mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 13:15:57 +00:00
5dd70852b0
Refactor the quota preallocation watermarking code so that it'll work for realtime quota too. Convert the do_div calls into div_u64 for compactness. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
1446 lines
36 KiB
C
1446 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2003 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_qm.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_health.h"
|
|
|
|
/*
|
|
* Lock order:
|
|
*
|
|
* ip->i_lock
|
|
* qi->qi_tree_lock
|
|
* dquot->q_qlock (xfs_dqlock() and friends)
|
|
* dquot->q_flush (xfs_dqflock() and friends)
|
|
* qi->qi_lru_lock
|
|
*
|
|
* If two dquots need to be locked the order is user before group/project,
|
|
* otherwise by the lowest id first, see xfs_dqlock2.
|
|
*/
|
|
|
|
struct kmem_cache *xfs_dqtrx_cache;
|
|
static struct kmem_cache *xfs_dquot_cache;
|
|
|
|
static struct lock_class_key xfs_dquot_group_class;
|
|
static struct lock_class_key xfs_dquot_project_class;
|
|
|
|
/* Record observations of quota corruption with the health tracking system. */
|
|
static void
|
|
xfs_dquot_mark_sick(
|
|
struct xfs_dquot *dqp)
|
|
{
|
|
struct xfs_mount *mp = dqp->q_mount;
|
|
|
|
switch (dqp->q_type) {
|
|
case XFS_DQTYPE_USER:
|
|
xfs_fs_mark_sick(mp, XFS_SICK_FS_UQUOTA);
|
|
break;
|
|
case XFS_DQTYPE_GROUP:
|
|
xfs_fs_mark_sick(mp, XFS_SICK_FS_GQUOTA);
|
|
break;
|
|
case XFS_DQTYPE_PROJ:
|
|
xfs_fs_mark_sick(mp, XFS_SICK_FS_PQUOTA);
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called to free all the memory associated with a dquot
|
|
*/
|
|
void
|
|
xfs_qm_dqdestroy(
|
|
struct xfs_dquot *dqp)
|
|
{
|
|
ASSERT(list_empty(&dqp->q_lru));
|
|
|
|
kvfree(dqp->q_logitem.qli_item.li_lv_shadow);
|
|
mutex_destroy(&dqp->q_qlock);
|
|
|
|
XFS_STATS_DEC(dqp->q_mount, xs_qm_dquot);
|
|
kmem_cache_free(xfs_dquot_cache, dqp);
|
|
}
|
|
|
|
/*
|
|
* If default limits are in force, push them into the dquot now.
|
|
* We overwrite the dquot limits only if they are zero and this
|
|
* is not the root dquot.
|
|
*/
|
|
void
|
|
xfs_qm_adjust_dqlimits(
|
|
struct xfs_dquot *dq)
|
|
{
|
|
struct xfs_mount *mp = dq->q_mount;
|
|
struct xfs_quotainfo *q = mp->m_quotainfo;
|
|
struct xfs_def_quota *defq;
|
|
int prealloc = 0;
|
|
|
|
ASSERT(dq->q_id);
|
|
defq = xfs_get_defquota(q, xfs_dquot_type(dq));
|
|
|
|
if (!dq->q_blk.softlimit) {
|
|
dq->q_blk.softlimit = defq->blk.soft;
|
|
prealloc = 1;
|
|
}
|
|
if (!dq->q_blk.hardlimit) {
|
|
dq->q_blk.hardlimit = defq->blk.hard;
|
|
prealloc = 1;
|
|
}
|
|
if (!dq->q_ino.softlimit)
|
|
dq->q_ino.softlimit = defq->ino.soft;
|
|
if (!dq->q_ino.hardlimit)
|
|
dq->q_ino.hardlimit = defq->ino.hard;
|
|
if (!dq->q_rtb.softlimit)
|
|
dq->q_rtb.softlimit = defq->rtb.soft;
|
|
if (!dq->q_rtb.hardlimit)
|
|
dq->q_rtb.hardlimit = defq->rtb.hard;
|
|
|
|
if (prealloc)
|
|
xfs_dquot_set_prealloc_limits(dq);
|
|
}
|
|
|
|
/* Set the expiration time of a quota's grace period. */
|
|
time64_t
|
|
xfs_dquot_set_timeout(
|
|
struct xfs_mount *mp,
|
|
time64_t timeout)
|
|
{
|
|
struct xfs_quotainfo *qi = mp->m_quotainfo;
|
|
|
|
return clamp_t(time64_t, timeout, qi->qi_expiry_min,
|
|
qi->qi_expiry_max);
|
|
}
|
|
|
|
/* Set the length of the default grace period. */
|
|
time64_t
|
|
xfs_dquot_set_grace_period(
|
|
time64_t grace)
|
|
{
|
|
return clamp_t(time64_t, grace, XFS_DQ_GRACE_MIN, XFS_DQ_GRACE_MAX);
|
|
}
|
|
|
|
/*
|
|
* Determine if this quota counter is over either limit and set the quota
|
|
* timers as appropriate.
|
|
*/
|
|
static inline void
|
|
xfs_qm_adjust_res_timer(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dquot_res *res,
|
|
struct xfs_quota_limits *qlim)
|
|
{
|
|
ASSERT(res->hardlimit == 0 || res->softlimit <= res->hardlimit);
|
|
|
|
if ((res->softlimit && res->count > res->softlimit) ||
|
|
(res->hardlimit && res->count > res->hardlimit)) {
|
|
if (res->timer == 0)
|
|
res->timer = xfs_dquot_set_timeout(mp,
|
|
ktime_get_real_seconds() + qlim->time);
|
|
} else {
|
|
res->timer = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the limits and timers of a dquot and start or reset timers
|
|
* if necessary.
|
|
* This gets called even when quota enforcement is OFF, which makes our
|
|
* life a little less complicated. (We just don't reject any quota
|
|
* reservations in that case, when enforcement is off).
|
|
* We also return 0 as the values of the timers in Q_GETQUOTA calls, when
|
|
* enforcement's off.
|
|
* In contrast, warnings are a little different in that they don't
|
|
* 'automatically' get started when limits get exceeded. They do
|
|
* get reset to zero, however, when we find the count to be under
|
|
* the soft limit (they are only ever set non-zero via userspace).
