linux-next/sound/firewire/fireworks/fireworks_command.c
Takashi Sakamoto 463543ac2e ALSA: fireworks: use u32 type for be32_to_cpup() macro
In former commit, snd_efw_command_get_phys_meters() was added to handle
metering data. The given buffer is used to save transaction result and to
convert between endianness. But this causes sparse warnings.

fireworks_command.c:269:25: warning: incorrect type in argument 1 (different base types)
fireworks_command.c:269:25:    expected unsigned int [usertype] *p
fireworks_command.c:269:25:    got restricted __be32 [usertype] *

This commit fixes this bug.

Fixes: bde8a8f23bbe('ALSA: fireworks: Add transaction and some commands')
Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-10-19 11:57:02 +02:00

373 lines
9.8 KiB
C

/*
* fireworks_command.c - a part of driver for Fireworks based devices
*
* Copyright (c) 2013-2014 Takashi Sakamoto
*
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include "./fireworks.h"
/*
* This driver uses transaction version 1 or later to use extended hardware
* information. Then too old devices are not available.
*
* Each commands are not required to have continuous sequence numbers. This
* number is just used to match command and response.
*
* This module support a part of commands. Please see FFADO if you want to see
* whole commands. But there are some commands which FFADO don't implement.
*
* Fireworks also supports AV/C general commands and AV/C Stream Format
* Information commands. But this module don't use them.
*/
#define KERNEL_SEQNUM_MIN (SND_EFW_TRANSACTION_USER_SEQNUM_MAX + 2)
#define KERNEL_SEQNUM_MAX ((u32)~0)
/* for clock source and sampling rate */
struct efc_clock {
u32 source;
u32 sampling_rate;
u32 index;
};
/* command categories */
enum efc_category {
EFC_CAT_HWINFO = 0,
EFC_CAT_TRANSPORT = 2,
EFC_CAT_HWCTL = 3,
};
/* hardware info category commands */
enum efc_cmd_hwinfo {
EFC_CMD_HWINFO_GET_CAPS = 0,
EFC_CMD_HWINFO_GET_POLLED = 1,
EFC_CMD_HWINFO_SET_RESP_ADDR = 2
};
enum efc_cmd_transport {
EFC_CMD_TRANSPORT_SET_TX_MODE = 0
};
/* hardware control category commands */
enum efc_cmd_hwctl {
EFC_CMD_HWCTL_SET_CLOCK = 0,
EFC_CMD_HWCTL_GET_CLOCK = 1,
EFC_CMD_HWCTL_IDENTIFY = 5
};
/* return values in response */
enum efr_status {
EFR_STATUS_OK = 0,
EFR_STATUS_BAD = 1,
EFR_STATUS_BAD_COMMAND = 2,
EFR_STATUS_COMM_ERR = 3,
EFR_STATUS_BAD_QUAD_COUNT = 4,
EFR_STATUS_UNSUPPORTED = 5,
EFR_STATUS_1394_TIMEOUT = 6,
EFR_STATUS_DSP_TIMEOUT = 7,
EFR_STATUS_BAD_RATE = 8,
EFR_STATUS_BAD_CLOCK = 9,
EFR_STATUS_BAD_CHANNEL = 10,
EFR_STATUS_BAD_PAN = 11,
EFR_STATUS_FLASH_BUSY = 12,
EFR_STATUS_BAD_MIRROR = 13,
EFR_STATUS_BAD_LED = 14,
EFR_STATUS_BAD_PARAMETER = 15,
EFR_STATUS_INCOMPLETE = 0x80000000
};
static const char *const efr_status_names[] = {
[EFR_STATUS_OK] = "OK",
[EFR_STATUS_BAD] = "bad",
[EFR_STATUS_BAD_COMMAND] = "bad command",
[EFR_STATUS_COMM_ERR] = "comm err",
[EFR_STATUS_BAD_QUAD_COUNT] = "bad quad count",
[EFR_STATUS_UNSUPPORTED] = "unsupported",
[EFR_STATUS_1394_TIMEOUT] = "1394 timeout",
[EFR_STATUS_DSP_TIMEOUT] = "DSP timeout",
[EFR_STATUS_BAD_RATE] = "bad rate",
[EFR_STATUS_BAD_CLOCK] = "bad clock",
[EFR_STATUS_BAD_CHANNEL] = "bad channel",
[EFR_STATUS_BAD_PAN] = "bad pan",
[EFR_STATUS_FLASH_BUSY] = "flash busy",
[EFR_STATUS_BAD_MIRROR] = "bad mirror",
[EFR_STATUS_BAD_LED] = "bad LED",
[EFR_STATUS_BAD_PARAMETER] = "bad parameter",
