mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 11:27:47 +00:00
bf9aa14fc5
- The final step to get rid of auto-rearming posix-timers posix-timers are currently auto-rearmed by the kernel when the signal of the timer is ignored so that the timer signal can be delivered once the corresponding signal is unignored. This requires to throttle the timer to prevent a DoS by small intervals and keeps the system pointlessly out of low power states for no value. This is a long standing non-trivial problem due to the lock order of posix-timer lock and the sighand lock along with life time issues as the timer and the sigqueue have different life time rules. Cure this by: * Embedding the sigqueue into the timer struct to have the same life time rules. Aside of that this also avoids the lookup of the timer in the signal delivery and rearm path as it's just a always valid container_of() now. * Queuing ignored timer signals onto a seperate ignored list. * Moving queued timer signals onto the ignored list when the signal is switched to SIG_IGN before it could be delivered. * Walking the ignored list when SIG_IGN is lifted and requeue the signals to the actual signal lists. This allows the signal delivery code to rearm the timer. This also required to consolidate the signal delivery rules so they are consistent across all situations. With that all self test scenarios finally succeed. - Core infrastructure for VFS multigrain timestamping This is required to allow the kernel to use coarse grained time stamps by default and switch to fine grained time stamps when inode attributes are actively observed via getattr(). These changes have been provided to the VFS tree as well, so that the VFS specific infrastructure could be built on top. - Cleanup and consolidation of the sleep() infrastructure * Move all sleep and timeout functions into one file * Rework udelay() and ndelay() into proper documented inline functions and replace the hardcoded magic numbers by proper defines. * Rework the fsleep() implementation to take the reality of the timer wheel granularity on different HZ values into account. Right now the boundaries are hard coded time ranges which fail to provide the requested accuracy on different HZ settings. * Update documentation for all sleep/timeout related functions and fix up stale documentation links all over the place * Fixup a few usage sites - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks A system can have multiple PTP clocks which are participating in seperate and independent PTP clock domains. So far the kernel only considers the PTP clock which is based on CLOCK TAI relevant as that's the clock which drives the timekeeping adjustments via the various user space daemons through adjtimex(2). The non TAI based clock domains are accessible via the file descriptor based posix clocks, but their usability is very limited. They can't be accessed fast as they always go all the way out to the hardware and they cannot be utilized in the kernel itself. As Time Sensitive Networking (TSN) gains traction it is required to provide fast user and kernel space access to these clocks. The approach taken is to utilize the timekeeping and adjtimex(2) infrastructure to provide this access in a similar way how the kernel provides access to clock MONOTONIC, REALTIME etc. Instead of creating a duplicated infrastructure this rework converts timekeeping and adjtimex(2) into generic functionality which operates on pointers to data structures instead of using static variables. This allows to provide time accessors and adjtimex(2) functionality for the independent PTP clocks in a subsequent step. - Consolidate hrtimer initialization hrtimers are set up by initializing the data structure and then seperately setting the callback function for historical reasons. That's an extra unnecessary step and makes Rust support less straight forward than it should be. Provide a new set of hrtimer_setup*() functions and convert the core code and a few usage sites of the less frequently used interfaces over. The bulk of the htimer_init() to hrtimer_setup() conversion is already prepared and scheduled for the next merge window. - Drivers: * Ensure that the global timekeeping clocksource is utilizing the cluster 0 timer on MIPS multi-cluster systems. Otherwise CPUs on different clusters use their cluster specific clocksource which is not guaranteed to be synchronized with other clusters. * Mostly boring cleanups, fixes, improvements and code movement -----BEGIN PGP SIGNATURE----- iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7kPITHHRnbHhAbGlu dXRyb25peC5kZQAKCRCmGPVMDXSYoZKkD/9OUL6fOJrDUmOYBa4QVeMyfTef4EaL tvwIMM/29XQFeiq3xxCIn+EMnHjXn2lvIhYGQ7GKsbKYwvJ7ZBDpQb+UMhZ2nKI9 6D6BP6WomZohKeH2fZbJQAdqOi3KRYdvQdIsVZUexkqiaVPphRvOH9wOr45gHtZM EyMRSotPlQTDqcrbUejDMEO94GyjDCYXRsyATLxjmTzL/N4xD4NRIiotjM2vL/a9 8MuCgIhrKUEyYlFoOxxeokBsF3kk3/ez2jlG9b/N8VLH3SYIc2zgL58FBgWxlmgG bY71nVG3nUgEjxBd2dcXAVVqvb+5widk8p6O7xxOAQKTLMcJ4H0tQDkMnzBtUzvB DGAJDHAmAr0g+ja9O35Pkhunkh4HYFIbq0Il4d1HMKObhJV0JumcKuQVxrXycdm3 UZfq3seqHsZJQbPgCAhlFU0/2WWScocbee9bNebGT33KVwSp5FoVv89C/6Vjb+vV Gusc3thqrQuMAZW5zV8g4UcBAA/xH4PB0I+vHib+9XPZ4UQ7/6xKl2jE0kd5hX7n AAUeZvFNFqIsY+B6vz+Jx/yzyM7u5cuXq87pof5EHVFzv56lyTp4ToGcOGYRgKH5 JXeYV1OxGziSDrd5vbf9CzdWMzqMvTefXrHbWrjkjhNOe8E1A8O88RZ5uRKZhmSw hZZ4hdM9+3T7cg== =2VC6 -----END PGP SIGNATURE----- Merge tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer updates from Thomas Gleixner: "A rather large update for timekeeping and timers: - The final step to get rid of auto-rearming posix-timers posix-timers are currently auto-rearmed by the kernel when the signal of the timer is ignored so that the timer signal can be delivered once the corresponding signal is unignored. This requires to throttle the timer to prevent a DoS by small intervals and keeps the system pointlessly out of low power states for no value. This is a long standing non-trivial problem due to the lock order of posix-timer lock and the sighand lock along with life time issues as the timer and the sigqueue have different life time rules. Cure this by: - Embedding the sigqueue into the timer struct to have the same life time rules. Aside of that this also avoids the lookup of the timer in the signal delivery and rearm path as it's just a always valid container_of() now. - Queuing ignored timer signals onto a seperate ignored list. - Moving queued timer signals onto the ignored list when the signal is switched to SIG_IGN before it could be delivered. - Walking the ignored list when SIG_IGN is lifted and requeue the signals to the actual signal lists. This allows the signal delivery code to rearm the timer. This also required to consolidate the signal delivery rules so they are consistent across all situations. With that all self test scenarios finally succeed. - Core infrastructure for VFS multigrain timestamping This is required to allow the kernel to use coarse grained time stamps by default and switch to fine grained time stamps when inode attributes are actively observed via getattr(). These changes have been provided to the VFS tree as well, so that the VFS specific infrastructure could be built on top. - Cleanup and consolidation of the sleep() infrastructure - Move all sleep and timeout functions into one file - Rework udelay() and ndelay() into proper documented inline functions and replace the hardcoded magic numbers by proper defines. - Rework the fsleep() implementation to take the reality of the timer wheel granularity on different HZ values into account. Right now the boundaries are hard coded time ranges which fail to provide the requested accuracy on different HZ settings. - Update documentation for all sleep/timeout related functions and fix up stale documentation links all over the place - Fixup a