linux-next/drivers/dma/ls2x-apb-dma.c
Binbin Zhou 71e7d3cb6e dmaengine: ls2x-apb: New driver for the Loongson LS2X APB DMA controller
The Loongson LS2X APB DMA controller is available on Loongson-2K chips.

It is a single-channel, configurable DMA controller IP core based on the
AXI bus, whose main function is to integrate DMA functionality on a chip
dedicated to carrying data between memory and peripherals in APB bus
(e.g. nand).

Signed-off-by: Binbin Zhou <zhoubinbin@loongson.cn>
Signed-off-by: Yingkun Meng <mengyingkun@loongson.cn>
Link: https://lore.kernel.org/r/8df2a0199434fba3535831082966c2442ecf1cae.1702365725.git.zhoubinbin@loongson.cn
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2023-12-21 21:35:13 +05:30

706 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for the Loongson LS2X APB DMA Controller
*
* Copyright (C) 2017-2023 Loongson Corporation
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include "dmaengine.h"
#include "virt-dma.h"
/* Global Configuration Register */
#define LDMA_ORDER_ERG 0x0
/* Bitfield definitions */
/* Bitfields in Global Configuration Register */
#define LDMA_64BIT_EN BIT(0) /* 1: 64 bit support */
#define LDMA_UNCOHERENT_EN BIT(1) /* 0: cache, 1: uncache */
#define LDMA_ASK_VALID BIT(2)
#define LDMA_START BIT(3) /* DMA start operation */
#define LDMA_STOP BIT(4) /* DMA stop operation */
#define LDMA_CONFIG_MASK GENMASK(4, 0) /* DMA controller config bits mask */
/* Bitfields in ndesc_addr field of HW decriptor */
#define LDMA_DESC_EN BIT(0) /*1: The next descriptor is valid */
#define LDMA_DESC_ADDR_LOW GENMASK(31, 1)
/* Bitfields in cmd field of HW decriptor */
#define LDMA_INT BIT(1) /* Enable DMA interrupts */
#define LDMA_DATA_DIRECTION BIT(12) /* 1: write to device, 0: read from device */
#define LDMA_SLAVE_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
#define LDMA_MAX_TRANS_LEN U32_MAX
/*-- descriptors -----------------------------------------------------*/
/*
* struct ls2x_dma_hw_desc - DMA HW descriptor
* @ndesc_addr: the next descriptor low address.
* @mem_addr: memory low address.
* @apb_addr: device buffer address.
* @len: length of a piece of carried content, in words.
* @step_len: length between two moved memory data blocks.
* @step_times: number of blocks to be carried in a single DMA operation.
* @cmd: descriptor command or state.
* @stats: DMA status.
* @high_ndesc_addr: the next descriptor high address.
* @high_mem_addr: memory high address.
* @reserved: reserved
*/
struct ls2x_dma_hw_desc {
u32 ndesc_addr;
u32 mem_addr;
u32 apb_addr;
u32 len;
u32 step_len;
u32 step_times;
u32 cmd;
u32 stats;
u32 high_ndesc_addr;
u32 high_mem_addr;
u32 reserved[2];
} __packed;
/*
* struct ls2x_dma_sg - ls2x dma scatter gather entry
* @hw: the pointer to DMA HW descriptor.
* @llp: physical address of the DMA HW descriptor.
* @phys: destination or source address(mem).
* @len: number of Bytes to read.
*/
struct ls2x_dma_sg {
struct ls2x_dma_hw_desc *hw;
dma_addr_t llp;
dma_addr_t phys;
u32 len;
};
/*
* struct ls2x_dma_desc - software descriptor
* @vdesc: pointer to the virtual dma descriptor.
* @cyclic: flag to dma cyclic
* @burst_size: burst size of transaction, in words.
* @desc_num: number of sg entries.
* @direction: transfer direction, to or from device.
* @status: dma controller status.
* @sg: array of sgs.