[EFR_STATUS_BAD_PARAMETER + 1] = "incomplete"
};
static int
efw_transaction(struct snd_efw *efw, unsigned int category,
unsigned int command,
const __be32 *params, unsigned int param_bytes,
const __be32 *resp, unsigned int resp_bytes)
{
struct snd_efw_transaction *header;
__be32 *buf;
u32 seqnum;
unsigned int buf_bytes, cmd_bytes;
int err;
/* calculate buffer size*/
buf_bytes = sizeof(struct snd_efw_transaction) +
max(param_bytes, resp_bytes);
/* keep buffer */
buf = kzalloc(buf_bytes, GFP_KERNEL);
if (buf == NULL)
return -ENOMEM;
/* to keep consistency of sequence number */
spin_lock(&efw->lock);
if ((efw->seqnum < KERNEL_SEQNUM_MIN) ||
(efw->seqnum >= KERNEL_SEQNUM_MAX - 2))
efw->seqnum = KERNEL_SEQNUM_MIN;
else
efw->seqnum += 2;
seqnum = efw->seqnum;
spin_unlock(&efw->lock);
/* fill transaction header fields */
cmd_bytes = sizeof(struct snd_efw_transaction) + param_bytes;
header = (struct snd_efw_transaction *)buf;
header->length = cpu_to_be32(cmd_bytes / sizeof(__be32));
header->version = cpu_to_be32(1);
header->seqnum = cpu_to_be32(seqnum);
header->category = cpu_to_be32(category);
header->command = cpu_to_be32(command);
header->status = 0;
/* fill transaction command parameters */
memcpy(header->params, params, param_bytes);
err = snd_efw_transaction_run(efw->unit, buf, cmd_bytes,
buf, buf_bytes);
if (err < 0)
goto end;
/* check transaction header fields */
if ((be32_to_cpu(header->version) < 1) ||
(be32_to_cpu(header->category) != category) ||
(be32_to_cpu(header->command) != command) ||
(be32_to_cpu(header->status) != EFR_STATUS_OK)) {
dev_err(&efw->unit->device, "EFW command failed [%u/%u]: %s\n",
be32_to_cpu(header->category),
be32_to_cpu(header->command),
efr_status_names[be32_to_cpu(header->status)]);
err = -EIO;
goto end;
}
if (resp == NULL)
goto end;
/* fill transaction response parameters */
memset((void *)resp, 0, resp_bytes);
resp_bytes = min_t(unsigned int, resp_bytes,
be32_to_cpu(header->length) * sizeof(__be32) -
sizeof(struct snd_efw_transaction));
memcpy((void *)resp, &buf[6], resp_bytes);
end:
kfree(buf);
return err;
}
/*
* The address in host system for transaction response is changable when the
* device supports. struct hwinfo.flags includes its flag. The default is
* MEMORY_SPACE_EFW_RESPONSE.
*/
int snd_efw_command_set_resp_addr(struct snd_efw *efw,
u16 addr_high, u32 addr_low)
{
__be32 addr[2];
addr[0] = cpu_to_be32(addr_high);
addr[1] = cpu_to_be32(addr_low);
if (!efw->resp_addr_changable)
return -ENOSYS;
return efw_transaction(efw, EFC_CAT_HWCTL,
EFC_CMD_HWINFO_SET_RESP_ADDR,
addr, sizeof(addr), NULL, 0);
}
/*
* This is for timestamp processing. In Windows mode, all 32bit fields of second
* CIP header in AMDTP transmit packet is used for 'presentation timestamp'. In
* 'no data' packet the value of this field is 0x90ffffff.
*/
int snd_efw_command_set_tx_mode(struct snd_efw *efw,
enum snd_efw_transport_mode mode)
{
__be32 param = cpu_to_be32(mode);
return efw_transaction(efw, EFC_CAT_TRANSPORT,
EFC_CMD_TRANSPORT_SET_TX_MODE,
&param, sizeof(param), NULL, 0);
}
int snd_efw_command_get_hwinfo(struct snd_efw *efw,
struct snd_efw_hwinfo *hwinfo)
{
int err;
err = efw_transaction(efw, EFC_CAT_HWINFO,
EFC_CMD_HWINFO_GET_CAPS,
NULL, 0, (__be32 *)hwinfo, sizeof(*hwinfo));
if (err < 0)
goto end;
be32_to_cpus(&hwinfo->flags);
be32_to_cpus(&hwinfo->guid_hi);
be32_to_cpus(&hwinfo->guid_lo);
be32_to_cpus(&hwinfo->type);