few usage sites - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks A system can have multiple PTP clocks which are participating in seperate and independent PTP clock domains. So far the kernel only considers the PTP clock which is based on CLOCK TAI relevant as that's the clock which drives the timekeeping adjustments via the various user space daemons through adjtimex(2). The non TAI based clock domains are accessible via the file descriptor based posix clocks, but their usability is very limited. They can't be accessed fast as they always go all the way out to the hardware and they cannot be utilized in the kernel itself. As Time Sensitive Networking (TSN) gains traction it is required to provide fast user and kernel space access to these clocks. The approach taken is to utilize the timekeeping and adjtimex(2) infrastructure to provide this access in a similar way how the kernel provides access to clock MONOTONIC, REALTIME etc. Instead of creating a duplicated infrastructure this rework converts timekeeping and adjtimex(2) into generic functionality which operates on pointers to data structures instead of using static variables. This allows to provide time accessors and adjtimex(2) functionality for the independent PTP clocks in a subsequent step. - Consolidate hrtimer initialization hrtimers are set up by initializing the data structure and then seperately setting the callback function for historical reasons. That's an extra unnecessary step and makes Rust support less straight forward than it should be. Provide a new set of hrtimer_setup*() functions and convert the core code and a few usage sites of the less frequently used interfaces over. The bulk of the htimer_init() to hrtimer_setup() conversion is already prepared and scheduled for the next merge window. - Drivers: - Ensure that the global timekeeping clocksource is utilizing the cluster 0 timer on MIPS multi-cluster systems. Otherwise CPUs on different clusters use their cluster specific clocksource which is not guaranteed to be synchronized with other clusters. - Mostly boring cleanups, fixes, improvements and code movement" * tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (140 commits) posix-timers: Fix spurious warning on double enqueue versus do_exit() clocksource/drivers/arm_arch_timer: Use of_property_present() for non-boolean properties clocksource/drivers/gpx: Remove redundant casts clocksource/drivers/timer-ti-dm: Fix child node refcount handling dt-bindings: timer: actions,owl-timer: convert to YAML clocksource/drivers/ralink: Add Ralink System Tick Counter driver clocksource/drivers/mips-gic-timer: Always use cluster 0 counter as clocksource clocksource/drivers/timer-ti-dm: Don't fail probe if int not found clocksource/drivers:sp804: Make user selectable clocksource/drivers/dw_apb: Remove unused dw_apb_clockevent functions hrtimers: Delete hrtimer_init_on_stack() alarmtimer: Switch to use hrtimer_setup() and hrtimer_setup_on_stack() io_uring: Switch to use hrtimer_setup_on_stack() sched/idle: Switch to use hrtimer_setup_on_stack() hrtimers: Delete hrtimer_init_sleeper_on_stack() wait: Switch to use hrtimer_setup_sleeper_on_stack() timers: Switch to use hrtimer_setup_sleeper_on_stack() net: pktgen: Switch to use hrtimer_setup_sleeper_on_stack() futex: Switch to use hrtimer_setup_sleeper_on_stack() fs/aio: Switch to use hrtimer_setup_sleeper_on_stack() ...
1675 lines
44 KiB
C
1675 lines
44 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
|
|
* Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
|
|
*
|
|
* NOHZ implementation for low and high resolution timers
|
|
*
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
|
*/
|
|
#include <linux/compiler.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <linux/sched/nohz.h>
|
|
#include <linux/sched/loadavg.h>
|
|
#include <linux/module.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/context_tracking.h>
|
|
#include <linux/mm.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
|
|
#include "tick-internal.h"
|
|
|
|
#include <trace/events/timer.h>
|
|
|
|
/*
|
|
* Per-CPU nohz control structure
|
|
*/
|
|
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
|
|
|
|
struct tick_sched *tick_get_tick_sched(int cpu)
|
|
{
|
|
return &per_cpu(tick_cpu_sched, cpu);
|
|
}
|
|
|
|
/*
|
|
* The time when the last jiffy update happened. Write access must hold
|
|
* jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
|
|
* consistent view of jiffies and last_jiffies_update.
|
|
*/
|
|
static ktime_t last_jiffies_update;
|
|
|
|
/*
|
|
* Must be called with interrupts disabled !
|
|
*/
|
|
static void tick_do_update_jiffies64(ktime_t now)
|
|
{
|
|
unsigned long ticks = 1;
|
|
ktime_t delta, nextp;
|
|
|
|
/*
|
|
* 64-bit can do a quick check without holding the jiffies lock and
|
|
* without looking at the sequence count. The smp_load_acquire()
|
|
* pairs with the update done later in this function.
|
|
*
|
|
* 32-bit cannot do that because the store of 'tick_next_period'
|
|
* consists of two 32-bit stores, and the first store could be
|
|
* moved by the CPU to a random point in the future.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_64BIT)) {
|
|
if (ktime_before(now, smp_load_acquire(&tick_next_period)))
|
|
return;
|
|
} else {
|
|
unsigned int seq;
|
|
|
|
/*
|
|
* Avoid contention on 'jiffies_lock' and protect the quick
|
|
* check with the sequence count.
|
|
*/
|
|
do {
|
|
seq = read_seqcount_begin(&jiffies_seq);
|
|
nextp = tick_next_period;
|
|
} while (read_seqcount_retry(&jiffies_seq, seq));
|
|
|
|
if (ktime_before(now, nextp))
|
|
return;
|
|
}
|
|
|
|
/* Quick check failed, i.e. update is required. */
|
|
raw_spin_lock(&jiffies_lock);
|
|
/*
|
|
* Re-evaluate with the lock held. Another CPU might have done the
|
|
* update already.
|
|
*/
|
|
if (ktime_before(now, tick_next_period)) {
|
|
raw_spin_unlock(&jiffies_lock);
|
|
return;
|
|
}
|
|
|
|
write_seqcount_begin(&jiffies_seq);
|
|
|
|
delta = ktime_sub(now, tick_next_period);
|
|
if (unlikely(delta >= TICK_NSEC)) {
|
|
/* Slow path for long idle sleep times */
|
|
s64 incr = TICK_NSEC;
|
|
|
|
ticks += ktime_divns(delta, incr);
|
|
|
|
last_jiffies_update = ktime_add_ns(last_jiffies_update,
|
|
incr * ticks);
|
|
} else {
|
|
last_jiffies_update = ktime_add_ns(last_jiffies_update,
|
|
TICK_NSEC);
|
|
}
|
|
|
|
/* Advance jiffies to complete the 'jiffies_seq' protected job */
|
|
jiffies_64 += ticks;
|
|
|
|
/* Keep the tick_next_period variable up to date */
|
|
nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
|
|
|
|
if (IS_ENABLED(CONFIG_64BIT)) {
|
|
/*
|
|
* Pairs with smp_load_acquire() in the lockless quick
|
|
* check above, and ensures that the update to 'jiffies_64' is
|
|
* not reordered vs. the store to 'tick_next_period', neither
|
|
* by the compiler nor by the CPU.
|
|
*/
|
|
smp_store_release(&tick_next_period, nextp);
|
|
} else {
|
|
/*
|
|
* A plain store is good enough on 32-bit, as the quick check
|
|
* above is protected by the sequence count.
|
|
*/
|
|
tick_next_period = nextp;
|
|
}
|
|
|
|
/*
|
|
* Release the sequence count. calc_global_load() below is not
|
|
* protected by it, but 'jiffies_lock' needs to be held to prevent
|
|
* concurrent invocations.
|
|
*/
|
|
write_seqcount_end(&jiffies_seq);
|
|
|
|
calc_global_load();
|
|
|
|
raw_spin_unlock(&jiffies_lock);
|
|
update_wall_time();
|
|
}
|
|
|
|
/*
|
|
* Initialize and return retrieve the jiffies update.
|
|
*/
|
|
static ktime_t tick_init_jiffy_update(void)
|
|
{
|
|
ktime_t period;
|
|
|
|
raw_spin_lock(&jiffies_lock);
|
|
write_seqcount_begin(&jiffies_seq);
|
|
|
|
/* Have we started the jiffies update yet ? */
|
|
if (last_jiffies_update == 0) {
|
|
u32 rem;
|
|
|
|
/*
|
|
* Ensure that the tick is aligned to a multiple of
|
|
* TICK_NSEC.
