mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-07 14:32:23 +00:00
eac030b22e
lppaca_shared_proc() takes a pointer to the lppaca which is typically
accessed through get_lppaca(). With DEBUG_PREEMPT enabled, this leads
to checking if preemption is enabled, for example:
BUG: using smp_processor_id() in preemptible [00000000] code: grep/10693
caller is lparcfg_data+0x408/0x19a0
CPU: 4 PID: 10693 Comm: grep Not tainted 6.5.0-rc3 #2
Call Trace:
dump_stack_lvl+0x154/0x200 (unreliable)
check_preemption_disabled+0x214/0x220
lparcfg_data+0x408/0x19a0
...
This isn't actually a problem however, as it does not matter which
lppaca is accessed, the shared proc state will be the same.
vcpudispatch_stats_procfs_init() already works around this by disabling
preemption, but the lparcfg code does not, erroring any time
/proc/powerpc/lparcfg is accessed with DEBUG_PREEMPT enabled.
Instead of disabling preemption on the caller side, rework
lppaca_shared_proc() to not take a pointer and instead directly access
the lppaca, bypassing any potential preemption checks.
Fixes: f13c13a005
("powerpc: Stop using non-architected shared_proc field in lppaca")
Signed-off-by: Russell Currey <ruscur@russell.cc>
[mpe: Rework to avoid needing a definition in paca.h and lppaca.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230823055317.751786-4-mpe@ellerman.id.au
478 lines
12 KiB
C
478 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* cpuidle-pseries - idle state cpuidle driver.
|
|
* Adapted from drivers/idle/intel_idle.c and
|
|
* drivers/acpi/processor_idle.c
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/cpuidle.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/notifier.h>
|
|
|
|
#include <asm/paca.h>
|
|
#include <asm/reg.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/runlatch.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/plpar_wrappers.h>
|
|
#include <asm/rtas.h>
|
|
|
|
static struct cpuidle_driver pseries_idle_driver = {
|
|
.name = "pseries_idle",
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int max_idle_state __read_mostly;
|
|
static struct cpuidle_state *cpuidle_state_table __read_mostly;
|
|
static u64 snooze_timeout __read_mostly;
|
|
static bool snooze_timeout_en __read_mostly;
|
|
|
|
static __cpuidle
|
|
int snooze_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv,
|
|
int index)
|
|
{
|
|
u64 snooze_exit_time;
|
|
|
|
set_thread_flag(TIF_POLLING_NRFLAG);
|
|
|
|
pseries_idle_prolog();
|
|
raw_local_irq_enable();
|
|
snooze_exit_time = get_tb() + snooze_timeout;
|
|
dev->poll_time_limit = false;
|
|
|
|
while (!need_resched()) {
|
|
HMT_low();
|
|
HMT_very_low();
|
|
if (likely(snooze_timeout_en) && get_tb() > snooze_exit_time) {
|
|
/*
|
|
* Task has not woken up but we are exiting the polling
|
|
* loop anyway. Require a barrier after polling is
|
|
* cleared to order subsequent test of need_resched().
|
|
*/
|
|
dev->poll_time_limit = true;
|
|
clear_thread_flag(TIF_POLLING_NRFLAG);
|
|
smp_mb();
|
|
break;
|
|
}
|
|
}
|
|
|
|
HMT_medium();
|
|
clear_thread_flag(TIF_POLLING_NRFLAG);
|
|
|
|
raw_local_irq_disable();
|
|
|
|
pseries_idle_epilog();
|
|
|
|
return index;
|
|
}
|
|
|
|
static __cpuidle void check_and_cede_processor(void)
|
|
{
|
|
/*
|
|
* Ensure our interrupt state is properly tracked,
|
|
* also checks if no interrupt has occurred while we
|
|
* were soft-disabled
|
|
*/
|
|
if (prep_irq_for_idle()) {
|
|
cede_processor();
|
|
#ifdef CONFIG_TRACE_IRQFLAGS
|
|
/* Ensure that H_CEDE returns with IRQs on */
|
|
if (WARN_ON(!(mfmsr() & MSR_EE)))
|
|
__hard_irq_enable();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* XCEDE: Extended CEDE states discovered through the
|
|
* "ibm,get-systems-parameter" RTAS call with the token
|
|
* CEDE_LATENCY_TOKEN
|
|
*/
|
|
|
|
/*
|
|
* Section 7.3.16 System Parameters Option of PAPR version 2.8.1 has a
|
|
* table with all the parameters to ibm,get-system-parameters.
|
|
* CEDE_LATENCY_TOKEN corresponds to the token value for Cede Latency
|
|
* Settings Information.
