mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-13 01:08:50 +00:00
e68bc75691
Introduce the following parameters in order to add the possibility to sync DMA memory for device before putting allocated pages in the page_pool caches: - PP_FLAG_DMA_SYNC_DEV: if set in page_pool_params flags, all pages that the driver gets from page_pool will be DMA-synced-for-device according to the length provided by the device driver. Please note DMA-sync-for-CPU is still device driver responsibility - offset: DMA address offset where the DMA engine starts copying rx data - max_len: maximum DMA memory size page_pool is allowed to flush. This is currently used in __page_pool_alloc_pages_slow routine when pages are allocated from page allocator These parameters are supposed to be set by device drivers. This optimization reduces the length of the DMA-sync-for-device. The optimization is valid because pages are initially DMA-synced-for-device as defined via max_len. At RX time, the driver will perform a DMA-sync-for-CPU on the memory for the packet length. What is important is the memory occupied by packet payload, because this is the area CPU is allowed to read and modify. As we don't track cache-lines written into by the CPU, simply use the packet payload length as dma_sync_size at page_pool recycle time. This also take into account any tail-extend. Tested-by: Matteo Croce <mcroce@redhat.com> Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org> Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org> Signed-off-by: David S. Miller <davem@davemloft.net>
491 lines
13 KiB
C
491 lines
13 KiB
C
/* SPDX-License-Identifier: GPL-2.0
|
|
*
|
|
* page_pool.c
|
|
* Author: Jesper Dangaard Brouer <netoptimizer@brouer.com>
|
|
* Copyright (C) 2016 Red Hat, Inc.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/device.h>
|
|
|
|
#include <net/page_pool.h>
|
|
#include <linux/dma-direction.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/mm.h> /* for __put_page() */
|
|
|
|
#include <trace/events/page_pool.h>
|
|
|
|
#define DEFER_TIME (msecs_to_jiffies(1000))
|
|
#define DEFER_WARN_INTERVAL (60 * HZ)
|
|
|
|
static int page_pool_init(struct page_pool *pool,
|
|
const struct page_pool_params *params)
|
|
{
|
|
unsigned int ring_qsize = 1024; /* Default */
|
|
|
|
memcpy(&pool->p, params, sizeof(pool->p));
|
|
|
|
/* Validate only known flags were used */
|
|
if (pool->p.flags & ~(PP_FLAG_ALL))
|
|
return -EINVAL;
|
|
|
|
if (pool->p.pool_size)
|
|
ring_qsize = pool->p.pool_size;
|
|
|
|
/* Sanity limit mem that can be pinned down */
|
|
if (ring_qsize > 32768)
|
|
return -E2BIG;
|
|
|
|
/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
|
|
* DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
|
|
* which is the XDP_TX use-case.
|
|
*/
|
|
if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
|
|
(pool->p.dma_dir != DMA_BIDIRECTIONAL))
|
|
return -EINVAL;
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
|
|
/* In order to request DMA-sync-for-device the page
|
|
* needs to be mapped
|
|
*/
|
|
if (!(pool->p.flags & PP_FLAG_DMA_MAP))
|
|
return -EINVAL;
|
|
|
|
if (!pool->p.max_len)
|
|
return -EINVAL;
|
|
|
|
/* pool->p.offset has to be set according to the address
|
|
* offset used by the DMA engine to start copying rx data
|
|
*/
|
|
}
|
|
|
|
if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
|
|
return -ENOMEM;
|
|
|
|
atomic_set(&pool->pages_state_release_cnt, 0);
|
|
|
|
/* Driver calling page_pool_create() also call page_pool_destroy() */
|
|
refcount_set(&pool->user_cnt, 1);
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_MAP)
|
|
get_device(pool->p.dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct page_pool *page_pool_create(const struct page_pool_params *params)
|
|
{
|
|
struct page_pool *pool;
|
|
int err;
|
|
|
|
pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
|
|
if (!pool)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
err = page_pool_init(pool, params);
|
|
if (err < 0) {
|
|
pr_warn("%s() gave up with errno %d\n", __func__, err);
|
|
kfree(pool);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
return pool;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_create);
|
|
|
|
/* fast path */
|
|
static struct page *__page_pool_get_cached(struct page_pool *pool)
|
|
{
|
|
struct ptr_ring *r = &pool->ring;
|
|
bool refill = false;
|
|
struct page *page;
|
|
|
|
/* Test for safe-context, caller should provide this guarantee */
|
|
if (likely(in_serving_softirq())) {
|
|
if (likely(pool->alloc.count)) {
|
|
/* Fast-path */
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
return page;
|
|
}
|
|
refill = true;
|
|
}
|
|
|
|
/* Quicker fallback, avoid locks when ring is empty */
|
|
if (__ptr_ring_empty(r))
|
|
return NULL;
|
|
|
|
/* Slow-path: Get page from locked ring queue,
|
|
* refill alloc array if requested.
