linux-next/kernel/dma/direct.c
Chen Yu f689a3ab7b dma-direct: optimize page freeing when it is not addressable
When the CMA allocation succeeds but isn't addressable, its buffer has
already been released and the page is set to NULL.  So later when the
normal page allocation succeeds but isn't addressable, __free_pages()
can be used to free that normal page rather than using
dma_free_contiguous that does extra checks that are not needed.

Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2024-09-04 07:08:51 +03:00

681 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018-2020 Christoph Hellwig.
*
* DMA operations that map physical memory directly without using an IOMMU.
*/
#include <linux/memblock.h> /* for max_pfn */
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/dma-map-ops.h>
#include <linux/scatterlist.h>
#include <linux/pfn.h>
#include <linux/vmalloc.h>
#include <linux/set_memory.h>
#include <linux/slab.h>
#include "direct.h"
/*
* Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
* it for entirely different regions. In that case the arch code needs to
* override the variable below for dma-direct to work properly.
*/
u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24);
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
phys_addr_t phys)
{
if (force_dma_unencrypted(dev))
return phys_to_dma_unencrypted(dev, phys);
return phys_to_dma(dev, phys);
}
static inline struct page *dma_direct_to_page(struct device *dev,
dma_addr_t dma_addr)
{
return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
}
u64 dma_direct_get_required_mask(struct device *dev)
{
phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
u64 max_dma = phys_to_dma_direct(dev, phys);
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
}
static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
{
u64 dma_limit = min_not_zero(
dev->coherent_dma_mask,
dev->bus_dma_limit);
/*
* Optimistically try the zone that the physical address mask falls
* into first. If that returns memory that isn't actually addressable
* we will fallback to the next lower zone and try again.
*
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
* zones.
*/
*phys_limit = dma_to_phys(dev, dma_limit);
if (*phys_limit <= zone_dma_limit)
return GFP_DMA;
if (*phys_limit <= DMA_BIT_MASK(32))
return GFP_DMA32;
return 0;
}
bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
{
dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
if (dma_addr == DMA_MAPPING_ERROR)
return false;
return dma_addr + size - 1 <=
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
}
static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
{
if (!force_dma_unencrypted(dev))
return 0;
return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
}
static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
{
int ret;
if (!force_dma_unencrypted(dev))
return 0;
ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
if (ret)
pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
return ret;
}
static void __dma_direct_free_pages(struct device *dev, struct page *page,
size_t size)
{
if (swiotlb_free(dev, page, size))
return;
dma_free_contiguous(dev, page, size);
}
static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
{
struct page *page = swiotlb_alloc(dev, size);
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
swiotlb_free(dev, page, size);
return NULL;
}
return page;
}
static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
gfp_t gfp, bool allow_highmem)
{
int node = dev_to_node(dev);
struct page *page = NULL;
u64 phys_limit;
WARN_ON_ONCE(!PAGE_ALIGNED(size));
if (is_swiotlb_for_alloc(dev))
return dma_direct_alloc_swiotlb(dev, size);
gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
page = dma_alloc_contiguous(dev, size, gfp);
if (page) {
if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
(!allow_highmem && PageHighMem(page))) {
dma_free_contiguous(dev, page, size);
page = NULL;
}
}
again:
if (!page)
page = alloc_pages_node(node, gfp, get_order(size));
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
__free_pages(page, get_order(size));
page = NULL;
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
phys_limit < DMA_BIT_MASK(64) &&
!(gfp & (GFP_DMA32 | GFP_DMA))) {
gfp |= GFP_DMA32;
goto again;
}
if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
goto again;
}
}
return page;
}
/*
* Check if a potentially blocking operations needs to dip into the atomic
* pools for the given device/gfp.
*/
static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
{
return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
}
static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
struct page *page;
u64 phys_limit;
void *ret;
if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
return NULL;
gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
if (!page)
return NULL;
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return ret;
}
static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp)
{
struct page *page;
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
if (!page)
return NULL;
/* remove any dirty cache lines on the kernel alias */
if (!PageHighMem(page))
arch_dma_prep_coherent(page, size);
/* return the page pointer as the opaque cookie */
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return page;
}
void *dma_direct_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
bool remap = false, set_uncached = false;
struct page *page;
void *ret;
size = PAGE_ALIGN(size);
if (attrs & DMA_ATTR_NO_WARN)
gfp |= __GFP_NOWARN;
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
if (!dev_is_dma_coherent(dev)) {
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
!is_swiotlb_for_alloc(dev))
return arch_dma_alloc(dev, size, dma_handle, gfp,
attrs);
/*
* If there is a global pool, always allocate from it for
* non-coherent devices.