*/
struct ls2x_dma_desc {
struct virt_dma_desc vdesc;
bool cyclic;
size_t burst_size;
u32 desc_num;
enum dma_transfer_direction direction;
enum dma_status status;
struct ls2x_dma_sg sg[] __counted_by(desc_num);
};
/*-- Channels --------------------------------------------------------*/
/*
* struct ls2x_dma_chan - internal representation of an LS2X APB DMA channel
* @vchan: virtual dma channel entry.
* @desc: pointer to the ls2x sw dma descriptor.
* @pool: hw desc table
* @irq: irq line
* @sconfig: configuration for slave transfers, passed via .device_config
*/
struct ls2x_dma_chan {
struct virt_dma_chan vchan;
struct ls2x_dma_desc *desc;
void *pool;
int irq;
struct dma_slave_config sconfig;
};
/*-- Controller ------------------------------------------------------*/
/*
* struct ls2x_dma_priv - LS2X APB DMAC specific information
* @ddev: dmaengine dma_device object members
* @dma_clk: DMAC clock source
* @regs: memory mapped register base
* @lchan: channel to store ls2x_dma_chan structures
*/
struct ls2x_dma_priv {
struct dma_device ddev;
struct clk *dma_clk;
void __iomem *regs;
struct ls2x_dma_chan lchan;
};
/*-- Helper functions ------------------------------------------------*/
static inline struct ls2x_dma_desc *to_ldma_desc(struct virt_dma_desc *vdesc)
{
return container_of(vdesc, struct ls2x_dma_desc, vdesc);
}
static inline struct ls2x_dma_chan *to_ldma_chan(struct dma_chan *chan)
{
return container_of(chan, struct ls2x_dma_chan, vchan.chan);
}
static inline struct ls2x_dma_priv *to_ldma_priv(struct dma_device *ddev)
{
return container_of(ddev, struct ls2x_dma_priv, ddev);
}
static struct device *chan2dev(struct dma_chan *chan)
{
return &chan->dev->device;
}
static void ls2x_dma_desc_free(struct virt_dma_desc *vdesc)
{
struct ls2x_dma_chan *lchan = to_ldma_chan(vdesc->tx.chan);
struct ls2x_dma_desc *desc = to_ldma_desc(vdesc);
int i;
for (i = 0; i < desc->desc_num; i++) {
if (desc->sg[i].hw)
dma_pool_free(lchan->pool, desc->sg[i].hw,
desc->sg[i].llp);
}
kfree(desc);
}
static void ls2x_dma_write_cmd(struct ls2x_dma_chan *lchan, bool cmd)
{
struct ls2x_dma_priv *priv = to_ldma_priv(lchan->vchan.chan.device);
u64 val;
val = lo_hi_readq(priv->regs + LDMA_ORDER_ERG) & ~LDMA_CONFIG_MASK;
val |= LDMA_64BIT_EN | cmd;
lo_hi_writeq(val, priv->regs + LDMA_ORDER_ERG);
}
static void ls2x_dma_start_transfer(struct ls2x_dma_chan *lchan)
{
struct ls2x_dma_priv *priv = to_ldma_priv(lchan->vchan.chan.device);
struct ls2x_dma_sg *ldma_sg;
struct virt_dma_desc *vdesc;
u64 val;
/* Get the next descriptor */
vdesc = vchan_next_desc(&lchan->vchan);
if (!vdesc) {
lchan->desc = NULL;
return;
}
list_del(&vdesc->node);
lchan->desc = to_ldma_desc(vdesc);
ldma_sg = &lchan->desc->sg[0];
/* Start DMA */
lo_hi_writeq(0, priv->regs + LDMA_ORDER_ERG);
val = (ldma_sg->llp & ~LDMA_CONFIG_MASK) | LDMA_64BIT_EN | LDMA_START;
lo_hi_writeq(val, priv->regs + LDMA_ORDER_ERG);
}
static size_t ls2x_dmac_detect_burst(struct ls2x_dma_chan *lchan)
{
u32 maxburst, buswidth;
/* Reject definitely invalid configurations */
if ((lchan->sconfig.src_addr_width & LDMA_SLAVE_BUSWIDTHS) &&
(lchan->sconfig.dst_addr_width & LDMA_SLAVE_BUSWIDTHS))