|
|
*/
|
|
div_u64_rem(tick_next_period, TICK_NSEC, &rem);
|
|
if (rem)
|
|
tick_next_period += TICK_NSEC - rem;
|
|
|
|
last_jiffies_update = tick_next_period;
|
|
}
|
|
period = last_jiffies_update;
|
|
|
|
write_seqcount_end(&jiffies_seq);
|
|
raw_spin_unlock(&jiffies_lock);
|
|
|
|
return period;
|
|
}
|
|
|
|
static inline int tick_sched_flag_test(struct tick_sched *ts,
|
|
unsigned long flag)
|
|
{
|
|
return !!(ts->flags & flag);
|
|
}
|
|
|
|
static inline void tick_sched_flag_set(struct tick_sched *ts,
|
|
unsigned long flag)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
ts->flags |= flag;
|
|
}
|
|
|
|
static inline void tick_sched_flag_clear(struct tick_sched *ts,
|
|
unsigned long flag)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
ts->flags &= ~flag;
|
|
}
|
|
|
|
#define MAX_STALLED_JIFFIES 5
|
|
|
|
static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
int tick_cpu, cpu = smp_processor_id();
|
|
|
|
/*
|
|
* Check if the do_timer duty was dropped. We don't care about
|
|
* concurrency: This happens only when the CPU in charge went
|
|
* into a long sleep. If two CPUs happen to assign themselves to
|
|
* this duty, then the jiffies update is still serialized by
|
|
* 'jiffies_lock'.
|
|
*
|
|
* If nohz_full is enabled, this should not happen because the
|
|
* 'tick_do_timer_cpu' CPU never relinquishes.
|
|
*/
|
|
tick_cpu = READ_ONCE(tick_do_timer_cpu);
|
|
|
|
if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
WARN_ON_ONCE(tick_nohz_full_running);
|
|
#endif
|
|
WRITE_ONCE(tick_do_timer_cpu, cpu);
|
|
tick_cpu = cpu;
|
|
}
|
|
|
|
/* Check if jiffies need an update */
|
|
if (tick_cpu == cpu)
|
|
tick_do_update_jiffies64(now);
|
|
|
|
/*
|
|
* If the jiffies update stalled for too long (timekeeper in stop_machine()
|
|
* or VMEXIT'ed for several msecs), force an update.
|
|
*/
|
|
if (ts->last_tick_jiffies != jiffies) {
|
|
ts->stalled_jiffies = 0;
|
|
ts->last_tick_jiffies = READ_ONCE(jiffies);
|
|
} else {
|
|
if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
|
|
tick_do_update_jiffies64(now);
|
|
ts->stalled_jiffies = 0;
|
|
ts->last_tick_jiffies = READ_ONCE(jiffies);
|
|
}
|
|
}
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
|
|
ts->got_idle_tick = 1;
|
|
}
|
|
|
|
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* When we are idle and the tick is stopped, we have to touch
|
|
* the watchdog as we might not schedule for a really long
|
|
* time. This happens on completely idle SMP systems while
|
|
* waiting on the login prompt. We also increment the "start of
|
|
* idle" jiffy stamp so the idle accounting adjustment we do
|
|
* when we go busy again does not account too many ticks.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
|
|
tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
touch_softlockup_watchdog_sched();
|
|
if (is_idle_task(current))
|
|
ts->idle_jiffies++;
|
|
/*
|
|
* In case the current tick fired too early past its expected
|
|
* expiration, make sure we don't bypass the next clock reprogramming
|
|
* to the same deadline.
|
|
*/
|
|
ts->next_tick = 0;
|
|
}
|
|
|
|
update_process_times(user_mode(regs));
|
|
profile_tick(CPU_PROFILING);
|
|
}
|
|
|
|
/*
|
|
* We rearm the timer until we get disabled by the idle code.
|
|
* Called with interrupts disabled.
|
|
*/
|
|
static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
|
|
{
|
|
struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer);
|
|
struct pt_regs *regs = get_irq_regs();
|
|
ktime_t now = ktime_get();
|
|
|
|
tick_sched_do_timer(ts, now);
|
|
|
|
/*
|
|
* Do not call when we are not in IRQ context and have
|
|
* no valid 'regs' pointer
|
|
*/
|
|
if (regs)
|
|
tick_sched_handle(ts, regs);
|
|
else
|
|
ts->next_tick = 0;
|
|
|
|
/*
|
|
* In dynticks mode, tick reprogram is deferred:
|
|
* - to the idle task if in dynticks-idle
|
|
* - to IRQ exit if in full-dynticks.
|
|
*/
|
|
if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
|
|
return HRTIMER_NORESTART;
|
|
|
|
hrtimer_forward(timer, now, TICK_NSEC);
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
cpumask_var_t tick_nohz_full_mask;
|
|
EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
|
|
bool tick_nohz_full_running;
|
|
EXPORT_SYMBOL_GPL(tick_nohz_full_running);
|
|
static atomic_t tick_dep_mask;
|
|
|
|
static bool check_tick_dependency(atomic_t *dep)
|
|
{
|
|
int val = atomic_read(dep);
|
|
|
|
if (val & TICK_DEP_MASK_POSIX_TIMER) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
|
|
return true;
|
|
}
|
|
|
|
if (val & TICK_DEP_MASK_PERF_EVENTS) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
|
|
return true;
|
|
}
|
|
|
|
if (val & TICK_DEP_MASK_SCHED) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_SCHED);
|
|
return true;
|
|
}
|
|
|
|
if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
|
|
return true;
|
|
}
|
|
|
|
if (val & TICK_DEP_MASK_RCU) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_RCU);
|
|
return true;
|
|
}
|
|
|
|
if (val & TICK_DEP_MASK_RCU_EXP) {
|
|
trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
if (unlikely(!cpu_online(cpu)))
|
|
return false;
|
|
|
|
if (check_tick_dependency(&tick_dep_mask))
|
|
return false;
|
|
|
|
if (check_tick_dependency(&ts->tick_dep_mask))
|
|
return false;
|
|
|
|
if (check_tick_dependency(¤t->tick_dep_mask))
|
|
return false;
|
|
|
|
if (check_tick_dependency(¤t->signal->tick_dep_mask))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void nohz_full_kick_func(struct irq_work *work)
|
|
{
|
|
/* Empty, the tick restart happens on tick_nohz_irq_exit() */
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
|
|
IRQ_WORK_INIT_HARD(nohz_full_kick_func);
|
|
|
|
/*
|
|
* Kick this CPU if it's full dynticks in order to force it to
|
|
* re-evaluate its dependency on the tick and restart it if necessary.
|
|
* This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
|
|
* is NMI safe.
|
|
*/
|
|
static void tick_nohz_full_kick(void)
|
|
{
|
|
if (!tick_nohz_full_cpu(smp_processor_id()))
|
|
return;
|
|
|
|
irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
|
|
}
|
|
|
|
/*
|
|
* Kick the CPU if it's full dynticks in order to force it to
|
|
* re-evaluate its dependency on the tick and restart it if necessary.
|
|
*/
|
|
void tick_nohz_full_kick_cpu(int cpu)
|
|
{
|
|
if (!tick_nohz_full_cpu(cpu))
|
|
return;
|
|
|
|
irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
|
|
}
|
|
|
|
static void tick_nohz_kick_task(struct task_struct *tsk)
|
|
{
|
|
int cpu;
|
|
|
|
/*
|
|
* If the task is not running, run_posix_cpu_timers()
|
|
* has nothing to elapse, and an IPI can then be optimized out.