|
|
*/
|
|
void
|
|
xfs_qm_adjust_dqtimers(
|
|
struct xfs_dquot *dq)
|
|
{
|
|
struct xfs_mount *mp = dq->q_mount;
|
|
struct xfs_quotainfo *qi = mp->m_quotainfo;
|
|
struct xfs_def_quota *defq;
|
|
|
|
ASSERT(dq->q_id);
|
|
defq = xfs_get_defquota(qi, xfs_dquot_type(dq));
|
|
|
|
xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_blk, &defq->blk);
|
|
xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_ino, &defq->ino);
|
|
xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_rtb, &defq->rtb);
|
|
}
|
|
|
|
/*
|
|
* initialize a buffer full of dquots and log the whole thing
|
|
*/
|
|
void
|
|
xfs_qm_init_dquot_blk(
|
|
struct xfs_trans *tp,
|
|
xfs_dqid_t id,
|
|
xfs_dqtype_t type,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_quotainfo *q = mp->m_quotainfo;
|
|
struct xfs_dqblk *d;
|
|
xfs_dqid_t curid;
|
|
unsigned int qflag;
|
|
unsigned int blftype;
|
|
int i;
|
|
|
|
ASSERT(tp);
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
switch (type) {
|
|
case XFS_DQTYPE_USER:
|
|
qflag = XFS_UQUOTA_CHKD;
|
|
blftype = XFS_BLF_UDQUOT_BUF;
|
|
break;
|
|
case XFS_DQTYPE_PROJ:
|
|
qflag = XFS_PQUOTA_CHKD;
|
|
blftype = XFS_BLF_PDQUOT_BUF;
|
|
break;
|
|
case XFS_DQTYPE_GROUP:
|
|
qflag = XFS_GQUOTA_CHKD;
|
|
blftype = XFS_BLF_GDQUOT_BUF;
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
return;
|
|
}
|
|
|
|
d = bp->b_addr;
|
|
|
|
/*
|
|
* ID of the first dquot in the block - id's are zero based.
|
|
*/
|
|
curid = id - (id % q->qi_dqperchunk);
|
|
memset(d, 0, BBTOB(q->qi_dqchunklen));
|
|
for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++) {
|
|
d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
|
|
d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
|
|
d->dd_diskdq.d_id = cpu_to_be32(curid);
|
|
d->dd_diskdq.d_type = type;
|
|
if (curid > 0 && xfs_has_bigtime(mp))
|
|
d->dd_diskdq.d_type |= XFS_DQTYPE_BIGTIME;
|
|
if (xfs_has_crc(mp)) {
|
|
uuid_copy(&d->dd_uuid, &mp->m_sb.sb_meta_uuid);
|
|
xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
|
|
XFS_DQUOT_CRC_OFF);
|
|
}
|
|
}
|
|
|
|
xfs_trans_dquot_buf(tp, bp, blftype);
|
|
|
|
/*
|
|
* quotacheck uses delayed writes to update all the dquots on disk in an
|
|
* efficient manner instead of logging the individual dquot changes as
|
|
* they are made. However if we log the buffer allocated here and crash
|
|
* after quotacheck while the logged initialisation is still in the
|
|
* active region of the log, log recovery can replay the dquot buffer
|
|
* initialisation over the top of the checked dquots and corrupt quota
|
|
* accounting.
|
|
*
|
|
* To avoid this problem, quotacheck cannot log the initialised buffer.
|
|
* We must still dirty the buffer and write it back before the
|
|
* allocation transaction clears the log. Therefore, mark the buffer as
|
|
* ordered instead of logging it directly. This is safe for quotacheck
|
|
* because it detects and repairs allocated but initialized dquot blocks
|
|
* in the quota inodes.
|
|
*/
|
|
if (!(mp->m_qflags & qflag))
|
|
xfs_trans_ordered_buf(tp, bp);
|
|
else
|
|
xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1);
|
|
}
|
|
|
|
static void
|
|
xfs_dquot_set_prealloc(
|
|
struct xfs_dquot_pre *pre,
|
|
const struct xfs_dquot_res *res)
|
|
{
|
|
xfs_qcnt_t space;
|
|
|
|
pre->q_prealloc_hi_wmark = res->hardlimit;
|
|
pre->q_prealloc_lo_wmark = res->softlimit;
|
|
|
|
space = div_u64(pre->q_prealloc_hi_wmark, 100);
|
|
if (!pre->q_prealloc_lo_wmark)
|
|
pre->q_prealloc_lo_wmark = space * 95;
|
|
|
|
pre->q_low_space[XFS_QLOWSP_1_PCNT] = space;
|
|
pre->q_low_space[XFS_QLOWSP_3_PCNT] = space * 3;
|
|
pre->q_low_space[XFS_QLOWSP_5_PCNT] = space * 5;
|
|
}
|
|
|
|
/*
|
|
* Initialize the dynamic speculative preallocation thresholds. The lo/hi
|
|
* watermarks correspond to the soft and hard limits by default. If a soft limit
|
|
* is not specified, we use 95% of the hard limit.
|
|
*/
|
|
void
|
|
xfs_dquot_set_prealloc_limits(struct xfs_dquot *dqp)
|
|
{
|
|
xfs_dquot_set_prealloc(&dqp->q_blk_prealloc, &dqp->q_blk);
|
|
xfs_dquot_set_prealloc(&dqp->q_rtb_prealloc, &dqp->q_rtb);
|
|
}
|
|
|
|
/*
|
|
* Ensure that the given in-core dquot has a buffer on disk backing it, and
|
|
* return the buffer locked and held. This is called when the bmapi finds a
|
|
* hole.
|
|
*/
|
|
STATIC int
|
|
xfs_dquot_disk_alloc(
|
|
struct xfs_dquot *dqp,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_bmbt_irec map;
|
|
struct xfs_trans *tp;
|
|
struct xfs_mount *mp = dqp->q_mount;
|
|
struct xfs_buf *bp;
|
|
xfs_dqtype_t qtype = xfs_dquot_type(dqp);
|
|
struct xfs_inode *quotip = xfs_quota_inode(mp, qtype);
|
|
int nmaps = 1;
|
|
int error;
|
|
|
|
trace_xfs_dqalloc(dqp);
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_qm_dqalloc,
|
|
XFS_QM_DQALLOC_SPACE_RES(mp), 0, 0, &tp);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_ilock(quotip, XFS_ILOCK_EXCL);
|
|
xfs_trans_ijoin(tp, quotip, 0);
|
|
|
|
if (!xfs_this_quota_on(dqp->q_mount, qtype)) {
|
|
/*
|
|
* Return if this type of quotas is turned off while we didn't
|
|
* have an inode lock
|
|
*/
|
|
error = -ESRCH;
|
|
goto err_cancel;
|
|
}
|
|
|
|
error = xfs_iext_count_extend(tp, quotip, XFS_DATA_FORK,
|
|
XFS_IEXT_ADD_NOSPLIT_CNT);
|
|
if (error)
|
|
goto err_cancel;
|
|
|
|
/* Create the block mapping. */
|
|
error = xfs_bmapi_write(tp, quotip, dqp->q_fileoffset,
|
|
XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA, 0, &map,
|
|
&nmaps);
|
|
if (error)
|
|
goto err_cancel;
|
|
|
|
ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB);
|
|
ASSERT((map.br_startblock != DELAYSTARTBLOCK) &&
|
|
(map.br_startblock != HOLESTARTBLOCK));
|
|
|
|
/*
|
|
* Keep track of the blkno to save a lookup later
|
|
*/
|
|
dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
|
|
|
|
/* now we can just get the buffer (there's nothing to read yet) */
|
|
error = xfs_trans_get_buf(tp, mp->m_ddev_targp, dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen, 0, &bp);
|
|
if (error)
|
|
goto err_cancel;
|
|
bp->b_ops = &xfs_dquot_buf_ops;
|
|
|
|
/*
|
|
* Make a chunk of dquots out of this buffer and log
|
|
* the entire thing.