return 0;
if (lchan->sconfig.direction == DMA_MEM_TO_DEV) {
maxburst = lchan->sconfig.dst_maxburst;
buswidth = lchan->sconfig.dst_addr_width;
} else {
maxburst = lchan->sconfig.src_maxburst;
buswidth = lchan->sconfig.src_addr_width;
}
/* If maxburst is zero, fallback to LDMA_MAX_TRANS_LEN */
return maxburst ? (maxburst * buswidth) >> 2 : LDMA_MAX_TRANS_LEN;
}
static void ls2x_dma_fill_desc(struct ls2x_dma_chan *lchan, u32 sg_index,
struct ls2x_dma_desc *desc)
{
struct ls2x_dma_sg *ldma_sg = &desc->sg[sg_index];
u32 num_segments, segment_size;
if (desc->direction == DMA_MEM_TO_DEV) {
ldma_sg->hw->cmd = LDMA_INT | LDMA_DATA_DIRECTION;
ldma_sg->hw->apb_addr = lchan->sconfig.dst_addr;
} else {
ldma_sg->hw->cmd = LDMA_INT;
ldma_sg->hw->apb_addr = lchan->sconfig.src_addr;
}
ldma_sg->hw->mem_addr = lower_32_bits(ldma_sg->phys);
ldma_sg->hw->high_mem_addr = upper_32_bits(ldma_sg->phys);
/* Split into multiple equally sized segments if necessary */
num_segments = DIV_ROUND_UP((ldma_sg->len + 3) >> 2, desc->burst_size);
segment_size = DIV_ROUND_UP((ldma_sg->len + 3) >> 2, num_segments);
/* Word count register takes input in words */
ldma_sg->hw->len = segment_size;
ldma_sg->hw->step_times = num_segments;
ldma_sg->hw->step_len = 0;
/* lets make a link list */
if (sg_index) {
desc->sg[sg_index - 1].hw->ndesc_addr = ldma_sg->llp | LDMA_DESC_EN;
desc->sg[sg_index - 1].hw->high_ndesc_addr = upper_32_bits(ldma_sg->llp);
}
}
/*-- DMA Engine API --------------------------------------------------*/
/*
* ls2x_dma_alloc_chan_resources - allocate resources for DMA channel
* @chan: allocate descriptor resources for this channel
*
* return - the number of allocated descriptors
*/
static int ls2x_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct ls2x_dma_chan *lchan = to_ldma_chan(chan);
/* Create a pool of consistent memory blocks for hardware descriptors */
lchan->pool = dma_pool_create(dev_name(chan2dev(chan)),
chan->device->dev, PAGE_SIZE,
__alignof__(struct ls2x_dma_hw_desc), 0);
if (!lchan->pool) {
dev_err(chan2dev(chan), "No memory for descriptors\n");
return -ENOMEM;
}
return 1;
}
/*
* ls2x_dma_free_chan_resources - free all channel resources
* @chan: DMA channel
*/
static void ls2x_dma_free_chan_resources(struct dma_chan *chan)
{
struct ls2x_dma_chan *lchan = to_ldma_chan(chan);
vchan_free_chan_resources(to_virt_chan(chan));
dma_pool_destroy(lchan->pool);
lchan->pool = NULL;
}
/*
* ls2x_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
* @chan: DMA channel
* @sgl: scatterlist to transfer to/from
* @sg_len: number of entries in @scatterlist
* @direction: DMA direction
* @flags: tx descriptor status flags
* @context: transaction context (ignored)
*
* Return: Async transaction descriptor on success and NULL on failure
*/
static struct dma_async_tx_descriptor *
ls2x_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
u32 sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct ls2x_dma_chan *lchan = to_ldma_chan(chan);
struct ls2x_dma_desc *desc;
struct scatterlist *sg;
size_t burst_size;
int i;
if (unlikely(!sg_len || !is_slave_direction(direction)))
return NULL;