|
|
*/
|
|
spin_lock(&r->consumer_lock);
|
|
page = __ptr_ring_consume(r);
|
|
if (refill)
|
|
pool->alloc.count = __ptr_ring_consume_batched(r,
|
|
pool->alloc.cache,
|
|
PP_ALLOC_CACHE_REFILL);
|
|
spin_unlock(&r->consumer_lock);
|
|
return page;
|
|
}
|
|
|
|
static void page_pool_dma_sync_for_device(struct page_pool *pool,
|
|
struct page *page,
|
|
unsigned int dma_sync_size)
|
|
{
|
|
dma_sync_size = min(dma_sync_size, pool->p.max_len);
|
|
dma_sync_single_range_for_device(pool->p.dev, page->dma_addr,
|
|
pool->p.offset, dma_sync_size,
|
|
pool->p.dma_dir);
|
|
}
|
|
|
|
/* slow path */
|
|
noinline
|
|
static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
|
|
gfp_t _gfp)
|
|
{
|
|
struct page *page;
|
|
gfp_t gfp = _gfp;
|
|
dma_addr_t dma;
|
|
|
|
/* We could always set __GFP_COMP, and avoid this branch, as
|
|
* prep_new_page() can handle order-0 with __GFP_COMP.
|
|
*/
|
|
if (pool->p.order)
|
|
gfp |= __GFP_COMP;
|
|
|
|
/* FUTURE development:
|
|
*
|
|
* Current slow-path essentially falls back to single page
|
|
* allocations, which doesn't improve performance. This code
|
|
* need bulk allocation support from the page allocator code.
|
|
*/
|
|
|
|
/* Cache was empty, do real allocation */
|
|
page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
if (!(pool->p.flags & PP_FLAG_DMA_MAP))
|
|
goto skip_dma_map;
|
|
|
|
/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
|
|
* since dma_addr_t can be either 32 or 64 bits and does not always fit
|
|
* into page private data (i.e 32bit cpu with 64bit DMA caps)
|
|
* This mapping is kept for lifetime of page, until leaving pool.
|
|
*/
|
|
dma = dma_map_page_attrs(pool->p.dev, page, 0,
|
|
(PAGE_SIZE << pool->p.order),
|
|
pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
|
|
if (dma_mapping_error(pool->p.dev, dma)) {
|
|
put_page(page);
|
|
return NULL;
|
|
}
|
|
page->dma_addr = dma;
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
|
|
page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
|
|
|
|
skip_dma_map:
|
|
/* Track how many pages are held 'in-flight' */
|
|
pool->pages_state_hold_cnt++;
|
|
|
|
trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
|
|
|
|
/* When page just alloc'ed is should/must have refcnt 1. */
|
|
return page;
|
|
}
|
|
|
|
/* For using page_pool replace: alloc_pages() API calls, but provide
|
|
* synchronization guarantee for allocation side.
|
|
*/
|
|
struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
|
|
{
|
|
struct page *page;
|
|
|
|
/* Fast-path: Get a page from cache */
|
|
page = __page_pool_get_cached(pool);
|
|
if (page)
|
|
return page;
|
|
|
|
/* Slow-path: cache empty, do real allocation */
|
|
page = __page_pool_alloc_pages_slow(pool, gfp);
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_alloc_pages);
|
|
|
|
/* Calculate distance between two u32 values, valid if distance is below 2^(31)
|
|
* https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
|
|
*/
|
|
#define _distance(a, b) (s32)((a) - (b))
|
|
|
|
static s32 page_pool_inflight(struct page_pool *pool)
|
|
{
|
|
u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
|
|
u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
|
|
s32 inflight;
|
|
|
|
inflight = _distance(hold_cnt, release_cnt);
|
|
|
|
trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
|
|
WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight);
|
|
|
|
return inflight;
|
|
}
|
|
|
|
/* Cleanup page_pool state from page */
|
|
static void __page_pool_clean_page(struct page_pool *pool,
|
|
struct page *page)
|
|
{
|
|
dma_addr_t dma;
|
|
int count;
|
|
|
|
if (!(pool->p.flags & PP_FLAG_DMA_MAP))
|
|
goto skip_dma_unmap;
|
|
|
|
dma = page->dma_addr;
|
|
/* DMA unmap */
|
|
dma_unmap_page_attrs(pool->p.dev, dma,
|
|
PAGE_SIZE << pool->p.order, pool->p.dma_dir,
|
|
DMA_ATTR_SKIP_CPU_SYNC);
|
|
page->dma_addr = 0;
|
|
skip_dma_unmap:
|
|
/* This may be the last page returned, releasing the pool, so
|
|
* it is not safe to reference pool afterwards.