|
|
*/
|
|
xfs_qm_init_dquot_blk(tp, dqp->q_id, qtype, bp);
|
|
xfs_buf_set_ref(bp, XFS_DQUOT_REF);
|
|
|
|
/*
|
|
* Hold the buffer and join it to the dfops so that we'll still own
|
|
* the buffer when we return to the caller. The buffer disposal on
|
|
* error must be paid attention to very carefully, as it has been
|
|
* broken since commit efa092f3d4c6 "[XFS] Fixes a bug in the quota
|
|
* code when allocating a new dquot record" in 2005, and the later
|
|
* conversion to xfs_defer_ops in commit 310a75a3c6c747 failed to keep
|
|
* the buffer locked across the _defer_finish call. We can now do
|
|
* this correctly with xfs_defer_bjoin.
|
|
*
|
|
* Above, we allocated a disk block for the dquot information and used
|
|
* get_buf to initialize the dquot. If the _defer_finish fails, the old
|
|
* transaction is gone but the new buffer is not joined or held to any
|
|
* transaction, so we must _buf_relse it.
|
|
*
|
|
* If everything succeeds, the caller of this function is returned a
|
|
* buffer that is locked and held to the transaction. The caller
|
|
* is responsible for unlocking any buffer passed back, either
|
|
* manually or by committing the transaction. On error, the buffer is
|
|
* released and not passed back.
|
|
*
|
|
* Keep the quota inode ILOCKed until after the transaction commit to
|
|
* maintain the atomicity of bmap/rmap updates.
|
|
*/
|
|
xfs_trans_bhold(tp, bp);
|
|
error = xfs_trans_commit(tp);
|
|
xfs_iunlock(quotip, XFS_ILOCK_EXCL);
|
|
if (error) {
|
|
xfs_buf_relse(bp);
|
|
return error;
|
|
}
|
|
|
|
*bpp = bp;
|
|
return 0;
|
|
|
|
err_cancel:
|
|
xfs_trans_cancel(tp);
|
|
xfs_iunlock(quotip, XFS_ILOCK_EXCL);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Read in the in-core dquot's on-disk metadata and return the buffer.
|
|
* Returns ENOENT to signal a hole.
|
|
*/
|
|
STATIC int
|
|
xfs_dquot_disk_read(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dquot *dqp,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_bmbt_irec map;
|
|
struct xfs_buf *bp;
|
|
xfs_dqtype_t qtype = xfs_dquot_type(dqp);
|
|
struct xfs_inode *quotip = xfs_quota_inode(mp, qtype);
|
|
uint lock_mode;
|
|
int nmaps = 1;
|
|
int error;
|
|
|
|
lock_mode = xfs_ilock_data_map_shared(quotip);
|
|
if (!xfs_this_quota_on(mp, qtype)) {
|
|
/*
|
|
* Return if this type of quotas is turned off while we
|
|
* didn't have the quota inode lock.
|
|
*/
|
|
xfs_iunlock(quotip, lock_mode);
|
|
return -ESRCH;
|
|
}
|
|
|
|
/*
|
|
* Find the block map; no allocations yet
|
|
*/
|
|
error = xfs_bmapi_read(quotip, dqp->q_fileoffset,
|
|
XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0);
|
|
xfs_iunlock(quotip, lock_mode);
|
|
if (error)
|
|
return error;
|
|
|
|
ASSERT(nmaps == 1);
|
|
ASSERT(map.br_blockcount >= 1);
|
|
ASSERT(map.br_startblock != DELAYSTARTBLOCK);
|
|
if (map.br_startblock == HOLESTARTBLOCK)
|
|
return -ENOENT;
|
|
|
|
trace_xfs_dqtobp_read(dqp);
|
|
|
|
/*
|
|
* store the blkno etc so that we don't have to do the
|
|
* mapping all the time
|
|
*/
|
|
dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
|
|
|
|
error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen, 0, &bp,
|
|
&xfs_dquot_buf_ops);
|
|
if (xfs_metadata_is_sick(error))
|
|
xfs_dquot_mark_sick(dqp);
|
|
if (error) {
|
|
ASSERT(bp == NULL);
|
|
return error;
|
|
}
|
|
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
xfs_buf_set_ref(bp, XFS_DQUOT_REF);
|
|
*bpp = bp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate and initialize everything we need for an incore dquot. */
|
|
STATIC struct xfs_dquot *
|
|
xfs_dquot_alloc(
|
|
struct xfs_mount *mp,
|
|
xfs_dqid_t id,
|
|
xfs_dqtype_t type)
|
|
{
|
|
struct xfs_dquot *dqp;
|
|
|
|
dqp = kmem_cache_zalloc(xfs_dquot_cache, GFP_KERNEL | __GFP_NOFAIL);
|
|
|
|
dqp->q_type = type;
|
|
dqp->q_id = id;
|
|
dqp->q_mount = mp;
|
|
INIT_LIST_HEAD(&dqp->q_lru);
|
|
mutex_init(&dqp->q_qlock);
|
|
init_waitqueue_head(&dqp->q_pinwait);
|
|
dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk;
|
|
/*
|
|
* Offset of dquot in the (fixed sized) dquot chunk.
|
|
*/
|
|
dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) *
|
|
sizeof(struct xfs_dqblk);
|
|
|
|
/*
|
|
* Because we want to use a counting completion, complete
|
|
* the flush completion once to allow a single access to
|
|
* the flush completion without blocking.
|
|
*/
|
|
init_completion(&dqp->q_flush);
|
|
complete(&dqp->q_flush);
|
|
|
|
/*
|
|
* Make sure group quotas have a different lock class than user
|
|
* quotas.