|
|
*
|
|
* activate_task() STORE p->tick_dep_mask
|
|
* STORE p->on_rq
|
|
* __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
|
|
* LOCK rq->lock LOAD p->on_rq
|
|
* smp_mb__after_spin_lock()
|
|
* tick_nohz_task_switch()
|
|
* LOAD p->tick_dep_mask
|
|
*
|
|
* XXX given a task picks up the dependency on schedule(), should we
|
|
* only care about tasks that are currently on the CPU instead of all
|
|
* that are on the runqueue?
|
|
*
|
|
* That is, does this want to be: task_on_cpu() / task_curr()?
|
|
*/
|
|
if (!sched_task_on_rq(tsk))
|
|
return;
|
|
|
|
/*
|
|
* If the task concurrently migrates to another CPU,
|
|
* we guarantee it sees the new tick dependency upon
|
|
* schedule.
|
|
*
|
|
* set_task_cpu(p, cpu);
|
|
* STORE p->cpu = @cpu
|
|
* __schedule() (switch to task 'p')
|
|
* LOCK rq->lock
|
|
* smp_mb__after_spin_lock() STORE p->tick_dep_mask
|
|
* tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
|
|
* LOAD p->tick_dep_mask LOAD p->cpu
|
|
*/
|
|
cpu = task_cpu(tsk);
|
|
|
|
preempt_disable();
|
|
if (cpu_online(cpu))
|
|
tick_nohz_full_kick_cpu(cpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* Kick all full dynticks CPUs in order to force these to re-evaluate
|
|
* their dependency on the tick and restart it if necessary.
|
|
*/
|
|
static void tick_nohz_full_kick_all(void)
|
|
{
|
|
int cpu;
|
|
|
|
if (!tick_nohz_full_running)
|
|
return;
|
|
|
|
preempt_disable();
|
|
for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
|
|
tick_nohz_full_kick_cpu(cpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void tick_nohz_dep_set_all(atomic_t *dep,
|
|
enum tick_dep_bits bit)
|
|
{
|
|
int prev;
|
|
|
|
prev = atomic_fetch_or(BIT(bit), dep);
|
|
if (!prev)
|
|
tick_nohz_full_kick_all();
|
|
}
|
|
|
|
/*
|
|
* Set a global tick dependency. Used by perf events that rely on freq and
|
|
* unstable clocks.
|
|
*/
|
|
void tick_nohz_dep_set(enum tick_dep_bits bit)
|
|
{
|
|
tick_nohz_dep_set_all(&tick_dep_mask, bit);
|
|
}
|
|
|
|
void tick_nohz_dep_clear(enum tick_dep_bits bit)
|
|
{
|
|
atomic_andnot(BIT(bit), &tick_dep_mask);
|
|
}
|
|
|
|
/*
|
|
* Set per-CPU tick dependency. Used by scheduler and perf events in order to
|
|
* manage event-throttling.
|
|
*/
|
|
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
|
|
{
|
|
int prev;
|
|
struct tick_sched *ts;
|
|
|
|
ts = per_cpu_ptr(&tick_cpu_sched, cpu);
|
|
|
|
prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
|
|
if (!prev) {
|
|
preempt_disable();
|
|
/* Perf needs local kick that is NMI safe */
|
|
if (cpu == smp_processor_id()) {
|
|
tick_nohz_full_kick();
|
|
} else {
|
|
/* Remote IRQ work not NMI-safe */
|
|
if (!WARN_ON_ONCE(in_nmi()))
|
|
tick_nohz_full_kick_cpu(cpu);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
|
|
|
|
void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
|
|
{
|
|
struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
|
|
|
|
atomic_andnot(BIT(bit), &ts->tick_dep_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
|
|
|
|
/*
|
|
* Set a per-task tick dependency. RCU needs this. Also posix CPU timers
|
|
* in order to elapse per task timers.
|
|
*/
|
|
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
|
|
{
|
|
if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
|
|
tick_nohz_kick_task(tsk);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
|
|
|
|
void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
|
|
{
|
|
atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
|
|
|
|
/*
|
|
* Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
|
|
* per process timers.
|
|
*/
|
|
void tick_nohz_dep_set_signal(struct task_struct *tsk,
|
|
enum tick_dep_bits bit)
|
|
{
|
|
int prev;
|
|
struct signal_struct *sig = tsk->signal;
|
|
|
|
prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
|
|
if (!prev) {
|
|
struct task_struct *t;
|
|
|
|
lockdep_assert_held(&tsk->sighand->siglock);
|
|
__for_each_thread(sig, t)
|
|
tick_nohz_kick_task(t);
|
|
}
|
|
}
|
|
|
|
void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
|
|
{
|
|
atomic_andnot(BIT(bit), &sig->tick_dep_mask);
|
|
}
|
|
|
|
/*
|
|
* Re-evaluate the need for the tick as we switch the current task.
|
|
* It might need the tick due to per task/process properties:
|
|
* perf events, posix CPU timers, ...
|
|
*/
|
|
void __tick_nohz_task_switch(void)
|
|
{
|
|
struct tick_sched *ts;
|
|
|
|
if (!tick_nohz_full_cpu(smp_processor_id()))
|
|
return;
|
|
|
|
ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
if (atomic_read(¤t->tick_dep_mask) ||
|
|
atomic_read(¤t->signal->tick_dep_mask))
|
|
tick_nohz_full_kick();
|
|
}
|
|
}
|
|
|
|
/* Get the boot-time nohz CPU list from the kernel parameters. */
|
|
void __init tick_nohz_full_setup(cpumask_var_t cpumask)
|
|
{
|
|
alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
|
|
cpumask_copy(tick_nohz_full_mask, cpumask);
|
|
tick_nohz_full_running = true;
|
|
}
|
|
|
|
bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
|
|
{
|
|
/*
|
|
* The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
|
|
* timers, workqueues, timekeeping, ...) on behalf of full dynticks
|
|
* CPUs. It must remain online when nohz full is enabled.
|
|
*/
|
|
if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static int tick_nohz_cpu_down(unsigned int cpu)
|
|
{
|
|
return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
|
|
}
|
|
|
|
void __init tick_nohz_init(void)
|
|
{
|
|
int cpu, ret;
|
|
|
|
if (!tick_nohz_full_running)
|
|
return;
|
|
|
|
/*
|
|
* Full dynticks uses IRQ work to drive the tick rescheduling on safe
|
|
* locking contexts. But then we need IRQ work to raise its own
|
|
* interrupts to avoid circular dependency on the tick.
|
|
*/
|
|
if (!arch_irq_work_has_interrupt()) {
|
|
pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
|
|
cpumask_clear(tick_nohz_full_mask);
|
|
tick_nohz_full_running = false;
|
|
return;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
|
|
!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
|
|
cpu = smp_processor_id();
|
|
|
|
if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
|
|
pr_warn("NO_HZ: Clearing %d from nohz_full range "
|
|
"for timekeeping\n", cpu);
|
|
cpumask_clear_cpu(cpu, tick_nohz_full_mask);
|
|
}
|
|
}
|
|
|
|
for_each_cpu(cpu, tick_nohz_full_mask)
|
|
ct_cpu_track_user(cpu);
|
|
|
|
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
|
|
"kernel/nohz:predown", NULL,
|
|
tick_nohz_cpu_down);
|
|
WARN_ON(ret < 0);
|
|
pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
|
|
cpumask_pr_args(tick_nohz_full_mask));
|
|
}
|
|
#endif /* #ifdef CONFIG_NO_HZ_FULL */
|
|
|
|
/*
|
|
* NOHZ - aka dynamic tick functionality
|
|
*/
|
|
#ifdef CONFIG_NO_HZ_COMMON
|
|
/*
|
|
* NO HZ enabled ?