burst_size = ls2x_dmac_detect_burst(lchan);
if (!burst_size)
return NULL;
desc = kzalloc(struct_size(desc, sg, sg_len), GFP_NOWAIT);
if (!desc)
return NULL;
desc->desc_num = sg_len;
desc->direction = direction;
desc->burst_size = burst_size;
for_each_sg(sgl, sg, sg_len, i) {
struct ls2x_dma_sg *ldma_sg = &desc->sg[i];
/* Allocate DMA capable memory for hardware descriptor */
ldma_sg->hw = dma_pool_alloc(lchan->pool, GFP_NOWAIT, &ldma_sg->llp);
if (!ldma_sg->hw) {
desc->desc_num = i;
ls2x_dma_desc_free(&desc->vdesc);
return NULL;
}
ldma_sg->phys = sg_dma_address(sg);
ldma_sg->len = sg_dma_len(sg);
ls2x_dma_fill_desc(lchan, i, desc);
}
/* Setting the last descriptor enable bit */
desc->sg[sg_len - 1].hw->ndesc_addr &= ~LDMA_DESC_EN;
desc->status = DMA_IN_PROGRESS;
return vchan_tx_prep(&lchan->vchan, &desc->vdesc, flags);
}
/*
* ls2x_dma_prep_dma_cyclic - prepare the cyclic DMA transfer
* @chan: the DMA channel to prepare
* @buf_addr: physical DMA address where the buffer starts
* @buf_len: total number of bytes for the entire buffer
* @period_len: number of bytes for each period
* @direction: transfer direction, to or from device
* @flags: tx descriptor status flags
*
* Return: Async transaction descriptor on success and NULL on failure
*/
static struct dma_async_tx_descriptor *
ls2x_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct ls2x_dma_chan *lchan = to_ldma_chan(chan);
struct ls2x_dma_desc *desc;
size_t burst_size;
u32 num_periods;
int i;
if (unlikely(!buf_len || !period_len))
return NULL;
if (unlikely(!is_slave_direction(direction)))
return NULL;
burst_size = ls2x_dmac_detect_burst(lchan);
if (!burst_size)
return NULL;
num_periods = buf_len / period_len;
desc = kzalloc(struct_size(desc, sg, num_periods), GFP_NOWAIT);
if (!desc)
return NULL;
desc->desc_num = num_periods;
desc->direction = direction;
desc->burst_size = burst_size;
/* Build cyclic linked list */
for (i = 0; i < num_periods; i++) {
struct ls2x_dma_sg *ldma_sg = &desc->sg[i];
/* Allocate DMA capable memory for hardware descriptor */
ldma_sg->hw = dma_pool_alloc(lchan->pool, GFP_NOWAIT, &ldma_sg->llp);
if (!ldma_sg->hw) {
desc->desc_num = i;
ls2x_dma_desc_free(&desc->vdesc);
return NULL;
}
ldma_sg->phys = buf_addr + period_len * i;
ldma_sg->len = period_len;
ls2x_dma_fill_desc(lchan, i, desc);
}
/* Lets make a cyclic list */
desc->sg[num_periods - 1].hw->ndesc_addr = desc->sg[0].llp | LDMA_DESC_EN;
desc->sg[num_periods - 1].hw->high_ndesc_addr = upper_32_bits(desc->sg[0].llp);
desc->cyclic = true;
desc->status = DMA_IN_PROGRESS;
return vchan_tx_prep(&lchan->vchan, &desc->vdesc, flags);
}
/*
* ls2x_slave_config - set slave configuration for channel
* @chan: dma channel
* @cfg: slave configuration
*
* Sets slave configuration for channel
*/
static int ls2x_dma_slave_config(struct dma_chan *chan,
struct dma_slave_config *config)
{
struct ls2x_dma_chan *lchan = to_ldma_chan(chan);
memcpy(&lchan->sconfig, config, sizeof(*config));
return 0;
}
/*
* ls2x_dma_issue_pending - push pending transactions to the hardware
* @chan: channel
*
* When this function is called, all pending transactions are pushed to the
* hardware and executed.