*/
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
return dma_alloc_from_global_coherent(dev, size,
dma_handle);
/*
* Otherwise we require the architecture to either be able to
* mark arbitrary parts of the kernel direct mapping uncached,
* or remapped it uncached.
*/
set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
if (!set_uncached && !remap) {
pr_warn_once("coherent DMA allocations not supported on this platform.\n");
return NULL;
}
}
/*
* Remapping or decrypting memory may block, allocate the memory from
* the atomic pools instead if we aren't allowed block.
*/
if ((remap || force_dma_unencrypted(dev)) &&
dma_direct_use_pool(dev, gfp))
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
/* we always manually zero the memory once we are done */
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
if (!page)
return NULL;
/*
* dma_alloc_contiguous can return highmem pages depending on a
* combination the cma= arguments and per-arch setup. These need to be
* remapped to return a kernel virtual address.
*/
if (PageHighMem(page)) {
remap = true;
set_uncached = false;
}
if (remap) {
pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
if (force_dma_unencrypted(dev))
prot = pgprot_decrypted(prot);
/* remove any dirty cache lines on the kernel alias */
arch_dma_prep_coherent(page, size);
/* create a coherent mapping */
ret = dma_common_contiguous_remap(page, size, prot,
__builtin_return_address(0));
if (!ret)
goto out_free_pages;
} else {
ret = page_address(page);
if (dma_set_decrypted(dev, ret, size))
goto out_leak_pages;
}
memset(ret, 0, size);
if (set_uncached) {
arch_dma_prep_coherent(page, size);
ret = arch_dma_set_uncached(ret, size);
if (IS_ERR(ret))
goto out_encrypt_pages;
}
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return ret;
out_encrypt_pages:
if (dma_set_encrypted(dev, page_address(page), size))
return NULL;
out_free_pages:
__dma_direct_free_pages(dev, page, size);
return NULL;
out_leak_pages:
return NULL;
}
void dma_direct_free(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
{
unsigned int page_order = get_order(size);
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
/* cpu_addr is a struct page cookie, not a kernel address */
dma_free_contiguous(dev, cpu_addr, size);
return;
}
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
!dev_is_dma_coherent(dev) &&
!is_swiotlb_for_alloc(dev)) {
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
return;
}
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
!dev_is_dma_coherent(dev)) {
if (!dma_release_from_global_coherent(page_order, cpu_addr))
WARN_ON_ONCE(1);
return;
}
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
return;
if (is_vmalloc_addr(cpu_addr)) {
vunmap(cpu_addr);
} else {
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
arch_dma_clear_uncached(cpu_addr, size);
if (dma_set_encrypted(dev, cpu_addr, size))
return;
}
__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
}
struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
{
struct page *page;
void *ret;
if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
page = __dma_direct_alloc_pages(dev, size, gfp, false);
if (!page)
return NULL;
ret = page_address(page);
if (dma_set_decrypted(dev, ret, size))
goto out_leak_pages;
memset(ret, 0, size);
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
return page;
out_leak_pages:
return NULL;
}
void dma_direct_free_pages(struct device *dev, size_t size,
struct page *page, dma_addr_t dma_addr,
enum dma_data_direction dir)
{
void *vaddr = page_address(page);
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
dma_free_from_pool(dev, vaddr, size))
return;
if (dma_set_encrypted(dev, vaddr, size))
return;
__dma_direct_free_pages(dev, page, size);
}
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(paddr, sg->length,
dir);
}
}
#endif
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu(paddr, sg->length, dir);
swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
if (dir == DMA_FROM_DEVICE)
arch_dma_mark_clean(paddr, sg->length);
}
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu_all();
}
/*
* Unmaps segments, except for ones marked as pci_p2pdma which do not
* require any further action as they contain a bus address.
*/
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
if (sg_dma_is_bus_address(sg))
sg_dma_unmark_bus_address(sg);
else
dma_direct_unmap_page(dev, sg->dma_address,
sg_dma_len(sg), dir, attrs);
}
}
#endif
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
struct pci_p2pdma_map_state p2pdma_state = {};
enum pci_p2pdma_map_type map;
struct scatterlist *sg;
int i, ret;
for_each_sg(sgl, sg, nents, i) {
if (is_pci_p2pdma_page(sg_page(sg))) {
map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
switch (map) {
case PCI_P2PDMA_MAP_BUS_ADDR:
continue;
case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
/*
* Any P2P mapping that traverses the PCI
* host bridge must be mapped with CPU physical
* address and not PCI bus addresses. This is
* done with dma_direct_map_page() below.