|
|
*/
|
|
#define CEDE_LATENCY_TOKEN 45
|
|
|
|
/*
|
|
* If the platform supports the cede latency settings information system
|
|
* parameter it must provide the following information in the NULL terminated
|
|
* parameter string:
|
|
*
|
|
* a. The first byte is the length “N” of each cede latency setting record minus
|
|
* one (zero indicates a length of 1 byte).
|
|
*
|
|
* b. For each supported cede latency setting a cede latency setting record
|
|
* consisting of the first “N” bytes as per the following table.
|
|
*
|
|
* -----------------------------
|
|
* | Field | Field |
|
|
* | Name | Length |
|
|
* -----------------------------
|
|
* | Cede Latency | 1 Byte |
|
|
* | Specifier Value | |
|
|
* -----------------------------
|
|
* | Maximum wakeup | |
|
|
* | latency in | 8 Bytes |
|
|
* | tb-ticks | |
|
|
* -----------------------------
|
|
* | Responsive to | |
|
|
* | external | 1 Byte |
|
|
* | interrupts | |
|
|
* -----------------------------
|
|
*
|
|
* This version has cede latency record size = 10.
|
|
*
|
|
* The structure xcede_latency_payload represents a) and b) with
|
|
* xcede_latency_record representing the table in b).
|
|
*
|
|
* xcede_latency_parameter is what gets returned by
|
|
* ibm,get-systems-parameter RTAS call when made with
|
|
* CEDE_LATENCY_TOKEN.
|
|
*
|
|
* These structures are only used to represent the data obtained by the RTAS
|
|
* call. The data is in big-endian.
|
|
*/
|
|
struct xcede_latency_record {
|
|
u8 hint;
|
|
__be64 latency_ticks;
|
|
u8 wake_on_irqs;
|
|
} __packed;
|
|
|
|
// Make space for 16 records, which "should be enough".
|
|
struct xcede_latency_payload {
|
|
u8 record_size;
|
|
struct xcede_latency_record records[16];
|
|
} __packed;
|
|
|
|
struct xcede_latency_parameter {
|
|
__be16 payload_size;
|
|
struct xcede_latency_payload payload;
|
|
u8 null_char;
|
|
} __packed;
|
|
|
|
static unsigned int nr_xcede_records;
|
|
static struct xcede_latency_parameter xcede_latency_parameter __initdata;
|
|
|
|
static int __init parse_cede_parameters(void)
|
|
{
|
|
struct xcede_latency_payload *payload;
|
|
u32 total_xcede_records_size;
|
|
u8 xcede_record_size;
|
|
u16 payload_size;
|
|
int ret, i;
|
|
|
|
ret = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
|
|
NULL, CEDE_LATENCY_TOKEN, __pa(&xcede_latency_parameter),
|
|
sizeof(xcede_latency_parameter));
|
|
if (ret) {
|
|
pr_err("xcede: Error parsing CEDE_LATENCY_TOKEN\n");
|
|
return ret;
|
|
}
|
|
|
|
payload_size = be16_to_cpu(xcede_latency_parameter.payload_size);
|
|
payload = &xcede_latency_parameter.payload;
|
|
|
|
xcede_record_size = payload->record_size + 1;
|
|
|
|
if (xcede_record_size != sizeof(struct xcede_latency_record)) {
|
|
pr_err("xcede: Expected record-size %lu. Observed size %u.\n",
|
|
sizeof(struct xcede_latency_record), xcede_record_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pr_info("xcede: xcede_record_size = %d\n", xcede_record_size);
|
|
|
|
/*
|
|
* Since the payload_size includes the last NULL byte and the
|
|
* xcede_record_size, the remaining bytes correspond to array of all
|
|
* cede_latency settings.