be32_to_cpus(&hwinfo->version);
be32_to_cpus(&hwinfo->supported_clocks);
be32_to_cpus(&hwinfo->amdtp_rx_pcm_channels);
be32_to_cpus(&hwinfo->amdtp_tx_pcm_channels);
be32_to_cpus(&hwinfo->phys_out);
be32_to_cpus(&hwinfo->phys_in);
be32_to_cpus(&hwinfo->phys_out_grp_count);
be32_to_cpus(&hwinfo->phys_in_grp_count);
be32_to_cpus(&hwinfo->midi_out_ports);
be32_to_cpus(&hwinfo->midi_in_ports);
be32_to_cpus(&hwinfo->max_sample_rate);
be32_to_cpus(&hwinfo->min_sample_rate);
be32_to_cpus(&hwinfo->dsp_version);
be32_to_cpus(&hwinfo->arm_version);
be32_to_cpus(&hwinfo->mixer_playback_channels);
be32_to_cpus(&hwinfo->mixer_capture_channels);
be32_to_cpus(&hwinfo->fpga_version);
be32_to_cpus(&hwinfo->amdtp_rx_pcm_channels_2x);
be32_to_cpus(&hwinfo->amdtp_tx_pcm_channels_2x);
be32_to_cpus(&hwinfo->amdtp_rx_pcm_channels_4x);
be32_to_cpus(&hwinfo->amdtp_tx_pcm_channels_4x);
/* ensure terminated */
hwinfo->vendor_name[HWINFO_NAME_SIZE_BYTES - 1] = '\0';
hwinfo->model_name[HWINFO_NAME_SIZE_BYTES - 1] = '\0';
end:
return err;
}
int snd_efw_command_get_phys_meters(struct snd_efw *efw,
struct snd_efw_phys_meters *meters,
unsigned int len)
{
u32 *buf = (u32 *)meters;
unsigned int i;
int err;
err = efw_transaction(efw, EFC_CAT_HWINFO,
EFC_CMD_HWINFO_GET_POLLED,
NULL, 0, (__be32 *)meters, len);
if (err >= 0)
for (i = 0; i < len / sizeof(u32); i++)
be32_to_cpus(&buf[i]);
return err;
}
static int
command_get_clock(struct snd_efw *efw, struct efc_clock *clock)
{
int err;
err = efw_transaction(efw, EFC_CAT_HWCTL,
EFC_CMD_HWCTL_GET_CLOCK,
NULL, 0,
(__be32 *)clock, sizeof(struct efc_clock));
if (err >= 0) {
be32_to_cpus(&clock->source);
be32_to_cpus(&clock->sampling_rate);
be32_to_cpus(&clock->index);
}
return err;
}
/* give UINT_MAX if set nothing */
static int
command_set_clock(struct snd_efw *efw,
unsigned int source, unsigned int rate)
{
struct efc_clock clock = {0};
int err;
/* check arguments */
if ((source == UINT_MAX) && (rate == UINT_MAX)) {
err = -EINVAL;
goto end;
}
/* get current status */
err = command_get_clock(efw, &clock);
if (err < 0)
goto end;
/* no need */
if ((clock.source == source) && (clock.sampling_rate == rate))
goto end;
/* set params */
if ((source != UINT_MAX) && (clock.source != source))
clock.source = source;
if ((rate != UINT_MAX) && (clock.sampling_rate != rate))
clock.sampling_rate = rate;
clock.index = 0;
cpu_to_be32s(&clock.source);
cpu_to_be32s(&clock.sampling_rate);
cpu_to_be32s(&clock.index);
err = efw_transaction(efw, EFC_CAT_HWCTL,
EFC_CMD_HWCTL_SET_CLOCK,
(__be32 *)&clock, sizeof(struct efc_clock),
NULL, 0);
if (err < 0)
goto end;
/*
* With firmware version 5.8, just after changing clock state, these
* parameters are not immediately retrieved by get command. In my
* trial, there needs to be 100msec to get changed parameters.
*/
msleep(150);
end:
return err;
}
int snd_efw_command_get_clock_source(struct snd_efw *efw,
enum snd_efw_clock_source *source)
{
int err;
struct efc_clock clock = {0};
err = command_get_clock(efw, &clock);
if (err >= 0)
*source = clock.source;
return err;
}
int snd_efw_command_get_sampling_rate(struct snd_efw *efw, unsigned int *rate)
{
int err;
struct efc_clock clock = {0};
err = command_get_clock(efw, &clock);
if (err >= 0)
*rate = clock.sampling_rate;
return err;
}
int snd_efw_command_set_sampling_rate(struct snd_efw *efw, unsigned int rate)
{
return command_set_clock(efw, UINT_MAX, rate);
}