|
|
*/
|
|
switch (type) {
|
|
case XFS_DQTYPE_USER:
|
|
/* uses the default lock class */
|
|
break;
|
|
case XFS_DQTYPE_GROUP:
|
|
lockdep_set_class(&dqp->q_qlock, &xfs_dquot_group_class);
|
|
break;
|
|
case XFS_DQTYPE_PROJ:
|
|
lockdep_set_class(&dqp->q_qlock, &xfs_dquot_project_class);
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
|
|
xfs_qm_dquot_logitem_init(dqp);
|
|
|
|
XFS_STATS_INC(mp, xs_qm_dquot);
|
|
return dqp;
|
|
}
|
|
|
|
/* Check the ondisk dquot's id and type match what the incore dquot expects. */
|
|
static bool
|
|
xfs_dquot_check_type(
|
|
struct xfs_dquot *dqp,
|
|
struct xfs_disk_dquot *ddqp)
|
|
{
|
|
uint8_t ddqp_type;
|
|
uint8_t dqp_type;
|
|
|
|
ddqp_type = ddqp->d_type & XFS_DQTYPE_REC_MASK;
|
|
dqp_type = xfs_dquot_type(dqp);
|
|
|
|
if (be32_to_cpu(ddqp->d_id) != dqp->q_id)
|
|
return false;
|
|
|
|
/*
|
|
* V5 filesystems always expect an exact type match. V4 filesystems
|
|
* expect an exact match for user dquots and for non-root group and
|
|
* project dquots.
|
|
*/
|
|
if (xfs_has_crc(dqp->q_mount) ||
|
|
dqp_type == XFS_DQTYPE_USER || dqp->q_id != 0)
|
|
return ddqp_type == dqp_type;
|
|
|
|
/*
|
|
* V4 filesystems support either group or project quotas, but not both
|
|
* at the same time. The non-user quota file can be switched between
|
|
* group and project quota uses depending on the mount options, which
|
|
* means that we can encounter the other type when we try to load quota
|
|
* defaults. Quotacheck will soon reset the entire quota file
|
|
* (including the root dquot) anyway, but don't log scary corruption
|
|
* reports to dmesg.
|
|
*/
|
|
return ddqp_type == XFS_DQTYPE_GROUP || ddqp_type == XFS_DQTYPE_PROJ;
|
|
}
|
|
|
|
/* Copy the in-core quota fields in from the on-disk buffer. */
|
|
STATIC int
|
|
xfs_dquot_from_disk(
|
|
struct xfs_dquot *dqp,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_dqblk *dqb = xfs_buf_offset(bp, dqp->q_bufoffset);
|
|
struct xfs_disk_dquot *ddqp = &dqb->dd_diskdq;
|
|
|
|
/*
|
|
* Ensure that we got the type and ID we were looking for.
|
|
* Everything else was checked by the dquot buffer verifier.
|
|
*/
|
|
if (!xfs_dquot_check_type(dqp, ddqp)) {
|
|
xfs_alert_tag(bp->b_mount, XFS_PTAG_VERIFIER_ERROR,
|
|
"Metadata corruption detected at %pS, quota %u",
|
|
__this_address, dqp->q_id);
|
|
xfs_alert(bp->b_mount, "Unmount and run xfs_repair");
|
|
xfs_dquot_mark_sick(dqp);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/* copy everything from disk dquot to the incore dquot */
|
|
dqp->q_type = ddqp->d_type;
|
|
dqp->q_blk.hardlimit = be64_to_cpu(ddqp->d_blk_hardlimit);
|
|
dqp->q_blk.softlimit = be64_to_cpu(ddqp->d_blk_softlimit);
|
|
dqp->q_ino.hardlimit = be64_to_cpu(ddqp->d_ino_hardlimit);
|
|
dqp->q_ino.softlimit = be64_to_cpu(ddqp->d_ino_softlimit);
|
|
dqp->q_rtb.hardlimit = be64_to_cpu(ddqp->d_rtb_hardlimit);
|
|
dqp->q_rtb.softlimit = be64_to_cpu(ddqp->d_rtb_softlimit);
|
|
|
|
dqp->q_blk.count = be64_to_cpu(ddqp->d_bcount);
|
|
dqp->q_ino.count = be64_to_cpu(ddqp->d_icount);
|
|
dqp->q_rtb.count = be64_to_cpu(ddqp->d_rtbcount);
|
|
|
|
dqp->q_blk.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_btimer);
|
|
dqp->q_ino.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_itimer);
|
|
dqp->q_rtb.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_rtbtimer);
|
|
|
|
/*
|
|
* Reservation counters are defined as reservation plus current usage
|
|
* to avoid having to add every time.
|
|
*/
|
|
dqp->q_blk.reserved = dqp->q_blk.count;
|
|
dqp->q_ino.reserved = dqp->q_ino.count;
|
|
dqp->q_rtb.reserved = dqp->q_rtb.count;
|
|
|
|
/* initialize the dquot speculative prealloc thresholds */
|
|
xfs_dquot_set_prealloc_limits(dqp);
|
|
return 0;
|
|
}
|
|
|
|
/* Copy the in-core quota fields into the on-disk buffer. */
|
|
void
|
|
xfs_dquot_to_disk(
|
|
struct xfs_disk_dquot *ddqp,
|
|
struct xfs_dquot *dqp)
|
|
{
|
|
ddqp->d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
|
|
ddqp->d_version = XFS_DQUOT_VERSION;
|
|
ddqp->d_type = dqp->q_type;
|
|
ddqp->d_id = cpu_to_be32(dqp->q_id);
|
|
ddqp->d_pad0 = 0;
|
|
ddqp->d_pad = 0;
|
|
|
|
ddqp->d_blk_hardlimit = cpu_to_be64(dqp->q_blk.hardlimit);
|
|
ddqp->d_blk_softlimit = cpu_to_be64(dqp->q_blk.softlimit);
|
|
ddqp->d_ino_hardlimit = cpu_to_be64(dqp->q_ino.hardlimit);
|
|
ddqp->d_ino_softlimit = cpu_to_be64(dqp->q_ino.softlimit);
|
|
ddqp->d_rtb_hardlimit = cpu_to_be64(dqp->q_rtb.hardlimit);
|
|
ddqp->d_rtb_softlimit = cpu_to_be64(dqp->q_rtb.softlimit);
|
|
|
|
ddqp->d_bcount = cpu_to_be64(dqp->q_blk.count);
|
|
ddqp->d_icount = cpu_to_be64(dqp->q_ino.count);
|
|
ddqp->d_rtbcount = cpu_to_be64(dqp->q_rtb.count);
|
|
|
|
ddqp->d_bwarns = 0;
|
|
ddqp->d_iwarns = 0;
|
|
ddqp->d_rtbwarns = 0;
|
|
|
|
ddqp->d_btimer = xfs_dquot_to_disk_ts(dqp, dqp->q_blk.timer);
|
|
ddqp->d_itimer = xfs_dquot_to_disk_ts(dqp, dqp->q_ino.timer);
|
|
ddqp->d_rtbtimer = xfs_dquot_to_disk_ts(dqp, dqp->q_rtb.timer);
|
|
}
|
|
|
|
/*
|
|
* Read in the ondisk dquot using dqtobp() then copy it to an incore version,
|
|
* and release the buffer immediately. If @can_alloc is true, fill any
|
|
* holes in the on-disk metadata.