|
|
*/
|
|
total_xcede_records_size = payload_size - 2;
|
|
nr_xcede_records = total_xcede_records_size / xcede_record_size;
|
|
|
|
for (i = 0; i < nr_xcede_records; i++) {
|
|
struct xcede_latency_record *record = &payload->records[i];
|
|
u64 latency_ticks = be64_to_cpu(record->latency_ticks);
|
|
u8 wake_on_irqs = record->wake_on_irqs;
|
|
u8 hint = record->hint;
|
|
|
|
pr_info("xcede: Record %d : hint = %u, latency = 0x%llx tb ticks, Wake-on-irq = %u\n",
|
|
i, hint, latency_ticks, wake_on_irqs);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define NR_DEDICATED_STATES 2 /* snooze, CEDE */
|
|
static u8 cede_latency_hint[NR_DEDICATED_STATES];
|
|
|
|
static __cpuidle
|
|
int dedicated_cede_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv,
|
|
int index)
|
|
{
|
|
u8 old_latency_hint;
|
|
|
|
pseries_idle_prolog();
|
|
get_lppaca()->donate_dedicated_cpu = 1;
|
|
old_latency_hint = get_lppaca()->cede_latency_hint;
|
|
get_lppaca()->cede_latency_hint = cede_latency_hint[index];
|
|
|
|
HMT_medium();
|
|
check_and_cede_processor();
|
|
|
|
raw_local_irq_disable();
|
|
get_lppaca()->donate_dedicated_cpu = 0;
|
|
get_lppaca()->cede_latency_hint = old_latency_hint;
|
|
|
|
pseries_idle_epilog();
|
|
|
|
return index;
|
|
}
|
|
|
|
static __cpuidle
|
|
int shared_cede_loop(struct cpuidle_device *dev, struct cpuidle_driver *drv,
|
|
int index)
|
|
{
|
|
|
|
pseries_idle_prolog();
|
|
|
|
/*
|
|
* Yield the processor to the hypervisor. We return if
|
|
* an external interrupt occurs (which are driven prior
|
|
* to returning here) or if a prod occurs from another
|
|
* processor. When returning here, external interrupts
|
|
* are enabled.
|
|
*/
|
|
check_and_cede_processor();
|
|
|
|
raw_local_irq_disable();
|
|
pseries_idle_epilog();
|
|
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* States for dedicated partition case.
|
|
*/
|
|
static struct cpuidle_state dedicated_states[NR_DEDICATED_STATES] = {
|
|
{ /* Snooze */
|
|
.name = "snooze",
|
|
.desc = "snooze",
|
|
.exit_latency = 0,
|
|
.target_residency = 0,
|
|
.enter = &snooze_loop,
|
|
.flags = CPUIDLE_FLAG_POLLING },
|
|
{ /* CEDE */
|
|
.name = "CEDE",
|
|
.desc = "CEDE",
|
|
.exit_latency = 10,
|
|
.target_residency = 100,
|
|
.enter = &dedicated_cede_loop },
|
|
};
|
|
|
|
/*
|
|
* States for shared partition case.
|
|
*/
|
|
static struct cpuidle_state shared_states[] = {
|
|
{ /* Snooze */
|
|
.name = "snooze",
|
|
.desc = "snooze",
|
|
.exit_latency = 0,
|
|
.target_residency = 0,
|
|
.enter = &snooze_loop,
|
|
.flags = CPUIDLE_FLAG_POLLING },
|
|
{ /* Shared Cede */
|
|
.name = "Shared Cede",
|
|
.desc = "Shared Cede",
|
|
.exit_latency = 10,
|
|
.target_residency = 100,
|
|
.enter = &shared_cede_loop },
|
|
};
|
|
|
|
static int pseries_cpuidle_cpu_online(unsigned int cpu)
|
|
{
|
|
struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
|
|
|
|
if (dev && cpuidle_get_driver()) {
|
|
cpuidle_pause_and_lock();
|
|
cpuidle_enable_device(dev);
|
|
cpuidle_resume_and_unlock();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pseries_cpuidle_cpu_dead(unsigned int cpu)
|
|
{
|
|
struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
|
|
|
|
if (dev && cpuidle_get_driver()) {
|
|
cpuidle_pause_and_lock();
|
|
cpuidle_disable_device(dev);
|
|
cpuidle_resume_and_unlock();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* pseries_cpuidle_driver_init()
|
|
*/
|
|
static int pseries_cpuidle_driver_init(void)
|
|
{
|
|
int idle_state;
|
|
struct cpuidle_driver *drv = &pseries_idle_driver;
|
|
|
|
drv->state_count = 0;
|
|
|
|
for (idle_state = 0; idle_state < max_idle_state; ++idle_state) {
|
|
/* Is the state not enabled? */
|
|
if (cpuidle_state_table[idle_state].enter == NULL)
|
|
continue;
|
|
|
|
drv->states[drv->state_count] = /* structure copy */
|
|
cpuidle_state_table[idle_state];
|
|
|
|
drv->state_count += 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init fixup_cede0_latency(void)
|
|
{
|
|
struct xcede_latency_payload *payload;
|
|
u64 min_xcede_latency_us = UINT_MAX;
|
|
int i;
|
|
|
|
if (parse_cede_parameters())
|
|
return;
|
|
|
|
pr_info("cpuidle: Skipping the %d Extended CEDE idle states\n",
|
|
nr_xcede_records);
|
|
|
|
payload = &xcede_latency_parameter.payload;
|
|
|
|
/*
|
|
* The CEDE idle state maps to CEDE(0). While the hypervisor
|
|
* does not advertise CEDE(0) exit latency values, it does
|
|
* advertise the latency values of the extended CEDE states.