|
|
*/
|
|
bool tick_nohz_enabled __read_mostly = true;
|
|
unsigned long tick_nohz_active __read_mostly;
|
|
/*
|
|
* Enable / Disable tickless mode
|
|
*/
|
|
static int __init setup_tick_nohz(char *str)
|
|
{
|
|
return (kstrtobool(str, &tick_nohz_enabled) == 0);
|
|
}
|
|
|
|
__setup("nohz=", setup_tick_nohz);
|
|
|
|
bool tick_nohz_tick_stopped(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
|
|
}
|
|
|
|
bool tick_nohz_tick_stopped_cpu(int cpu)
|
|
{
|
|
struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
|
|
|
|
return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_update_jiffies - update jiffies when idle was interrupted
|
|
* @now: current ktime_t
|
|
*
|
|
* Called from interrupt entry when the CPU was idle
|
|
*
|
|
* In case the sched_tick was stopped on this CPU, we have to check if jiffies
|
|
* must be updated. Otherwise an interrupt handler could use a stale jiffy
|
|
* value. We do this unconditionally on any CPU, as we don't know whether the
|
|
* CPU, which has the update task assigned, is in a long sleep.
|
|
*/
|
|
static void tick_nohz_update_jiffies(ktime_t now)
|
|
{
|
|
unsigned long flags;
|
|
|
|
__this_cpu_write(tick_cpu_sched.idle_waketime, now);
|
|
|
|
local_irq_save(flags);
|
|
tick_do_update_jiffies64(now);
|
|
local_irq_restore(flags);
|
|
|
|
touch_softlockup_watchdog_sched();
|
|
}
|
|
|
|
static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
ktime_t delta;
|
|
|
|
if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
|
|
return;
|
|
|
|
delta = ktime_sub(now, ts->idle_entrytime);
|
|
|
|
write_seqcount_begin(&ts->idle_sleeptime_seq);
|
|
if (nr_iowait_cpu(smp_processor_id()) > 0)
|
|
ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
|
|
else
|
|
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
|
|
|
|
ts->idle_entrytime = now;
|
|
tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
|
|
write_seqcount_end(&ts->idle_sleeptime_seq);
|
|
|
|
sched_clock_idle_wakeup_event();
|
|
}
|
|
|
|
static void tick_nohz_start_idle(struct tick_sched *ts)
|
|
{
|
|
write_seqcount_begin(&ts->idle_sleeptime_seq);
|
|
ts->idle_entrytime = ktime_get();
|
|
tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
|
|
write_seqcount_end(&ts->idle_sleeptime_seq);
|
|
|
|
sched_clock_idle_sleep_event();
|
|
}
|
|
|
|
static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
|
|
bool compute_delta, u64 *last_update_time)
|
|
{
|
|
ktime_t now, idle;
|
|
unsigned int seq;
|
|
|
|
if (!tick_nohz_active)
|
|
return -1;
|
|
|
|
now = ktime_get();
|
|
if (last_update_time)
|
|
*last_update_time = ktime_to_us(now);
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
|
|
ktime_t delta = ktime_sub(now, ts->idle_entrytime);
|
|
|
|
idle = ktime_add(*sleeptime, delta);
|
|
} else {
|
|
idle = *sleeptime;
|
|
}
|
|
} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
|
|
|
|
return ktime_to_us(idle);
|
|
|
|
}
|
|
|
|
/**
|
|
* get_cpu_idle_time_us - get the total idle time of a CPU
|
|
* @cpu: CPU number to query
|
|
* @last_update_time: variable to store update time in. Do not update
|
|
* counters if NULL.
|
|
*
|
|
* Return the cumulative idle time (since boot) for a given
|
|
* CPU, in microseconds. Note that this is partially broken due to
|
|
* the counter of iowait tasks that can be remotely updated without
|
|
* any synchronization. Therefore it is possible to observe backward
|
|
* values within two consecutive reads.
|
|
*
|
|
* This time is measured via accounting rather than sampling,
|
|
* and is as accurate as ktime_get() is.
|
|
*
|
|
* Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
|
|
*/
|
|
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
|
|
!nr_iowait_cpu(cpu), last_update_time);
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
|
|
|
|
/**
|
|
* get_cpu_iowait_time_us - get the total iowait time of a CPU
|
|
* @cpu: CPU number to query
|
|
* @last_update_time: variable to store update time in. Do not update
|
|
* counters if NULL.
|
|
*
|
|
* Return the cumulative iowait time (since boot) for a given
|
|
* CPU, in microseconds. Note this is partially broken due to
|
|
* the counter of iowait tasks that can be remotely updated without
|
|
* any synchronization. Therefore it is possible to observe backward
|
|
* values within two consecutive reads.
|
|
*
|
|
* This time is measured via accounting rather than sampling,
|
|
* and is as accurate as ktime_get() is.
|
|
*
|
|
* Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
|
|
*/
|
|
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
|
|
return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
|
|
nr_iowait_cpu(cpu), last_update_time);
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
|
|
|
|
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
|
|
|
|
/* Forward the time to expire in the future */
|
|
hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
|
|
hrtimer_start_expires(&ts->sched_timer,
|
|
HRTIMER_MODE_ABS_PINNED_HARD);
|
|
} else {
|
|
tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
|
|
}
|
|
|
|
/*
|
|
* Reset to make sure the next tick stop doesn't get fooled by past
|
|
* cached clock deadline.
|
|
*/
|
|
ts->next_tick = 0;
|
|
}
|
|
|
|
static inline bool local_timer_softirq_pending(void)
|
|
{
|
|
return local_timers_pending() & BIT(TIMER_SOFTIRQ);
|
|
}
|
|
|
|
/*
|
|
* Read jiffies and the time when jiffies were updated last
|
|
*/
|
|
u64 get_jiffies_update(unsigned long *basej)
|
|
{
|
|
unsigned long basejiff;
|
|
unsigned int seq;
|
|
u64 basemono;
|
|
|
|
do {
|
|
seq = read_seqcount_begin(&jiffies_seq);
|
|
basemono = last_jiffies_update;
|
|
basejiff = jiffies;
|
|
} while (read_seqcount_retry(&jiffies_seq, seq));
|
|
*basej = basejiff;
|
|
return basemono;
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_next_event() - return the clock monotonic based next event
|
|
* @ts: pointer to tick_sched struct
|
|
* @cpu: CPU number
|
|
*
|
|
* Return:
|
|
* *%0 - When the next event is a maximum of TICK_NSEC in the future
|
|
* and the tick is not stopped yet
|
|
* *%next_event - Next event based on clock monotonic
|
|
*/
|
|
static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
|
|
{
|
|
u64 basemono, next_tick, delta, expires;
|
|
unsigned long basejiff;
|
|
int tick_cpu;
|
|
|
|
basemono = get_jiffies_update(&basejiff);
|
|
ts->last_jiffies = basejiff;
|
|
ts->timer_expires_base = basemono;
|
|
|
|
/*
|
|
* Keep the periodic tick, when RCU, architecture or irq_work
|
|
* requests it.
|
|
* Aside of that, check whether the local timer softirq is
|
|
* pending. If so, its a bad idea to call get_next_timer_interrupt(),
|
|
* because there is an already expired timer, so it will request
|
|
* immediate expiry, which rearms the hardware timer with a
|
|
* minimal delta, which brings us back to this place
|
|
* immediately. Lather, rinse and repeat...
|
|
*/
|
|
if (rcu_needs_cpu() || arch_needs_cpu() ||
|
|
irq_work_needs_cpu() || local_timer_softirq_pending()) {
|
|
next_tick = basemono + TICK_NSEC;
|
|
} else {
|
|
/*
|
|
* Get the next pending timer. If high resolution
|
|
* timers are enabled this only takes the timer wheel
|
|
* timers into account. If high resolution timers are
|
|
* disabled this also looks at the next expiring
|
|
* hrtimer.
