linux-next/lib/packing.c
Vladimir Oltean a636ba5e86 lib: packing: adjust definitions and implementation for arbitrary buffer lengths
Jacob Keller has a use case for packing() in the intel/ice networking
driver, but it cannot be used as-is.

Simply put, the API quirks for LSW32_IS_FIRST and LITTLE_ENDIAN are
naively implemented with the undocumented assumption that the buffer
length must be a multiple of 4. All calculations of group offsets and
offsets of bytes within groups assume that this is the case. But in the
ice case, this does not hold true. For example, packing into a buffer
of 22 bytes would yield wrong results, but pretending it was a 24 byte
buffer would work.

Rather than requiring such hacks, and leaving a big question mark when
it comes to discontinuities in the accessible bit fields of such buffer,
we should extend the packing API to support this use case.

It turns out that we can keep the design in terms of groups of 4 bytes,
but also make it work if the total length is not a multiple of 4.
Just like before, imagine the buffer as a big number, and its most
significant bytes (the ones that would make up to a multiple of 4) are
missing. Thus, with a big endian (no quirks) interpretation of the
buffer, those most significant bytes would be absent from the beginning
of the buffer, and with a LSW32_IS_FIRST interpretation, they would be
absent from the end of the buffer. The LITTLE_ENDIAN quirk, in the
packing() API world, only affects byte ordering within groups of 4.
Thus, it does not change which bytes are missing. Only the significance
of the remaining bytes within the (smaller) group.

No change intended for buffer sizes which are multiples of 4. Tested
with the sja1105 driver and with downstream unit tests.

Link: https://lore.kernel.org/netdev/a0338310-e66c-497c-bc1f-a597e50aa3ff@intel.com/
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Jacob Keller <jacob.e.keller@intel.com>
Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://patch.msgid.link/20241002-packing-kunit-tests-and-split-pack-unpack-v2-2-8373e551eae3@intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-10-03 15:32:03 -07:00