|
|
*/
|
|
count = atomic_inc_return(&pool->pages_state_release_cnt);
|
|
trace_page_pool_state_release(pool, page, count);
|
|
}
|
|
|
|
/* unmap the page and clean our state */
|
|
void page_pool_unmap_page(struct page_pool *pool, struct page *page)
|
|
{
|
|
/* When page is unmapped, this implies page will not be
|
|
* returned to page_pool.
|
|
*/
|
|
__page_pool_clean_page(pool, page);
|
|
}
|
|
EXPORT_SYMBOL(page_pool_unmap_page);
|
|
|
|
/* Return a page to the page allocator, cleaning up our state */
|
|
static void __page_pool_return_page(struct page_pool *pool, struct page *page)
|
|
{
|
|
__page_pool_clean_page(pool, page);
|
|
|
|
put_page(page);
|
|
/* An optimization would be to call __free_pages(page, pool->p.order)
|
|
* knowing page is not part of page-cache (thus avoiding a
|
|
* __page_cache_release() call).
|
|
*/
|
|
}
|
|
|
|
static bool __page_pool_recycle_into_ring(struct page_pool *pool,
|
|
struct page *page)
|
|
{
|
|
int ret;
|
|
/* BH protection not needed if current is serving softirq */
|
|
if (in_serving_softirq())
|
|
ret = ptr_ring_produce(&pool->ring, page);
|
|
else
|
|
ret = ptr_ring_produce_bh(&pool->ring, page);
|
|
|
|
return (ret == 0) ? true : false;
|
|
}
|
|
|
|
/* Only allow direct recycling in special circumstances, into the
|
|
* alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case.
|
|
*
|
|
* Caller must provide appropriate safe context.
|
|
*/
|
|
static bool __page_pool_recycle_direct(struct page *page,
|
|
struct page_pool *pool)
|
|
{
|
|
if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE))
|
|
return false;
|
|
|
|
/* Caller MUST have verified/know (page_ref_count(page) == 1) */
|
|
pool->alloc.cache[pool->alloc.count++] = page;
|
|
return true;
|
|
}
|
|
|
|
/* page is NOT reusable when:
|
|
* 1) allocated when system is under some pressure. (page_is_pfmemalloc)
|
|
* 2) belongs to a different NUMA node than pool->p.nid.
|
|
*
|
|
* To update pool->p.nid users must call page_pool_update_nid.
|
|
*/
|
|
static bool pool_page_reusable(struct page_pool *pool, struct page *page)
|
|
{
|
|
return !page_is_pfmemalloc(page) && page_to_nid(page) == pool->p.nid;
|
|
}
|
|
|
|
void __page_pool_put_page(struct page_pool *pool, struct page *page,
|
|
unsigned int dma_sync_size, bool allow_direct)
|
|
{
|
|
/* This allocator is optimized for the XDP mode that uses
|
|
* one-frame-per-page, but have fallbacks that act like the
|
|
* regular page allocator APIs.
|
|
*
|
|
* refcnt == 1 means page_pool owns page, and can recycle it.
|
|
*/
|
|
if (likely(page_ref_count(page) == 1 &&
|
|
pool_page_reusable(pool, page))) {
|
|
/* Read barrier done in page_ref_count / READ_ONCE */
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
|
|
page_pool_dma_sync_for_device(pool, page,
|
|
dma_sync_size);
|
|
|
|
if (allow_direct && in_serving_softirq())
|
|
if (__page_pool_recycle_direct(page, pool))
|
|
return;
|
|
|
|
if (!__page_pool_recycle_into_ring(pool, page)) {
|
|
/* Cache full, fallback to free pages */
|
|
__page_pool_return_page(pool, page);
|
|
}
|
|
return;
|
|
}
|
|
/* Fallback/non-XDP mode: API user have elevated refcnt.
|
|
*
|
|
* Many drivers split up the page into fragments, and some
|
|
* want to keep doing this to save memory and do refcnt based
|
|
* recycling. Support this use case too, to ease drivers
|
|
* switching between XDP/non-XDP.