|
|
*/
|
|
next_tick = get_next_timer_interrupt(basejiff, basemono);
|
|
ts->next_timer = next_tick;
|
|
}
|
|
|
|
/* Make sure next_tick is never before basemono! */
|
|
if (WARN_ON_ONCE(basemono > next_tick))
|
|
next_tick = basemono;
|
|
|
|
/*
|
|
* If the tick is due in the next period, keep it ticking or
|
|
* force prod the timer.
|
|
*/
|
|
delta = next_tick - basemono;
|
|
if (delta <= (u64)TICK_NSEC) {
|
|
/*
|
|
* We've not stopped the tick yet, and there's a timer in the
|
|
* next period, so no point in stopping it either, bail.
|
|
*/
|
|
if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
ts->timer_expires = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this CPU is the one which had the do_timer() duty last, we limit
|
|
* the sleep time to the timekeeping 'max_deferment' value.
|
|
* Otherwise we can sleep as long as we want.
|
|
*/
|
|
delta = timekeeping_max_deferment();
|
|
tick_cpu = READ_ONCE(tick_do_timer_cpu);
|
|
if (tick_cpu != cpu &&
|
|
(tick_cpu != TICK_DO_TIMER_NONE || !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
|
|
delta = KTIME_MAX;
|
|
|
|
/* Calculate the next expiry time */
|
|
if (delta < (KTIME_MAX - basemono))
|
|
expires = basemono + delta;
|
|
else
|
|
expires = KTIME_MAX;
|
|
|
|
ts->timer_expires = min_t(u64, expires, next_tick);
|
|
|
|
out:
|
|
return ts->timer_expires;
|
|
}
|
|
|
|
static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
|
|
{
|
|
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
|
|
unsigned long basejiff = ts->last_jiffies;
|
|
u64 basemono = ts->timer_expires_base;
|
|
bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
|
|
int tick_cpu;
|
|
u64 expires;
|
|
|
|
/* Make sure we won't be trying to stop it twice in a row. */
|
|
ts->timer_expires_base = 0;
|
|
|
|
/*
|
|
* Now the tick should be stopped definitely - so the timer base needs
|
|
* to be marked idle as well to not miss a newly queued timer.
|
|
*/
|
|
expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
|
|
if (expires > ts->timer_expires) {
|
|
/*
|
|
* This path could only happen when the first timer was removed
|
|
* between calculating the possible sleep length and now (when
|
|
* high resolution mode is not active, timer could also be a
|
|
* hrtimer).
|
|
*
|
|
* We have to stick to the original calculated expiry value to
|
|
* not stop the tick for too long with a shallow C-state (which
|
|
* was programmed by cpuidle because of an early next expiration
|
|
* value).
|
|
*/
|
|
expires = ts->timer_expires;
|
|
}
|
|
|
|
/* If the timer base is not idle, retain the not yet stopped tick. */
|
|
if (!timer_idle)
|
|
return;
|
|
|
|
/*
|
|
* If this CPU is the one which updates jiffies, then give up
|
|
* the assignment and let it be taken by the CPU which runs
|
|
* the tick timer next, which might be this CPU as well. If we
|
|
* don't drop this here, the jiffies might be stale and
|
|
* do_timer() never gets invoked. Keep track of the fact that it
|
|
* was the one which had the do_timer() duty last.
|
|
*/
|
|
tick_cpu = READ_ONCE(tick_do_timer_cpu);
|
|
if (tick_cpu == cpu) {
|
|
WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
|
|
tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
|
|
} else if (tick_cpu != TICK_DO_TIMER_NONE) {
|
|
tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
|
|
}
|
|
|
|
/* Skip reprogram of event if it's not changed */
|
|
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
|
|
/* Sanity check: make sure clockevent is actually programmed */
|
|
if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
|
|
return;
|
|
|
|
WARN_ONCE(1, "basemono: %llu ts->next_tick: %llu dev->next_event: %llu "
|
|
"timer->active: %d timer->expires: %llu\n", basemono, ts->next_tick,
|
|
dev->next_event, hrtimer_active(&ts->sched_timer),
|
|
hrtimer_get_expires(&ts->sched_timer));
|
|
}
|
|
|
|
/*
|
|
* tick_nohz_stop_tick() can be called several times before
|
|
* tick_nohz_restart_sched_tick() is called. This happens when
|
|
* interrupts arrive which do not cause a reschedule. In the first
|
|
* call we save the current tick time, so we can restart the
|
|
* scheduler tick in tick_nohz_restart_sched_tick().
|
|
*/
|
|
if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
calc_load_nohz_start();
|
|
quiet_vmstat();
|
|
|
|
ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
|
|
tick_sched_flag_set(ts, TS_FLAG_STOPPED);
|
|
trace_tick_stop(1, TICK_DEP_MASK_NONE);
|
|
}
|
|
|
|
ts->next_tick = expires;
|
|
|
|
/*
|
|
* If the expiration time == KTIME_MAX, then we simply stop
|
|
* the tick timer.
|
|
*/
|
|
if (unlikely(expires == KTIME_MAX)) {
|
|
if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
else
|
|
tick_program_event(KTIME_MAX, 1);
|
|
return;
|
|
}
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
|
|
hrtimer_start(&ts->sched_timer, expires,
|
|
HRTIMER_MODE_ABS_PINNED_HARD);
|
|
} else {
|
|
hrtimer_set_expires(&ts->sched_timer, expires);
|
|
tick_program_event(expires, 1);
|
|
}
|
|
}
|
|
|
|
static void tick_nohz_retain_tick(struct tick_sched *ts)
|
|
{
|
|
ts->timer_expires_base = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
|
|
{
|
|
if (tick_nohz_next_event(ts, cpu))
|
|
tick_nohz_stop_tick(ts, cpu);
|
|
else
|
|
tick_nohz_retain_tick(ts);
|
|
}
|
|
#endif /* CONFIG_NO_HZ_FULL */
|
|
|
|
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
/* Update jiffies first */
|
|
tick_do_update_jiffies64(now);
|
|
|
|
/*
|
|
* Clear the timer idle flag, so we avoid IPIs on remote queueing and
|
|
* the clock forward checks in the enqueue path:
|
|
*/
|
|
timer_clear_idle();
|
|
|
|
calc_load_nohz_stop();
|
|
touch_softlockup_watchdog_sched();
|
|
|
|
/* Cancel the scheduled timer and restore the tick: */
|
|
tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
|
|
tick_nohz_restart(ts, now);
|
|
}
|
|
|
|
static void __tick_nohz_full_update_tick(struct tick_sched *ts,
|
|
ktime_t now)
|
|
{
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
int cpu = smp_processor_id();
|
|
|
|
if (can_stop_full_tick(cpu, ts))
|
|
tick_nohz_full_stop_tick(ts, cpu);
|
|
else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
|
|
tick_nohz_restart_sched_tick(ts, now);
|
|
#endif
|
|
}
|
|
|
|
static void tick_nohz_full_update_tick(struct tick_sched *ts)
|
|
{
|
|
if (!tick_nohz_full_cpu(smp_processor_id()))
|
|
return;
|
|
|
|
if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
|
|
return;
|
|
|
|
__tick_nohz_full_update_tick(ts, ktime_get());
|
|
}
|
|
|
|
/*
|
|
* A pending softirq outside an IRQ (or softirq disabled section) context
|
|
* should be waiting for ksoftirqd to handle it. Therefore we shouldn't
|
|
* reach this code due to the need_resched() early check in can_stop_idle_tick().
|
|
*
|
|
* However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
|
|
* cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
|
|
* triggering the code below, since wakep_softirqd() is ignored.