220 lines
7.4 KiB
C

// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
/* Copyright 2016-2018 NXP
* Copyright (c) 2018-2019, Vladimir Oltean <olteanv@gmail.com>
*/
#include <linux/packing.h>
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/bitrev.h>
static void adjust_for_msb_right_quirk(u64 *to_write, int *box_start_bit,
int *box_end_bit, u8 *box_mask)
{
int box_bit_width = *box_start_bit - *box_end_bit + 1;
int new_box_start_bit, new_box_end_bit;
*to_write >>= *box_end_bit;
*to_write = bitrev8(*to_write) >> (8 - box_bit_width);
*to_write <<= *box_end_bit;
new_box_end_bit = box_bit_width - *box_start_bit - 1;
new_box_start_bit = box_bit_width - *box_end_bit - 1;
*box_mask = GENMASK_ULL(new_box_start_bit, new_box_end_bit);
*box_start_bit = new_box_start_bit;
*box_end_bit = new_box_end_bit;
}
/**
* calculate_box_addr - Determine physical location of byte in buffer
* @box: Index of byte within buffer seen as a logical big-endian big number
* @len: Size of buffer in bytes
* @quirks: mask of QUIRK_LSW32_IS_FIRST and QUIRK_LITTLE_ENDIAN
*
* Function interprets the buffer as a @len byte sized big number, and returns
* the physical offset of the @box logical octet within it. Internally, it
* treats the big number as groups of 4 bytes. If @len is not a multiple of 4,
* the last group may be shorter.
*
* @QUIRK_LSW32_IS_FIRST gives the ordering of groups of 4 octets relative to
* each other. If set, the most significant group of 4 octets is last in the
* buffer (and may be truncated if @len is not a multiple of 4).
*
* @QUIRK_LITTLE_ENDIAN gives the ordering of bytes within each group of 4.
* If set, the most significant byte is last in the group. If @len takes the
* form of 4k+3, the last group will only be able to represent 24 bits, and its
* most significant octet is byte 2.
*
* Return: the physical offset into the buffer corresponding to the logical box.
*/
static int calculate_box_addr(int box, size_t len, u8 quirks)
{
size_t offset_of_group, offset_in_group, this_group = box / 4;
size_t group_size;
if (quirks & QUIRK_LSW32_IS_FIRST)
offset_of_group = this_group * 4;
else
offset_of_group = len - ((this_group + 1) * 4);
group_size = min(4, len - offset_of_group);
if (quirks & QUIRK_LITTLE_ENDIAN)
offset_in_group = box - this_group * 4;
else
offset_in_group = group_size - (box - this_group * 4) - 1;
return offset_of_group + offset_in_group;
}
/**
* packing - Convert numbers (currently u64) between a packed and an unpacked
* format. Unpacked means laid out in memory in the CPU's native
* understanding of integers, while packed means anything else that
* requires translation.
*
* @pbuf: Pointer to a buffer holding the packed value.
* @uval: Pointer to an u64 holding the unpacked value.
* @startbit: The index (in logical notation, compensated for quirks) where
* the packed value starts within pbuf. Must be larger than, or
* equal to, endbit.
* @endbit: The index (in logical notation, compensated for quirks) where
* the packed value ends within pbuf. Must be smaller than, or equal
* to, startbit.
* @pbuflen: The length in bytes of the packed buffer pointed to by @pbuf.
* @op: If PACK, then uval will be treated as const pointer and copied (packed)
* into pbuf, between startbit and endbit.
* If UNPACK, then pbuf will be treated as const pointer and the logical
* value between startbit and endbit will be copied (unpacked) to uval.
* @quirks: A bit mask of QUIRK_LITTLE_ENDIAN, QUIRK_LSW32_IS_FIRST and
* QUIRK_MSB_ON_THE_RIGHT.
*
* Return: 0 on success, EINVAL or ERANGE if called incorrectly. Assuming
* correct usage, return code may be discarded.
* If op is PACK, pbuf is modified.
* If op is UNPACK, uval is modified.
*/
int packing(void *pbuf, u64 *uval, int startbit, int endbit, size_t pbuflen,
enum packing_op op, u8 quirks)
{
/* Number of bits for storing "uval"
* also width of the field to access in the pbuf
*/
u64 value_width;
/* Logical byte indices corresponding to the
* start and end of the field.
*/
int plogical_first_u8, plogical_last_u8, box;
/* startbit is expected to be larger than endbit, and both are
* expected to be within the logically addressable range of the buffer.
*/
if (unlikely(startbit < endbit || startbit >= 8 * pbuflen || endbit < 0))
/* Invalid function call */
return -EINVAL;
value_width = startbit - endbit + 1;
if (value_width > 64)
return -ERANGE;
/* Check if "uval" fits in "value_width" bits.
* If value_width is 64, the check will fail, but any
* 64-bit uval will surely fit.
*/
if (op == PACK && value_width < 64 && (*uval >= (1ull << value_width)))
/* Cannot store "uval" inside "value_width" bits.
* Truncating "uval" is most certainly not desirable,
* so simply erroring out is appropriate.
*/
return -ERANGE;
/* Initialize parameter */
if (op == UNPACK)
*uval = 0;
/* Iterate through an idealistic view of the pbuf as an u64 with
* no quirks, u8 by u8 (aligned at u8 boundaries), from high to low
* logical bit significance. "box" denotes the current logical u8.
*/
plogical_first_u8 = startbit / 8;
plogical_last_u8 = endbit / 8;
for (box = plogical_first_u8; box >= plogical_last_u8; box--) {
/* Bit indices into the currently accessed 8-bit box */
int box_start_bit, box_end_bit, box_addr;
u8 box_mask;
/* Corresponding bits from the unpacked u64 parameter */
int proj_start_bit, proj_end_bit;
u64 proj_mask;
/* This u8 may need to be accessed in its entirety
* (from bit 7 to bit 0), or not, depending on the
* input arguments startbit and endbit.
*/
if (box == plogical_first_u8)
box_start_bit = startbit % 8;
else
box_start_bit = 7;
if (box == plogical_last_u8)
box_end_bit = endbit % 8;
else
box_end_bit = 0;
/* We have determined the box bit start and end.
* Now we calculate where this (masked) u8 box would fit
* in the unpacked (CPU-readable) u64 - the u8 box's
* projection onto the unpacked u64. Though the
* box is u8, the projection is u64 because it may fall
* anywhere within the unpacked u64.
*/
proj_start_bit = ((box * 8) + box_start_bit) - endbit;
proj_end_bit = ((box * 8) + box_end_bit) - endbit;
proj_mask = GENMASK_ULL(proj_start_bit, proj_end_bit);
box_mask = GENMASK_ULL(box_start_bit, box_end_bit);
/* Determine the offset of the u8 box inside the pbuf,
* adjusted for quirks. The adjusted box_addr will be used for
* effective addressing inside the pbuf (so it's not
* logical any longer).
*/
box_addr = calculate_box_addr(box, pbuflen, quirks);
if (op == UNPACK) {
u64 pval;
/* Read from pbuf, write to uval */
pval = ((u8 *)pbuf)[box_addr] & box_mask;
if (quirks & QUIRK_MSB_ON_THE_RIGHT)
adjust_for_msb_right_quirk(&pval,
&box_start_bit,
&box_end_bit,
&box_mask);
pval >>= box_end_bit;
pval <<= proj_end_bit;
*uval &= ~proj_mask;
*uval |= pval;
} else {
u64 pval;
/* Write to pbuf, read from uval */
pval = (*uval) & proj_mask;
pval >>= proj_end_bit;
if (quirks & QUIRK_MSB_ON_THE_RIGHT)
adjust_for_msb_right_quirk(&pval,
&box_start_bit,
&box_end_bit,
&box_mask);
pval <<= box_end_bit;
((u8 *)pbuf)[box_addr] &= ~box_mask;
((u8 *)pbuf)[box_addr] |= pval;
}
}
return 0;
}
EXPORT_SYMBOL(packing);
MODULE_DESCRIPTION("Generic bitfield packing and unpacking");