|
|
*/
|
|
static int
|
|
xfs_qm_dqread(
|
|
struct xfs_mount *mp,
|
|
xfs_dqid_t id,
|
|
xfs_dqtype_t type,
|
|
bool can_alloc,
|
|
struct xfs_dquot **dqpp)
|
|
{
|
|
struct xfs_dquot *dqp;
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
|
|
dqp = xfs_dquot_alloc(mp, id, type);
|
|
trace_xfs_dqread(dqp);
|
|
|
|
/* Try to read the buffer, allocating if necessary. */
|
|
error = xfs_dquot_disk_read(mp, dqp, &bp);
|
|
if (error == -ENOENT && can_alloc)
|
|
error = xfs_dquot_disk_alloc(dqp, &bp);
|
|
if (error)
|
|
goto err;
|
|
|
|
/*
|
|
* At this point we should have a clean locked buffer. Copy the data
|
|
* to the incore dquot and release the buffer since the incore dquot
|
|
* has its own locking protocol so we needn't tie up the buffer any
|
|
* further.
|
|
*/
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
error = xfs_dquot_from_disk(dqp, bp);
|
|
xfs_buf_relse(bp);
|
|
if (error)
|
|
goto err;
|
|
|
|
*dqpp = dqp;
|
|
return error;
|
|
|
|
err:
|
|
trace_xfs_dqread_fail(dqp);
|
|
xfs_qm_dqdestroy(dqp);
|
|
*dqpp = NULL;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Advance to the next id in the current chunk, or if at the
|
|
* end of the chunk, skip ahead to first id in next allocated chunk
|
|
* using the SEEK_DATA interface.
|
|
*/
|
|
static int
|
|
xfs_dq_get_next_id(
|
|
struct xfs_mount *mp,
|
|
xfs_dqtype_t type,
|
|
xfs_dqid_t *id)
|
|
{
|
|
struct xfs_inode *quotip = xfs_quota_inode(mp, type);
|
|
xfs_dqid_t next_id = *id + 1; /* simple advance */
|
|
uint lock_flags;
|
|
struct xfs_bmbt_irec got;
|
|
struct xfs_iext_cursor cur;
|
|
xfs_fsblock_t start;
|
|
int error = 0;
|
|
|
|
/* If we'd wrap past the max ID, stop */
|
|
if (next_id < *id)
|
|
return -ENOENT;
|
|
|
|
/* If new ID is within the current chunk, advancing it sufficed */
|
|
if (next_id % mp->m_quotainfo->qi_dqperchunk) {
|
|
*id = next_id;
|
|
return 0;
|
|
}
|
|
|
|
/* Nope, next_id is now past the current chunk, so find the next one */
|
|
start = (xfs_fsblock_t)next_id / mp->m_quotainfo->qi_dqperchunk;
|
|
|
|
lock_flags = xfs_ilock_data_map_shared(quotip);
|
|
error = xfs_iread_extents(NULL, quotip, XFS_DATA_FORK);
|
|
if (error)
|
|
return error;
|
|
|
|
if (xfs_iext_lookup_extent(quotip, "ip->i_df, start, &cur, &got)) {
|
|
/* contiguous chunk, bump startoff for the id calculation */
|
|
if (got.br_startoff < start)
|
|
got.br_startoff = start;
|
|
*id = got.br_startoff * mp->m_quotainfo->qi_dqperchunk;
|
|
} else {
|
|
error = -ENOENT;
|
|
}
|
|
|
|
xfs_iunlock(quotip, lock_flags);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Look up the dquot in the in-core cache. If found, the dquot is returned
|
|
* locked and ready to go.
|
|
*/
|
|
static struct xfs_dquot *
|
|
xfs_qm_dqget_cache_lookup(
|
|
struct xfs_mount *mp,
|
|
struct xfs_quotainfo *qi,
|
|
struct radix_tree_root *tree,
|
|
xfs_dqid_t id)
|
|
{
|
|
struct xfs_dquot *dqp;
|
|
|
|
restart:
|
|
mutex_lock(&qi->qi_tree_lock);
|
|
dqp = radix_tree_lookup(tree, id);
|
|
if (!dqp) {
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
XFS_STATS_INC(mp, xs_qm_dqcachemisses);
|
|
return NULL;
|
|
}
|
|
|
|
xfs_dqlock(dqp);
|
|
if (dqp->q_flags & XFS_DQFLAG_FREEING) {
|
|
xfs_dqunlock(dqp);
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
trace_xfs_dqget_freeing(dqp);
|
|
delay(1);
|
|
goto restart;
|
|
}
|
|
|
|
dqp->q_nrefs++;
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
|
|
trace_xfs_dqget_hit(dqp);
|
|
XFS_STATS_INC(mp, xs_qm_dqcachehits);
|
|
return dqp;
|
|
}
|
|
|
|
/*
|
|
* Try to insert a new dquot into the in-core cache. If an error occurs the
|
|
* caller should throw away the dquot and start over. Otherwise, the dquot
|
|
* is returned locked (and held by the cache) as if there had been a cache
|
|
* hit.
|
|
*
|
|
* The insert needs to be done under memalloc_nofs context because the radix
|
|
* tree can do memory allocation during insert. The qi->qi_tree_lock is taken in
|
|
* memory reclaim when freeing unused dquots, so we cannot have the radix tree
|
|
* node allocation recursing into filesystem reclaim whilst we hold the
|
|
* qi_tree_lock.
|
|
*/
|
|
static int
|
|
xfs_qm_dqget_cache_insert(
|
|
struct xfs_mount *mp,
|
|
struct xfs_quotainfo *qi,
|
|
struct radix_tree_root *tree,
|
|
xfs_dqid_t id,
|
|
struct xfs_dquot *dqp)
|
|
{
|
|
unsigned int nofs_flags;
|
|
int error;
|
|
|
|
nofs_flags = memalloc_nofs_save();
|
|
mutex_lock(&qi->qi_tree_lock);
|
|
error = radix_tree_insert(tree, id, dqp);
|
|
if (unlikely(error)) {
|
|
/* Duplicate found! Caller must try again. */
|
|
trace_xfs_dqget_dup(dqp);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Return a locked dquot to the caller, with a reference taken. */
|
|
xfs_dqlock(dqp);
|
|
dqp->q_nrefs = 1;
|
|
qi->qi_dquots++;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
memalloc_nofs_restore(nofs_flags);
|
|
return error;
|
|
}
|
|
|
|
/* Check our input parameters. */
|
|
static int
|
|
xfs_qm_dqget_checks(
|
|
struct xfs_mount *mp,
|
|
xfs_dqtype_t type)
|
|
{
|
|
switch (type) {
|
|
case XFS_DQTYPE_USER:
|
|
if (!XFS_IS_UQUOTA_ON(mp))
|
|
return -ESRCH;
|
|
return 0;
|
|
case XFS_DQTYPE_GROUP:
|
|
if (!XFS_IS_GQUOTA_ON(mp))
|
|
return -ESRCH;
|
|
return 0;
|
|
case XFS_DQTYPE_PROJ:
|
|
if (!XFS_IS_PQUOTA_ON(mp))
|
|
return -ESRCH;
|
|
return 0;
|
|
default:
|
|
WARN_ON_ONCE(0);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given the file system, id, and type (UDQUOT/GDQUOT/PDQUOT), return a
|
|
* locked dquot, doing an allocation (if requested) as needed.
