUND_UP(j->prereserved.reserved,
|
|
(ca->mi.bucket_size << 6) -
|
|
journal_entry_overhead(j));
|
|
|
|
nr_buckets = min(nr_buckets, ja->nr);
|
|
|
|
bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr;
|
|
seq_to_flush = max(seq_to_flush,
|
|
ja->bucket_seq[bucket_to_flush]);
|
|
}
|
|
|
|
/* Also flush if the pin fifo is more than half full */
|
|
seq_to_flush = max_t(s64, seq_to_flush,
|
|
(s64) journal_cur_seq(j) -
|
|
(j->pin.size >> 1));
|
|
spin_unlock(&j->lock);
|
|
|
|
return seq_to_flush;
|
|
}
|
|
|
|
/**
|
|
* bch2_journal_reclaim - free up journal buckets
|
|
*
|
|
* Background journal reclaim writes out btree nodes. It should be run
|
|
* early enough so that we never completely run out of journal buckets.
|
|
*
|
|
* High watermarks for triggering background reclaim:
|
|
* - FIFO has fewer than 512 entries left
|
|
* - fewer than 25% journal buckets free
|
|
*
|
|
* Background reclaim runs until low watermarks are reached:
|
|
* - FIFO has more than 1024 entries left
|
|
* - more than 50% journal buckets free
|
|
*
|
|
* As long as a reclaim can complete in the time it takes to fill up
|
|
* 512 journal entries or 25% of all journal buckets, then
|
|
* journal_next_bucket() should not stall.
|
|
*/
|
|
static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
bool kthread = (current->flags & PF_KTHREAD) != 0;
|
|
u64 seq_to_flush;
|
|
size_t min_nr, min_key_cache, nr_flushed;
|
|
unsigned flags;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* We can't invoke memory reclaim while holding the reclaim_lock -
|
|
* journal reclaim is required to make progress for memory reclaim
|
|
* (cleaning the caches), so we can't get stuck in memory reclaim while
|
|
* we're holding the reclaim lock:
|
|
*/
|
|
lockdep_assert_held(&j->reclaim_lock);
|
|
flags = memalloc_noreclaim_save();
|
|
|
|
do {
|
|
if (kthread && kthread_should_stop())
|
|
break;
|
|
|
|
if (bch2_journal_error(j)) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
bch2_journal_do_discards(j);
|
|
|
|
seq_to_flush = journal_seq_to_flush(j);
|
|
min_nr = 0;
|
|
|
|
/*
|
|
* If it's been longer than j->reclaim_delay_ms since we last flushed,
|
|
* make sure to flush at least one journal pin:
|
|
*/
|
|
if (time_after(jiffies, j->last_flushed +
|
|
msecs_to_jiffies(c->opts.journal_reclaim_delay)))
|
|
min_nr = 1;
|
|
|
|
if (j->prereserved.reserved * 4 > j->prereserved.remaining)
|
|
min_nr = 1;
|
|
|
|
if (fifo_free(&j->pin) <= 32)
|
|
min_nr = 1;
|
|
|
|
if (atomic_read(&c->btree_cache.dirty) * 2 > c->btree_cache.used)
|
|
min_nr = 1;
|
|
|
|
min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128);
|
|
|
|
trace_and_count(c, journal_reclaim_start, c,
|
|
direct, kicked,
|
|
min_nr, min_key_cache,
|
|
j->prereserved.reserved,
|
|
j->prereserved.remaining,
|
|
atomic_read(&c->btree_cache.dirty),
|
|
c->btree_cache.used,
|
|
atomic_long_read(&c->btree_key_cache.nr_dirty),
|
|
atomic_long_read(&c->btree_key_cache.nr_keys));
|
|
|
|
nr_flushed = journal_flush_pins(j, seq_to_flush,
|
|
~0, 0,
|
|
min_nr, min_key_cache);
|
|
|
|
if (direct)
|
|
j->nr_direct_reclaim += nr_flushed;
|
|
else
|
|
j->nr_background_reclaim += nr_flushed;
|
|
trace_and_count(c, journal_reclaim_finish, c, nr_flushed);
|
|
|
|
if (nr_flushed)
|
|
wake_up(&j->reclaim_wait);
|
|
} while ((min_nr || min_key_cache) && nr_flushed && !direct);
|
|
|
|
memalloc_noreclaim_restore(flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bch2_journal_reclaim(struct journal *j)
|
|
{
|
|
return __bch2_journal_reclaim(j, true, true);
|
|
}
|
|
|
|
static int bch2_journal_reclaim_thread(void *arg)
|
|
{
|
|
struct journal *j = arg;
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
unsigned long delay, now;
|
|
bool journal_empty;
|
|
int ret = 0;
|
|
|
|
set_freezable();
|
|
|
|
j->last_flushed = jiffies;
|
|
|
|
while (!ret && !kthread_should_stop()) {
|
|