|
|
*
|
|
*/
|
|
static bool report_idle_softirq(void)
|
|
{
|
|
static int ratelimit;
|
|
unsigned int pending = local_softirq_pending();
|
|
|
|
if (likely(!pending))
|
|
return false;
|
|
|
|
/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
|
|
if (!cpu_active(smp_processor_id())) {
|
|
pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
|
|
if (!pending)
|
|
return false;
|
|
}
|
|
|
|
if (ratelimit >= 10)
|
|
return false;
|
|
|
|
/* On RT, softirq handling may be waiting on some lock */
|
|
if (local_bh_blocked())
|
|
return false;
|
|
|
|
pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
|
|
pending);
|
|
ratelimit++;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
|
|
{
|
|
WARN_ON_ONCE(cpu_is_offline(cpu));
|
|
|
|
if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
|
|
return false;
|
|
|
|
if (need_resched())
|
|
return false;
|
|
|
|
if (unlikely(report_idle_softirq()))
|
|
return false;
|
|
|
|
if (tick_nohz_full_enabled()) {
|
|
int tick_cpu = READ_ONCE(tick_do_timer_cpu);
|
|
|
|
/*
|
|
* Keep the tick alive to guarantee timekeeping progression
|
|
* if there are full dynticks CPUs around
|
|
*/
|
|
if (tick_cpu == cpu)
|
|
return false;
|
|
|
|
/* Should not happen for nohz-full */
|
|
if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_idle_stop_tick - stop the idle tick from the idle task
|
|
*
|
|
* When the next event is more than a tick into the future, stop the idle tick
|
|
*/
|
|
void tick_nohz_idle_stop_tick(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
int cpu = smp_processor_id();
|
|
ktime_t expires;
|
|
|
|
/*
|
|
* If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
|
|
* tick timer expiration time is known already.
|
|
*/
|
|
if (ts->timer_expires_base)
|
|
expires = ts->timer_expires;
|
|
else if (can_stop_idle_tick(cpu, ts))
|
|
expires = tick_nohz_next_event(ts, cpu);
|
|
else
|
|
return;
|
|
|
|
ts->idle_calls++;
|
|
|
|
if (expires > 0LL) {
|
|
int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
|
|
|
|
tick_nohz_stop_tick(ts, cpu);
|
|
|
|
ts->idle_sleeps++;
|
|
ts->idle_expires = expires;
|
|
|
|
if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
ts->idle_jiffies = ts->last_jiffies;
|
|
nohz_balance_enter_idle(cpu);
|
|
}
|
|
} else {
|
|
tick_nohz_retain_tick(ts);
|
|
}
|
|
}
|
|
|
|
void tick_nohz_idle_retain_tick(void)
|
|
{
|
|
tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_idle_enter - prepare for entering idle on the current CPU
|
|
*
|
|
* Called when we start the idle loop.
|
|
*/
|
|
void tick_nohz_idle_enter(void)
|
|
{
|
|
struct tick_sched *ts;
|
|
|
|
lockdep_assert_irqs_enabled();
|
|
|
|
local_irq_disable();
|
|
|
|
ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
WARN_ON_ONCE(ts->timer_expires_base);
|
|
|
|
tick_sched_flag_set(ts, TS_FLAG_INIDLE);
|
|
tick_nohz_start_idle(ts);
|
|
|
|
local_irq_enable();
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_irq_exit - Notify the tick about IRQ exit
|
|
*
|
|
* A timer may have been added/modified/deleted either by the current IRQ,
|
|
* or by another place using this IRQ as a notification. This IRQ may have
|
|
* also updated the RCU callback list. These events may require a
|
|
* re-evaluation of the next tick. Depending on the context:
|
|
*
|
|
* 1) If the CPU is idle and no resched is pending, just proceed with idle
|
|
* time accounting. The next tick will be re-evaluated on the next idle
|
|
* loop iteration.
|
|
*
|
|
* 2) If the CPU is nohz_full:
|
|
*
|
|
* 2.1) If there is any tick dependency, restart the tick if stopped.
|
|
*
|
|
* 2.2) If there is no tick dependency, (re-)evaluate the next tick and
|
|
* stop/update it accordingly.
|
|
*/
|
|
void tick_nohz_irq_exit(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
|
|
tick_nohz_start_idle(ts);
|
|
else
|
|
tick_nohz_full_update_tick(ts);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_idle_got_tick - Check whether or not the tick handler has run
|
|
*
|
|
* Return: %true if the tick handler has run, otherwise %false
|
|
*/
|
|
bool tick_nohz_idle_got_tick(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
if (ts->got_idle_tick) {
|
|
ts->got_idle_tick = 0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
|
|
* or the tick, whichever expires first. Note that, if the tick has been
|
|
* stopped, it returns the next hrtimer.
|
|
*
|
|
* Called from power state control code with interrupts disabled
|
|
*
|
|
* Return: the next expiration time
|
|
*/
|
|
ktime_t tick_nohz_get_next_hrtimer(void)
|
|
{
|
|
return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_get_sleep_length - return the expected length of the current sleep
|
|
* @delta_next: duration until the next event if the tick cannot be stopped
|
|
*
|
|
* Called from power state control code with interrupts disabled.
|
|
*
|
|
* The return value of this function and/or the value returned by it through the
|
|
* @delta_next pointer can be negative which must be taken into account by its
|
|
* callers.
|
|
*
|
|
* Return: the expected length of the current sleep
|
|
*/
|
|
ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
|
|
{
|
|
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
int cpu = smp_processor_id();
|
|
/*
|
|
* The idle entry time is expected to be a sufficient approximation of
|
|
* the current time at this point.
|
|
*/
|
|
ktime_t now = ts->idle_entrytime;
|
|
ktime_t next_event;
|
|
|
|
WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
|
|
|
|
*delta_next = ktime_sub(dev->next_event, now);
|
|
|
|
if (!can_stop_idle_tick(cpu, ts))
|
|
return *delta_next;
|
|
|
|
next_event = tick_nohz_next_event(ts, cpu);
|
|
if (!next_event)
|
|
return *delta_next;
|
|
|
|
/*
|
|
* If the next highres timer to expire is earlier than 'next_event', the
|
|
* idle governor needs to know that.
|
|
*/
|
|
next_event = min_t(u64, next_event,
|
|
hrtimer_next_event_without(&ts->sched_timer));
|
|
|
|
return ktime_sub(next_event, now);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
|
|
* for a particular CPU.
|
|
* @cpu: target CPU number
|
|
*
|
|
* Called from the schedutil frequency scaling governor in scheduler context.
|
|
*
|
|
* Return: the current idle calls counter value for @cpu
|
|
*/
|
|
unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
|
|
{
|
|
struct tick_sched *ts = tick_get_tick_sched(cpu);
|
|
|
|
return ts->idle_calls;
|
|
}
|
|
|
|
static void tick_nohz_account_idle_time(struct tick_sched *ts,
|
|
ktime_t now)
|
|
{
|
|
unsigned long ticks;
|
|
|
|
ts->idle_exittime = now;
|
|
|
|
if (vtime_accounting_enabled_this_cpu())
|
|
return;
|
|
/*
|
|
* We stopped the tick in idle. update_process_times() would miss the
|
|
* time we slept, as it does only a 1 tick accounting.
|
|
* Enforce that this is accounted to idle !
|
|
*/
|
|
ticks = jiffies - ts->idle_jiffies;
|
|
/*
|
|
* We might be one off. Do not randomly account a huge number of ticks!