|
|
*/
|
|
int
|
|
xfs_qm_dqget(
|
|
struct xfs_mount *mp,
|
|
xfs_dqid_t id,
|
|
xfs_dqtype_t type,
|
|
bool can_alloc,
|
|
struct xfs_dquot **O_dqpp)
|
|
{
|
|
struct xfs_quotainfo *qi = mp->m_quotainfo;
|
|
struct radix_tree_root *tree = xfs_dquot_tree(qi, type);
|
|
struct xfs_dquot *dqp;
|
|
int error;
|
|
|
|
error = xfs_qm_dqget_checks(mp, type);
|
|
if (error)
|
|
return error;
|
|
|
|
restart:
|
|
dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id);
|
|
if (dqp) {
|
|
*O_dqpp = dqp;
|
|
return 0;
|
|
}
|
|
|
|
error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp);
|
|
if (error) {
|
|
/*
|
|
* Duplicate found. Just throw away the new dquot and start
|
|
* over.
|
|
*/
|
|
xfs_qm_dqdestroy(dqp);
|
|
XFS_STATS_INC(mp, xs_qm_dquot_dups);
|
|
goto restart;
|
|
}
|
|
|
|
trace_xfs_dqget_miss(dqp);
|
|
*O_dqpp = dqp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Given a dquot id and type, read and initialize a dquot from the on-disk
|
|
* metadata. This function is only for use during quota initialization so
|
|
* it ignores the dquot cache assuming that the dquot shrinker isn't set up.
|
|
* The caller is responsible for _qm_dqdestroy'ing the returned dquot.
|
|
*/
|
|
int
|
|
xfs_qm_dqget_uncached(
|
|
struct xfs_mount *mp,
|
|
xfs_dqid_t id,
|
|
xfs_dqtype_t type,
|
|
struct xfs_dquot **dqpp)
|
|
{
|
|
int error;
|
|
|
|
error = xfs_qm_dqget_checks(mp, type);
|
|
if (error)
|
|
return error;
|
|
|
|
return xfs_qm_dqread(mp, id, type, 0, dqpp);
|
|
}
|
|
|
|
/* Return the quota id for a given inode and type. */
|
|
xfs_dqid_t
|
|
xfs_qm_id_for_quotatype(
|
|
struct xfs_inode *ip,
|
|
xfs_dqtype_t type)
|
|
{
|
|
switch (type) {
|
|
case XFS_DQTYPE_USER:
|
|
return i_uid_read(VFS_I(ip));
|
|
case XFS_DQTYPE_GROUP:
|
|
return i_gid_read(VFS_I(ip));
|
|
case XFS_DQTYPE_PROJ:
|
|
return ip->i_projid;
|
|
}
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the dquot for a given inode and type. If @can_alloc is true, then
|
|
* allocate blocks if needed. The inode's ILOCK must be held and it must not
|
|
* have already had an inode attached.
|
|
*/
|
|
int
|
|
xfs_qm_dqget_inode(
|
|
struct xfs_inode *ip,
|
|
xfs_dqtype_t type,
|
|
bool can_alloc,
|
|
struct xfs_dquot **O_dqpp)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_quotainfo *qi = mp->m_quotainfo;
|
|
struct radix_tree_root *tree = xfs_dquot_tree(qi, type);
|
|
struct xfs_dquot *dqp;
|
|
xfs_dqid_t id;
|
|
int error;
|
|
|
|
error = xfs_qm_dqget_checks(mp, type);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
|
|
ASSERT(xfs_inode_dquot(ip, type) == NULL);
|
|
ASSERT(!xfs_is_metadir_inode(ip));
|
|
|
|
id = xfs_qm_id_for_quotatype(ip, type);
|
|
|
|
restart:
|
|
dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id);
|
|
if (dqp) {
|
|
*O_dqpp = dqp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Dquot cache miss. We don't want to keep the inode lock across
|
|
* a (potential) disk read. Also we don't want to deal with the lock
|
|
* ordering between quotainode and this inode. OTOH, dropping the inode
|
|
* lock here means dealing with a chown that can happen before
|
|
* we re-acquire the lock.
|
|
*/
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* A dquot could be attached to this inode by now, since we had
|
|
* dropped the ilock.
|
|
*/
|
|
if (xfs_this_quota_on(mp, type)) {
|
|
struct xfs_dquot *dqp1;
|
|
|
|
dqp1 = xfs_inode_dquot(ip, type);
|
|
if (dqp1) {
|
|
xfs_qm_dqdestroy(dqp);
|
|
dqp = dqp1;
|
|
xfs_dqlock(dqp);
|
|
goto dqret;
|
|
}
|
|
} else {
|
|
/* inode stays locked on return */
|
|
xfs_qm_dqdestroy(dqp);
|
|
return -ESRCH;
|
|
}
|
|
|
|
error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp);
|
|
if (error) {
|
|
/*
|
|
* Duplicate found. Just throw away the new dquot and start
|
|
* over.
|
|
*/
|
|
xfs_qm_dqdestroy(dqp);
|
|
XFS_STATS_INC(mp, xs_qm_dquot_dups);
|
|
goto restart;
|
|
}
|
|
|
|
dqret:
|
|
xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
|
|
trace_xfs_dqget_miss(dqp);
|
|
*O_dqpp = dqp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Starting at @id and progressing upwards, look for an initialized incore
|
|
* dquot, lock it, and return it.
|
|
*/
|
|
int
|
|
xfs_qm_dqget_next(
|
|
struct xfs_mount *mp,
|
|
xfs_dqid_t id,
|
|
xfs_dqtype_t type,
|
|
struct xfs_dquot **dqpp)
|
|
{
|
|
struct xfs_dquot *dqp;
|
|
int error = 0;
|
|
|
|
*dqpp = NULL;
|
|
for (; !error; error = xfs_dq_get_next_id(mp, type, &id)) {
|
|
error = xfs_qm_dqget(mp, id, type, false, &dqp);
|
|
if (error == -ENOENT)
|
|
continue;
|
|
else if (error != 0)
|
|
break;
|
|
|
|
if (!XFS_IS_DQUOT_UNINITIALIZED(dqp)) {
|
|
*dqpp = dqp;
|
|
return 0;
|
|
}
|
|
|
|
xfs_qm_dqput(dqp);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Release a reference to the dquot (decrement ref-count) and unlock it.