|
|
*
|
|
* In-case page_pool maintains the DMA mapping, API user must
|
|
* call page_pool_put_page once. In this elevated refcnt
|
|
* case, the DMA is unmapped/released, as driver is likely
|
|
* doing refcnt based recycle tricks, meaning another process
|
|
* will be invoking put_page.
|
|
*/
|
|
__page_pool_clean_page(pool, page);
|
|
put_page(page);
|
|
}
|
|
EXPORT_SYMBOL(__page_pool_put_page);
|
|
|
|
static void __page_pool_empty_ring(struct page_pool *pool)
|
|
{
|
|
struct page *page;
|
|
|
|
/* Empty recycle ring */
|
|
while ((page = ptr_ring_consume_bh(&pool->ring))) {
|
|
/* Verify the refcnt invariant of cached pages */
|
|
if (!(page_ref_count(page) == 1))
|
|
pr_crit("%s() page_pool refcnt %d violation\n",
|
|
__func__, page_ref_count(page));
|
|
|
|
__page_pool_return_page(pool, page);
|
|
}
|
|
}
|
|
|
|
static void page_pool_free(struct page_pool *pool)
|
|
{
|
|
if (pool->disconnect)
|
|
pool->disconnect(pool);
|
|
|
|
ptr_ring_cleanup(&pool->ring, NULL);
|
|
|
|
if (pool->p.flags & PP_FLAG_DMA_MAP)
|
|
put_device(pool->p.dev);
|
|
|
|
kfree(pool);
|
|
}
|
|
|
|
static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
|
|
{
|
|
struct page *page;
|
|
|
|
if (pool->destroy_cnt)
|
|
return;
|
|
|
|
/* Empty alloc cache, assume caller made sure this is
|
|
* no-longer in use, and page_pool_alloc_pages() cannot be
|
|
* call concurrently.
|
|
*/
|
|
while (pool->alloc.count) {
|
|
page = pool->alloc.cache[--pool->alloc.count];
|
|
__page_pool_return_page(pool, page);
|
|
}
|
|
}
|
|
|
|
static void page_pool_scrub(struct page_pool *pool)
|
|
{
|
|
page_pool_empty_alloc_cache_once(pool);
|
|
pool->destroy_cnt++;
|
|
|
|
/* No more consumers should exist, but producers could still
|
|
* be in-flight.
|
|
*/
|
|
__page_pool_empty_ring(pool);
|
|
}
|
|
|
|
static int page_pool_release(struct page_pool *pool)
|
|
{
|
|
int inflight;
|
|
|
|
page_pool_scrub(pool);
|
|
inflight = page_pool_inflight(pool);
|
|
if (!inflight)
|
|
page_pool_free(pool);
|
|
|
|
return inflight;
|
|
}
|
|
|
|
static void page_pool_release_retry(struct work_struct *wq)
|
|
{
|
|
struct delayed_work *dwq = to_delayed_work(wq);
|
|
struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
|
|
int inflight;
|
|
|
|
inflight = page_pool_release(pool);
|
|
if (!inflight)
|
|
return;
|
|
|
|
/* Periodic warning */
|
|
if (time_after_eq(jiffies, pool->defer_warn)) {
|
|
int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
|
|
|
|
pr_warn("%s() stalled pool shutdown %d inflight %d sec\n",
|
|
__func__, inflight, sec);
|
|
pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
|
|
}
|
|
|
|
/* Still not ready to be disconnected, retry later */
|
|
schedule_delayed_work(&pool->release_dw, DEFER_TIME);
|
|
}
|
|
|
|
void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *))
|
|
{
|
|
refcount_inc(&pool->user_cnt);
|
|
pool->disconnect = disconnect;
|
|
}
|
|
|
|
void page_pool_destroy(struct page_pool *pool)
|
|
{
|
|
if (!pool)
|
|
return;
|
|
|
|
if (!page_pool_put(pool))
|
|
return;
|
|
|
|
if (!page_pool_release(pool))
|
|
return;
|
|
|
|
pool->defer_start = jiffies;
|
|
pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
|
|
|
|
INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
|
|
schedule_delayed_work(&pool->release_dw, DEFER_TIME);
|
|
}
|
|
EXPORT_SYMBOL(page_pool_destroy);
|
|
|
|
/* Caller must provide appropriate safe context, e.g. NAPI. */
|
|
void page_pool_update_nid(struct page_pool *pool, int new_nid)
|
|
{
|
|
trace_page_pool_update_nid(pool, new_nid);
|
|
pool->p.nid = new_nid;
|
|
}
|
|
EXPORT_SYMBOL(page_pool_update_nid);
|