|
|
* We use the lowest advertised exit latency value as a proxy
|
|
* for the exit latency of CEDE(0).
|
|
*/
|
|
for (i = 0; i < nr_xcede_records; i++) {
|
|
struct xcede_latency_record *record = &payload->records[i];
|
|
u8 hint = record->hint;
|
|
u64 latency_tb = be64_to_cpu(record->latency_ticks);
|
|
u64 latency_us = DIV_ROUND_UP_ULL(tb_to_ns(latency_tb), NSEC_PER_USEC);
|
|
|
|
/*
|
|
* We expect the exit latency of an extended CEDE
|
|
* state to be non-zero, it to since it takes at least
|
|
* a few nanoseconds to wakeup the idle CPU and
|
|
* dispatch the virtual processor into the Linux
|
|
* Guest.
|
|
*
|
|
* So we consider only non-zero value for performing
|
|
* the fixup of CEDE(0) latency.
|
|
*/
|
|
if (latency_us == 0) {
|
|
pr_warn("cpuidle: Skipping xcede record %d [hint=%d]. Exit latency = 0us\n",
|
|
i, hint);
|
|
continue;
|
|
}
|
|
|
|
if (latency_us < min_xcede_latency_us)
|
|
min_xcede_latency_us = latency_us;
|
|
}
|
|
|
|
if (min_xcede_latency_us != UINT_MAX) {
|
|
dedicated_states[1].exit_latency = min_xcede_latency_us;
|
|
dedicated_states[1].target_residency = 10 * (min_xcede_latency_us);
|
|
pr_info("cpuidle: Fixed up CEDE exit latency to %llu us\n",
|
|
min_xcede_latency_us);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* pseries_idle_probe()
|
|
* Choose state table for shared versus dedicated partition
|
|
*/
|
|
static int __init pseries_idle_probe(void)
|
|
{
|
|
|
|
if (cpuidle_disable != IDLE_NO_OVERRIDE)
|
|
return -ENODEV;
|
|
|
|
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
|
|
if (lppaca_shared_proc()) {
|
|
cpuidle_state_table = shared_states;
|
|
max_idle_state = ARRAY_SIZE(shared_states);
|
|
} else {
|
|
/*
|
|
* Use firmware provided latency values
|
|
* starting with POWER10 platforms. In the
|
|
* case that we are running on a POWER10
|
|
* platform but in an earlier compat mode, we
|
|
* can still use the firmware provided values.
|
|
*
|
|
* However, on platforms prior to POWER10, we
|
|
* cannot rely on the accuracy of the firmware
|
|
* provided latency values. On such platforms,
|
|
* go with the conservative default estimate
|
|
* of 10us.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_ARCH_31) || pvr_version_is(PVR_POWER10))
|
|
fixup_cede0_latency();
|
|
cpuidle_state_table = dedicated_states;
|
|
max_idle_state = NR_DEDICATED_STATES;
|
|
}
|
|
} else
|
|
return -ENODEV;
|
|
|
|
if (max_idle_state > 1) {
|
|
snooze_timeout_en = true;
|
|
snooze_timeout = cpuidle_state_table[1].target_residency *
|
|
tb_ticks_per_usec;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __init pseries_processor_idle_init(void)
|
|
{
|
|
int retval;
|
|
|
|
retval = pseries_idle_probe();
|
|
if (retval)
|
|
return retval;
|
|
|
|
pseries_cpuidle_driver_init();
|
|
retval = cpuidle_register(&pseries_idle_driver, NULL);
|
|
if (retval) {
|
|
printk(KERN_DEBUG "Registration of pseries driver failed.\n");
|
|
return retval;
|
|
}
|
|
|
|
retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
|
|
"cpuidle/pseries:online",
|
|
pseries_cpuidle_cpu_online, NULL);
|
|
WARN_ON(retval < 0);
|
|
retval = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_DEAD,
|
|
"cpuidle/pseries:DEAD", NULL,
|
|
pseries_cpuidle_cpu_dead);
|
|
WARN_ON(retval < 0);
|
|
printk(KERN_DEBUG "pseries_idle_driver registered\n");
|
|
return 0;
|
|
}
|
|
|
|
device_initcall(pseries_processor_idle_init);
|