|
|
*
|
|
* If there is a group quota attached to this dquot, carefully release that
|
|
* too without tripping over deadlocks'n'stuff.
|
|
*/
|
|
void
|
|
xfs_qm_dqput(
|
|
struct xfs_dquot *dqp)
|
|
{
|
|
ASSERT(dqp->q_nrefs > 0);
|
|
ASSERT(XFS_DQ_IS_LOCKED(dqp));
|
|
|
|
trace_xfs_dqput(dqp);
|
|
|
|
if (--dqp->q_nrefs == 0) {
|
|
struct xfs_quotainfo *qi = dqp->q_mount->m_quotainfo;
|
|
trace_xfs_dqput_free(dqp);
|
|
|
|
if (list_lru_add_obj(&qi->qi_lru, &dqp->q_lru))
|
|
XFS_STATS_INC(dqp->q_mount, xs_qm_dquot_unused);
|
|
}
|
|
xfs_dqunlock(dqp);
|
|
}
|
|
|
|
/*
|
|
* Release a dquot. Flush it if dirty, then dqput() it.
|
|
* dquot must not be locked.
|
|
*/
|
|
void
|
|
xfs_qm_dqrele(
|
|
struct xfs_dquot *dqp)
|
|
{
|
|
if (!dqp)
|
|
return;
|
|
|
|
trace_xfs_dqrele(dqp);
|
|
|
|
xfs_dqlock(dqp);
|
|
/*
|
|
* We don't care to flush it if the dquot is dirty here.
|
|
* That will create stutters that we want to avoid.
|
|
* Instead we do a delayed write when we try to reclaim
|
|
* a dirty dquot. Also xfs_sync will take part of the burden...
|
|
*/
|
|
xfs_qm_dqput(dqp);
|
|
}
|
|
|
|
/*
|
|
* This is the dquot flushing I/O completion routine. It is called
|
|
* from interrupt level when the buffer containing the dquot is
|
|
* flushed to disk. It is responsible for removing the dquot logitem
|
|
* from the AIL if it has not been re-logged, and unlocking the dquot's
|
|
* flush lock. This behavior is very similar to that of inodes..
|
|
*/
|
|
static void
|
|
xfs_qm_dqflush_done(
|
|
struct xfs_log_item *lip)
|
|
{
|
|
struct xfs_dq_logitem *qip = (struct xfs_dq_logitem *)lip;
|
|
struct xfs_dquot *dqp = qip->qli_dquot;
|
|
struct xfs_ail *ailp = lip->li_ailp;
|
|
xfs_lsn_t tail_lsn;
|
|
|
|
/*
|
|
* We only want to pull the item from the AIL if its
|
|
* location in the log has not changed since we started the flush.
|
|
* Thus, we only bother if the dquot's lsn has
|
|
* not changed. First we check the lsn outside the lock
|
|
* since it's cheaper, and then we recheck while
|
|
* holding the lock before removing the dquot from the AIL.
|
|
*/
|
|
if (test_bit(XFS_LI_IN_AIL, &lip->li_flags) &&
|
|
((lip->li_lsn == qip->qli_flush_lsn) ||
|
|
test_bit(XFS_LI_FAILED, &lip->li_flags))) {
|
|
|
|
spin_lock(&ailp->ail_lock);
|
|
xfs_clear_li_failed(lip);
|
|
if (lip->li_lsn == qip->qli_flush_lsn) {
|
|
/* xfs_ail_update_finish() drops the AIL lock */
|
|
tail_lsn = xfs_ail_delete_one(ailp, lip);
|
|
xfs_ail_update_finish(ailp, tail_lsn);
|
|
} else {
|
|
spin_unlock(&ailp->ail_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release the dq's flush lock since we're done with it.
|
|
*/
|
|
xfs_dqfunlock(dqp);
|
|
}
|
|
|
|
void
|
|
xfs_buf_dquot_iodone(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_log_item *lip, *n;
|
|
|
|
list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
|
|
list_del_init(&lip->li_bio_list);
|
|
xfs_qm_dqflush_done(lip);
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_buf_dquot_io_fail(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_log_item *lip;
|
|
|
|
spin_lock(&bp->b_mount->m_ail->ail_lock);
|
|
list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
|
|
xfs_set_li_failed(lip, bp);
|
|
spin_unlock(&bp->b_mount->m_ail->ail_lock);
|
|
}
|
|
|
|
/* Check incore dquot for errors before we flush. */
|
|
static xfs_failaddr_t
|
|
xfs_qm_dqflush_check(
|
|
struct xfs_dquot *dqp)
|
|
{
|
|
xfs_dqtype_t type = xfs_dquot_type(dqp);
|
|
|
|
if (type != XFS_DQTYPE_USER &&
|
|
type != XFS_DQTYPE_GROUP &&
|
|
type != XFS_DQTYPE_PROJ)
|
|
return __this_address;
|
|
|
|
if (dqp->q_id == 0)
|
|
return NULL;
|
|
|
|
if (dqp->q_blk.softlimit && dqp->q_blk.count > dqp->q_blk.softlimit &&
|
|
!dqp->q_blk.timer)
|
|
return __this_address;
|
|
|
|
if (dqp->q_ino.softlimit && dqp->q_ino.count > dqp->q_ino.softlimit &&
|
|
!dqp->q_ino.timer)
|
|
return __this_address;
|
|
|
|
if (dqp->q_rtb.softlimit && dqp->q_rtb.count > dqp->q_rtb.softlimit &&
|
|
!dqp->q_rtb.timer)
|
|
return __this_address;
|
|
|
|
/* bigtime flag should never be set on root dquots */
|
|
if (dqp->q_type & XFS_DQTYPE_BIGTIME) {
|
|
if (!xfs_has_bigtime(dqp->q_mount))
|
|
return __this_address;
|
|
if (dqp->q_id == 0)
|
|
return __this_address;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Write a modified dquot to disk.
|
|
* The dquot must be locked and the flush lock too taken by caller.
|
|
* The flush lock will not be unlocked until the dquot reaches the disk,
|
|
* but the dquot is free to be unlocked and modified by the caller
|
|
* in the interim. Dquot is still locked on return. This behavior is
|
|
* identical to that of inodes.