|
|
*/
|
|
if (ticks && ticks < LONG_MAX)
|
|
account_idle_ticks(ticks);
|
|
}
|
|
|
|
void tick_nohz_idle_restart_tick(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
|
|
ktime_t now = ktime_get();
|
|
tick_nohz_restart_sched_tick(ts, now);
|
|
tick_nohz_account_idle_time(ts, now);
|
|
}
|
|
}
|
|
|
|
static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
|
|
{
|
|
if (tick_nohz_full_cpu(smp_processor_id()))
|
|
__tick_nohz_full_update_tick(ts, now);
|
|
else
|
|
tick_nohz_restart_sched_tick(ts, now);
|
|
|
|
tick_nohz_account_idle_time(ts, now);
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_idle_exit - Update the tick upon idle task exit
|
|
*
|
|
* When the idle task exits, update the tick depending on the
|
|
* following situations:
|
|
*
|
|
* 1) If the CPU is not in nohz_full mode (most cases), then
|
|
* restart the tick.
|
|
*
|
|
* 2) If the CPU is in nohz_full mode (corner case):
|
|
* 2.1) If the tick can be kept stopped (no tick dependencies)
|
|
* then re-evaluate the next tick and try to keep it stopped
|
|
* as long as possible.
|
|
* 2.2) If the tick has dependencies, restart the tick.
|
|
*
|
|
*/
|
|
void tick_nohz_idle_exit(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
bool idle_active, tick_stopped;
|
|
ktime_t now;
|
|
|
|
local_irq_disable();
|
|
|
|
WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
|
|
WARN_ON_ONCE(ts->timer_expires_base);
|
|
|
|
tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
|
|
idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
|
|
tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
|
|
|
|
if (idle_active || tick_stopped)
|
|
now = ktime_get();
|
|
|
|
if (idle_active)
|
|
tick_nohz_stop_idle(ts, now);
|
|
|
|
if (tick_stopped)
|
|
tick_nohz_idle_update_tick(ts, now);
|
|
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* In low-resolution mode, the tick handler must be implemented directly
|
|
* at the clockevent level. hrtimer can't be used instead, because its
|
|
* infrastructure actually relies on the tick itself as a backend in
|
|
* low-resolution mode (see hrtimer_run_queues()).
|
|
*/
|
|
static void tick_nohz_lowres_handler(struct clock_event_device *dev)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
dev->next_event = KTIME_MAX;
|
|
|
|
if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
|
|
tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
|
|
}
|
|
|
|
static inline void tick_nohz_activate(struct tick_sched *ts)
|
|
{
|
|
if (!tick_nohz_enabled)
|
|
return;
|
|
tick_sched_flag_set(ts, TS_FLAG_NOHZ);
|
|
/* One update is enough */
|
|
if (!test_and_set_bit(0, &tick_nohz_active))
|
|
timers_update_nohz();
|
|
}
|
|
|
|
/**
|
|
* tick_nohz_switch_to_nohz - switch to NOHZ mode
|
|
*/
|
|
static void tick_nohz_switch_to_nohz(void)
|
|
{
|
|
if (!tick_nohz_enabled)
|
|
return;
|
|
|
|
if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
|
|
return;
|
|
|
|
/*
|
|
* Recycle the hrtimer in 'ts', so we can share the
|
|
* highres code.
|
|
*/
|
|
tick_setup_sched_timer(false);
|
|
}
|
|
|
|
static inline void tick_nohz_irq_enter(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
ktime_t now;
|
|
|
|
if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
|
|
return;
|
|
now = ktime_get();
|
|
if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
|
|
tick_nohz_stop_idle(ts, now);
|
|
/*
|
|
* If all CPUs are idle we may need to update a stale jiffies value.
|
|
* Note nohz_full is a special case: a timekeeper is guaranteed to stay
|
|
* alive but it might be busy looping with interrupts disabled in some
|
|
* rare case (typically stop machine). So we must make sure we have a
|
|
* last resort.
|
|
*/
|
|
if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
|
|
tick_nohz_update_jiffies(now);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void tick_nohz_switch_to_nohz(void) { }
|
|
static inline void tick_nohz_irq_enter(void) { }
|
|
static inline void tick_nohz_activate(struct tick_sched *ts) { }
|
|
|
|
#endif /* CONFIG_NO_HZ_COMMON */
|
|
|
|
/*
|
|
* Called from irq_enter() to notify about the possible interruption of idle()
|
|
*/
|
|
void tick_irq_enter(void)
|
|
{
|
|
tick_check_oneshot_broadcast_this_cpu();
|
|
tick_nohz_irq_enter();
|
|
}
|
|
|
|
static int sched_skew_tick;
|
|
|
|
static int __init skew_tick(char *str)
|
|
{
|
|
get_option(&str, &sched_skew_tick);
|
|
|
|
return 0;
|
|
}
|
|
early_param("skew_tick", skew_tick);
|
|
|
|
/**
|
|
* tick_setup_sched_timer - setup the tick emulation timer
|
|
* @hrtimer: whether to use the hrtimer or not
|
|
*/
|
|
void tick_setup_sched_timer(bool hrtimer)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
/* Emulate tick processing via per-CPU hrtimers: */
|
|
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
|
|
|
|
if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
|
|
tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
|
|
ts->sched_timer.function = tick_nohz_handler;
|
|
}
|
|
|
|
/* Get the next period (per-CPU) */
|
|
hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
|
|
|
|
/* Offset the tick to avert 'jiffies_lock' contention. */
|
|
if (sched_skew_tick) {
|
|
u64 offset = TICK_NSEC >> 1;
|
|
do_div(offset, num_possible_cpus());
|
|
offset *= smp_processor_id();
|
|
hrtimer_add_expires_ns(&ts->sched_timer, offset);
|
|
}
|
|
|
|
hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
|
|
if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
|
|
hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
|
|
else
|
|
tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
|
|
tick_nohz_activate(ts);
|
|
}
|
|
|
|
/*
|
|
* Shut down the tick and make sure the CPU won't try to retake the timekeeping
|
|
* duty before disabling IRQs in idle for the last time.
|
|
*/
|
|
void tick_sched_timer_dying(int cpu)
|
|
{
|
|
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
|
|
ktime_t idle_sleeptime, iowait_sleeptime;
|
|
unsigned long idle_calls, idle_sleeps;
|
|
|
|
/* This must happen before hrtimers are migrated! */
|
|
if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
|
|
hrtimer_cancel(&ts->sched_timer);
|
|
|
|
idle_sleeptime = ts->idle_sleeptime;
|
|
iowait_sleeptime = ts->iowait_sleeptime;
|
|
idle_calls = ts->idle_calls;
|
|
idle_sleeps = ts->idle_sleeps;
|
|
memset(ts, 0, sizeof(*ts));
|
|
ts->idle_sleeptime = idle_sleeptime;
|
|
ts->iowait_sleeptime = iowait_sleeptime;
|
|
ts->idle_calls = idle_calls;
|
|
ts->idle_sleeps = idle_sleeps;
|
|
}
|
|
|
|
/*
|
|
* Async notification about clocksource changes
|
|
*/
|
|
void tick_clock_notify(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
|
|
}
|
|
|
|
/*
|
|
* Async notification about clock event changes
|
|
*/
|
|
void tick_oneshot_notify(void)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
set_bit(0, &ts->check_clocks);
|
|
}
|
|
|
|
/*
|
|
* Check if a change happened, which makes oneshot possible.
|
|
*
|
|
* Called cyclically from the hrtimer softirq (driven by the timer
|
|
* softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
|
|
* mode, because high resolution timers are disabled (either compile
|
|
* or runtime). Called with interrupts disabled.
|
|
*/
|
|
int tick_check_oneshot_change(int allow_nohz)
|
|
{
|
|
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
|
|
|
|
if (!test_and_clear_bit(0, &ts->check_clocks))
|
|
return 0;
|
|
|
|
if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
|
|
return 0;
|
|
|
|
if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
|
|
return 0;
|
|
|
|
if (!allow_nohz)
|
|
return 1;
|
|
|
|
tick_nohz_switch_to_nohz();
|
|
return 0;
|
|
}
|