*/
break;
default:
ret = -EREMOTEIO;
goto out_unmap;
}
}
sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
sg->offset, sg->length, dir, attrs);
if (sg->dma_address == DMA_MAPPING_ERROR) {
ret = -EIO;
goto out_unmap;
}
sg_dma_len(sg) = sg->length;
}
return nents;
out_unmap:
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
return ret;
}
dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t dma_addr = paddr;
if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
dev_err_once(dev,
"DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
WARN_ON_ONCE(1);
return DMA_MAPPING_ERROR;
}
return dma_addr;
}
int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
struct page *page = dma_direct_to_page(dev, dma_addr);
int ret;
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
return ret;
}
bool dma_direct_can_mmap(struct device *dev)
{
return dev_is_dma_coherent(dev) ||
IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
}
int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
unsigned long user_count = vma_pages(vma);
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
int ret = -ENXIO;
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
if (force_dma_unencrypted(dev))
vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
return ret;
if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
return -ENXIO;
return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
user_count << PAGE_SHIFT, vma->vm_page_prot);
}
int dma_direct_supported(struct device *dev, u64 mask)
{
u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
/*
* Because 32-bit DMA masks are so common we expect every architecture
* to be able to satisfy them - either by not supporting more physical
* memory, or by providing a ZONE_DMA32. If neither is the case, the
* architecture needs to use an IOMMU instead of the direct mapping.
*/
if (mask >= DMA_BIT_MASK(32))
return 1;
/*
* This check needs to be against the actual bit mask value, so use
* phys_to_dma_unencrypted() here so that the SME encryption mask isn't
* part of the check.
*/
if (IS_ENABLED(CONFIG_ZONE_DMA))
min_mask = min_t(u64, min_mask, zone_dma_limit);
return mask >= phys_to_dma_unencrypted(dev, min_mask);
}
/*
* To check whether all ram resource ranges are covered by dma range map
* Returns 0 when further check is needed
* Returns 1 if there is some RAM range can't be covered by dma_range_map
*/
static int check_ram_in_range_map(unsigned long start_pfn,
unsigned long nr_pages, void *data)
{
unsigned long end_pfn = start_pfn + nr_pages;
const struct bus_dma_region *bdr = NULL;
const struct bus_dma_region *m;
struct device *dev = data;
while (start_pfn < end_pfn) {
for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
if (start_pfn >= cpu_start_pfn &&
start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) {
bdr = m;
break;
}
}
if (!bdr)
return 1;
start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
}
return 0;
}
bool dma_direct_all_ram_mapped(struct device *dev)
{
if (!dev->dma_range_map)
return true;
return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
check_ram_in_range_map);
}
size_t dma_direct_max_mapping_size(struct device *dev)
{
/* If SWIOTLB is active, use its maximum mapping size */
if (is_swiotlb_active(dev) &&
(dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
return swiotlb_max_mapping_size(dev);
return SIZE_MAX;
}
bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
{
return !dev_is_dma_coherent(dev) ||
swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
}
/**
* dma_direct_set_offset - Assign scalar offset for a single DMA range.
* @dev: device pointer; needed to "own" the alloced memory.
* @cpu_start: beginning of memory region covered by this offset.
* @dma_start: beginning of DMA/PCI region covered by this offset.
* @size: size of the region.
*
* This is for the simple case of a uniform offset which cannot
* be discovered by "dma-ranges".
*
* It returns -ENOMEM if out of memory, -EINVAL if a map
* already exists, 0 otherwise.
*
* Note: any call to this from a driver is a bug. The mapping needs
* to be described by the device tree or other firmware interfaces.
*/
int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
dma_addr_t dma_start, u64 size)
{
struct bus_dma_region *map;
u64 offset = (u64)cpu_start - (u64)dma_start;
if (dev->dma_range_map) {
dev_err(dev, "attempt to add DMA range to existing map\n");
return -EINVAL;
}
if (!offset)
return 0;
map = kcalloc(2, sizeof(*map), GFP_KERNEL);
if (!map)
return -ENOMEM;
map[0].cpu_start = cpu_start;
map[0].dma_start = dma_start;
map[0].size = size;
dev->dma_range_map = map;
return 0;
}