*/
static void ls2x_dma_issue_pending(struct dma_chan *chan)
{
struct ls2x_dma_chan *lchan = to_ldma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&lchan->vchan.lock, flags);
if (vchan_issue_pending(&lchan->vchan) && !lchan->desc)
ls2x_dma_start_transfer(lchan);
spin_unlock_irqrestore(&lchan->vchan.lock, flags);
}
/*
* ls2x_dma_terminate_all - terminate all transactions
* @chan: channel
*
* Stops all DMA transactions.
*/
static int ls2x_dma_terminate_all(struct dma_chan *chan)
{
struct ls2x_dma_chan *lchan = to_ldma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&lchan->vchan.lock, flags);
/* Setting stop cmd */
ls2x_dma_write_cmd(lchan, LDMA_STOP);
if (lchan->desc) {
vchan_terminate_vdesc(&lchan->desc->vdesc);
lchan->desc = NULL;
}
vchan_get_all_descriptors(&lchan->vchan, &head);
spin_unlock_irqrestore(&lchan->vchan.lock, flags);
vchan_dma_desc_free_list(&lchan->vchan, &head);
return 0;
}
/*
* ls2x_dma_synchronize - Synchronizes the termination of transfers to the
* current context.
* @chan: channel
*/
static void ls2x_dma_synchronize(struct dma_chan *chan)
{
struct ls2x_dma_chan *lchan = to_ldma_chan(chan);
vchan_synchronize(&lchan->vchan);
}
static int ls2x_dma_pause(struct dma_chan *chan)
{
struct ls2x_dma_chan *lchan = to_ldma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&lchan->vchan.lock, flags);
if (lchan->desc && lchan->desc->status == DMA_IN_PROGRESS) {
ls2x_dma_write_cmd(lchan, LDMA_STOP);
lchan->desc->status = DMA_PAUSED;
}
spin_unlock_irqrestore(&lchan->vchan.lock, flags);
return 0;
}
static int ls2x_dma_resume(struct dma_chan *chan)
{
struct ls2x_dma_chan *lchan = to_ldma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&lchan->vchan.lock, flags);
if (lchan->desc && lchan->desc->status == DMA_PAUSED) {
lchan->desc->status = DMA_IN_PROGRESS;
ls2x_dma_write_cmd(lchan, LDMA_START);
}
spin_unlock_irqrestore(&lchan->vchan.lock, flags);
return 0;
}
/*
* ls2x_dma_isr - LS2X DMA Interrupt handler
* @irq: IRQ number
* @dev_id: Pointer to ls2x_dma_chan
*
* Return: IRQ_HANDLED/IRQ_NONE
*/
static irqreturn_t ls2x_dma_isr(int irq, void *dev_id)
{
struct ls2x_dma_chan *lchan = dev_id;
struct ls2x_dma_desc *desc;
spin_lock(&lchan->vchan.lock);
desc = lchan->desc;
if (desc) {
if (desc->cyclic) {
vchan_cyclic_callback(&desc->vdesc);
} else {
desc->status = DMA_COMPLETE;
vchan_cookie_complete(&desc->vdesc);
ls2x_dma_start_transfer(lchan);
}
/* ls2x_dma_start_transfer() updates lchan->desc */
if (!lchan->desc)
ls2x_dma_write_cmd(lchan, LDMA_STOP);
}
spin_unlock(&lchan->vchan.lock);
return IRQ_HANDLED;
}
static int ls2x_dma_chan_init(struct platform_device *pdev,
struct ls2x_dma_priv *priv)
{
struct ls2x_dma_chan *lchan = &priv->lchan;
struct device *dev = &pdev->dev;
int ret;
lchan->irq = platform_get_irq(pdev, 0);
if (lchan->irq < 0)
return lchan->irq;
ret = devm_request_irq(dev, lchan->irq, ls2x_dma_isr, IRQF_TRIGGER_RISING,
dev_name(&pdev->dev), lchan);
if (ret)
return ret;