|
|
*/
|
|
int
|
|
xfs_qm_dqflush(
|
|
struct xfs_dquot *dqp,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_mount *mp = dqp->q_mount;
|
|
struct xfs_log_item *lip = &dqp->q_logitem.qli_item;
|
|
struct xfs_buf *bp;
|
|
struct xfs_dqblk *dqblk;
|
|
xfs_failaddr_t fa;
|
|
int error;
|
|
|
|
ASSERT(XFS_DQ_IS_LOCKED(dqp));
|
|
ASSERT(!completion_done(&dqp->q_flush));
|
|
|
|
trace_xfs_dqflush(dqp);
|
|
|
|
*bpp = NULL;
|
|
|
|
xfs_qm_dqunpin_wait(dqp);
|
|
|
|
/*
|
|
* Get the buffer containing the on-disk dquot
|
|
*/
|
|
error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen, XBF_TRYLOCK,
|
|
&bp, &xfs_dquot_buf_ops);
|
|
if (error == -EAGAIN)
|
|
goto out_unlock;
|
|
if (xfs_metadata_is_sick(error))
|
|
xfs_dquot_mark_sick(dqp);
|
|
if (error)
|
|
goto out_abort;
|
|
|
|
fa = xfs_qm_dqflush_check(dqp);
|
|
if (fa) {
|
|
xfs_alert(mp, "corrupt dquot ID 0x%x in memory at %pS",
|
|
dqp->q_id, fa);
|
|
xfs_buf_relse(bp);
|
|
xfs_dquot_mark_sick(dqp);
|
|
error = -EFSCORRUPTED;
|
|
goto out_abort;
|
|
}
|
|
|
|
/* Flush the incore dquot to the ondisk buffer. */
|
|
dqblk = xfs_buf_offset(bp, dqp->q_bufoffset);
|
|
xfs_dquot_to_disk(&dqblk->dd_diskdq, dqp);
|
|
|
|
/*
|
|
* Clear the dirty field and remember the flush lsn for later use.
|
|
*/
|
|
dqp->q_flags &= ~XFS_DQFLAG_DIRTY;
|
|
|
|
xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn,
|
|
&dqp->q_logitem.qli_item.li_lsn);
|
|
|
|
/*
|
|
* copy the lsn into the on-disk dquot now while we have the in memory
|
|
* dquot here. This can't be done later in the write verifier as we
|
|
* can't get access to the log item at that point in time.
|
|
*
|
|
* We also calculate the CRC here so that the on-disk dquot in the
|
|
* buffer always has a valid CRC. This ensures there is no possibility
|
|
* of a dquot without an up-to-date CRC getting to disk.
|
|
*/
|
|
if (xfs_has_crc(mp)) {
|
|
dqblk->dd_lsn = cpu_to_be64(dqp->q_logitem.qli_item.li_lsn);
|
|
xfs_update_cksum((char *)dqblk, sizeof(struct xfs_dqblk),
|
|
XFS_DQUOT_CRC_OFF);
|
|
}
|
|
|
|
/*
|
|
* Attach the dquot to the buffer so that we can remove this dquot from
|
|
* the AIL and release the flush lock once the dquot is synced to disk.
|
|
*/
|
|
bp->b_flags |= _XBF_DQUOTS;
|
|
list_add_tail(&dqp->q_logitem.qli_item.li_bio_list, &bp->b_li_list);
|
|
|
|
/*
|
|
* If the buffer is pinned then push on the log so we won't
|
|
* get stuck waiting in the write for too long.
|
|
*/
|
|
if (xfs_buf_ispinned(bp)) {
|
|
trace_xfs_dqflush_force(dqp);
|
|
xfs_log_force(mp, 0);
|
|
}
|
|
|
|
trace_xfs_dqflush_done(dqp);
|
|
*bpp = bp;
|
|
return 0;
|
|
|
|
out_abort:
|
|
dqp->q_flags &= ~XFS_DQFLAG_DIRTY;
|
|
xfs_trans_ail_delete(lip, 0);
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
out_unlock:
|
|
xfs_dqfunlock(dqp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Lock two xfs_dquot structures.
|
|
*
|
|
* To avoid deadlocks we always lock the quota structure with
|
|
* the lowerd id first.
|
|
*/
|
|
void
|
|
xfs_dqlock2(
|
|
struct xfs_dquot *d1,
|
|
struct xfs_dquot *d2)
|
|
{
|
|
if (d1 && d2) {
|
|
ASSERT(d1 != d2);
|
|
if (d1->q_id > d2->q_id) {
|
|
mutex_lock(&d2->q_qlock);
|
|
mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED);
|
|
} else {
|
|
mutex_lock(&d1->q_qlock);
|
|
mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED);
|
|
}
|
|
} else if (d1) {
|
|
mutex_lock(&d1->q_qlock);
|
|
} else if (d2) {
|
|
mutex_lock(&d2->q_qlock);
|
|
}
|
|
}
|
|
|
|
static int
|
|
xfs_dqtrx_cmp(
|
|
const void *a,
|
|
const void *b)
|
|
{
|
|
const struct xfs_dqtrx *qa = a;
|
|
const struct xfs_dqtrx *qb = b;
|
|
|
|
if (qa->qt_dquot->q_id > qb->qt_dquot->q_id)
|
|
return 1;
|
|
if (qa->qt_dquot->q_id < qb->qt_dquot->q_id)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
xfs_dqlockn(
|
|
struct xfs_dqtrx *q)
|
|
{
|
|
unsigned int i;
|
|
|
|
BUILD_BUG_ON(XFS_QM_TRANS_MAXDQS > MAX_LOCKDEP_SUBCLASSES);
|
|
|
|
/* Sort in order of dquot id, do not allow duplicates */
|
|
for (i = 0; i < XFS_QM_TRANS_MAXDQS && q[i].qt_dquot != NULL; i++) {
|
|
unsigned int j;
|
|
|
|
for (j = 0; j < i; j++)
|
|
ASSERT(q[i].qt_dquot != q[j].qt_dquot);
|
|
}
|
|
if (i == 0)
|
|
return;
|
|
|
|
sort(q, i, sizeof(struct xfs_dqtrx), xfs_dqtrx_cmp, NULL);
|
|
|
|
mutex_lock(&q[0].qt_dquot->q_qlock);
|
|
for (i = 1; i < XFS_QM_TRANS_MAXDQS && q[i].qt_dquot != NULL; i++)
|
|
mutex_lock_nested(&q[i].qt_dquot->q_qlock,
|
|
XFS_QLOCK_NESTED + i - 1);
|
|
}
|
|
|
|
int __init
|
|
xfs_qm_init(void)
|
|
{
|
|
xfs_dquot_cache = kmem_cache_create("xfs_dquot",
|
|
sizeof(struct xfs_dquot),
|
|
0, 0, NULL);
|
|
if (!xfs_dquot_cache)
|
|
goto out;
|
|
|
|
xfs_dqtrx_cache = kmem_cache_create("xfs_dqtrx",
|
|
sizeof(struct xfs_dquot_acct),
|
|
0, 0, NULL);
|
|
if (!xfs_dqtrx_cache)
|
|
goto out_free_dquot_cache;
|
|
|
|
return 0;
|
|
|
|
out_free_dquot_cache:
|
|
kmem_cache_destroy(xfs_dquot_cache);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void
|
|
xfs_qm_exit(void)
|
|
{
|
|
kmem_cache_destroy(xfs_dqtrx_cache);
|
|
kmem_cache_destroy(xfs_dquot_cache);
|
|
}
|