bool kicked = j->reclaim_kicked;
|
|
|
|
j->reclaim_kicked = false;
|
|
|
|
mutex_lock(&j->reclaim_lock);
|
|
ret = __bch2_journal_reclaim(j, false, kicked);
|
|
mutex_unlock(&j->reclaim_lock);
|
|
|
|
now = jiffies;
|
|
delay = msecs_to_jiffies(c->opts.journal_reclaim_delay);
|
|
j->next_reclaim = j->last_flushed + delay;
|
|
|
|
if (!time_in_range(j->next_reclaim, now, now + delay))
|
|
j->next_reclaim = now + delay;
|
|
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
|
|
if (kthread_should_stop())
|
|
break;
|
|
if (j->reclaim_kicked)
|
|
break;
|
|
|
|
spin_lock(&j->lock);
|
|
journal_empty = fifo_empty(&j->pin);
|
|
spin_unlock(&j->lock);
|
|
|
|
if (journal_empty)
|
|
schedule();
|
|
else if (time_after(j->next_reclaim, jiffies))
|
|
schedule_timeout(j->next_reclaim - jiffies);
|
|
else
|
|
break;
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_journal_reclaim_stop(struct journal *j)
|
|
{
|
|
struct task_struct *p = j->reclaim_thread;
|
|
|
|
j->reclaim_thread = NULL;
|
|
|
|
if (p) {
|
|
kthread_stop(p);
|
|
put_task_struct(p);
|
|
}
|
|
}
|
|
|
|
int bch2_journal_reclaim_start(struct journal *j)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct task_struct *p;
|
|
int ret;
|
|
|
|
if (j->reclaim_thread)
|
|
return 0;
|
|
|
|
p = kthread_create(bch2_journal_reclaim_thread, j,
|
|
"bch-reclaim/%s", c->name);
|
|
ret = PTR_ERR_OR_ZERO(p);
|
|
if (ret) {
|
|
bch_err(c, "error creating journal reclaim thread: %s", bch2_err_str(ret));
|
|
return ret;
|
|
}
|
|
|
|
get_task_struct(p);
|
|
j->reclaim_thread = p;
|
|
wake_up_process(p);
|
|
return 0;
|
|
}
|
|
|
|
static int journal_flush_done(struct journal *j, u64 seq_to_flush,
|
|
bool *did_work)
|
|
{
|
|
int ret;
|
|
|
|
ret = bch2_journal_error(j);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&j->reclaim_lock);
|
|
|
|
if (journal_flush_pins(j, seq_to_flush,
|
|
(1U << JOURNAL_PIN_key_cache)|
|
|
(1U << JOURNAL_PIN_other), 0, 0, 0) ||
|
|
journal_flush_pins(j, seq_to_flush,
|
|
(1U << JOURNAL_PIN_btree), 0, 0, 0))
|
|
*did_work = true;
|
|
|
|
spin_lock(&j->lock);
|
|
/*
|
|
* If journal replay hasn't completed, the unreplayed journal entries
|
|
* hold refs on their corresponding sequence numbers
|
|
*/
|
|
ret = !test_bit(JOURNAL_REPLAY_DONE, &j->flags) ||
|
|
journal_last_seq(j) > seq_to_flush ||
|
|
!fifo_used(&j->pin);
|
|
|
|
spin_unlock(&j->lock);
|
|
mutex_unlock(&j->reclaim_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush)
|
|
{
|
|
bool did_work = false;
|
|
|
|
if (!test_bit(JOURNAL_STARTED, &j->flags))
|
|
return false;
|
|
|
|
closure_wait_event(&j->async_wait,
|
|
journal_flush_done(j, seq_to_flush, &did_work));
|
|
|
|
return did_work;
|
|
}
|
|
|
|
int bch2_journal_flush_device_pins(struct journal *j, int dev_idx)
|
|
{
|
|
struct bch_fs *c = container_of(j, struct bch_fs, journal);
|
|
struct journal_entry_pin_list *p;
|
|
u64 iter, seq = 0;
|
|
int ret = 0;
|
|
|
|
spin_lock(&j->lock);
|
|
fifo_for_each_entry_ptr(p, &j->pin, iter)
|
|
if (dev_idx >= 0
|
|
? bch2_dev_list_has_dev(p->devs, dev_idx)
|
|
: p->devs.nr < c->opts.metadata_replicas)
|
|
seq = iter;
|
|
spin_unlock(&j->lock);
|
|
|
|
bch2_journal_flush_pins(j, seq);
|
|
|
|
ret = bch2_journal_error(j);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&c->replicas_gc_lock);
|
|
bch2_replicas_gc_start(c, 1 << BCH_DATA_journal);
|
|
|
|
seq = 0;
|
|
|
|
spin_lock(&j->lock);
|
|
while (!ret) {
|
|
struct bch_replicas_padded replicas;
|
|
|
|
seq = max(seq, journal_last_seq(j));
|
|
if (seq >= j->pin.back)
|
|
break;
|
|
bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal,
|
|
journal_seq_pin(j, seq)->devs);
|
|
seq++;
|
|
|
|
spin_unlock(&j->lock);
|
|
ret = bch2_mark_replicas(c, &replicas.e);
|
|
spin_lock(&j->lock);
|
|
}
|
|
spin_unlock(&j->lock);
|
|
|
|
ret = bch2_replicas_gc_end(c, ret);
|
|
mutex_unlock(&c->replicas_gc_lock);
|
|
|
|
return ret;
|
|
}
|