/* Initialize channels related values */
INIT_LIST_HEAD(&priv->ddev.channels);
lchan->vchan.desc_free = ls2x_dma_desc_free;
vchan_init(&lchan->vchan, &priv->ddev);
return 0;
}
/*
* ls2x_dma_probe - Driver probe function
* @pdev: Pointer to the platform_device structure
*
* Return: '0' on success and failure value on error
*/
static int ls2x_dma_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ls2x_dma_priv *priv;
struct dma_device *ddev;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->regs))
return dev_err_probe(dev, PTR_ERR(priv->regs),
"devm_platform_ioremap_resource failed.\n");
priv->dma_clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(priv->dma_clk))
return dev_err_probe(dev, PTR_ERR(priv->dma_clk), "devm_clk_get failed.\n");
ret = clk_prepare_enable(priv->dma_clk);
if (ret)
return dev_err_probe(dev, ret, "clk_prepare_enable failed.\n");
ret = ls2x_dma_chan_init(pdev, priv);
if (ret)
goto disable_clk;
ddev = &priv->ddev;
ddev->dev = dev;
dma_cap_zero(ddev->cap_mask);
dma_cap_set(DMA_SLAVE, ddev->cap_mask);
dma_cap_set(DMA_CYCLIC, ddev->cap_mask);
ddev->device_alloc_chan_resources = ls2x_dma_alloc_chan_resources;
ddev->device_free_chan_resources = ls2x_dma_free_chan_resources;
ddev->device_tx_status = dma_cookie_status;
ddev->device_issue_pending = ls2x_dma_issue_pending;
ddev->device_prep_slave_sg = ls2x_dma_prep_slave_sg;
ddev->device_prep_dma_cyclic = ls2x_dma_prep_dma_cyclic;
ddev->device_config = ls2x_dma_slave_config;
ddev->device_terminate_all = ls2x_dma_terminate_all;
ddev->device_synchronize = ls2x_dma_synchronize;
ddev->device_pause = ls2x_dma_pause;
ddev->device_resume = ls2x_dma_resume;
ddev->src_addr_widths = LDMA_SLAVE_BUSWIDTHS;
ddev->dst_addr_widths = LDMA_SLAVE_BUSWIDTHS;
ddev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
ret = dma_async_device_register(&priv->ddev);
if (ret < 0)
goto disable_clk;
ret = of_dma_controller_register(dev->of_node, of_dma_xlate_by_chan_id, priv);
if (ret < 0)
goto unregister_dmac;
platform_set_drvdata(pdev, priv);
dev_info(dev, "Loongson LS2X APB DMA driver registered successfully.\n");
return 0;
unregister_dmac:
dma_async_device_unregister(&priv->ddev);
disable_clk:
clk_disable_unprepare(priv->dma_clk);
return ret;
}
/*
* ls2x_dma_remove - Driver remove function
* @pdev: Pointer to the platform_device structure
*/
static void ls2x_dma_remove(struct platform_device *pdev)
{
struct ls2x_dma_priv *priv = platform_get_drvdata(pdev);
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&priv->ddev);
clk_disable_unprepare(priv->dma_clk);
}
static const struct of_device_id ls2x_dma_of_match_table[] = {
{ .compatible = "loongson,ls2k1000-apbdma" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, ls2x_dma_of_match_table);
static struct platform_driver ls2x_dmac_driver = {
.probe = ls2x_dma_probe,
.remove_new = ls2x_dma_remove,
.driver = {
.name = "ls2x-apbdma",
.of_match_table = ls2x_dma_of_match_table,
},
};
module_platform_driver(ls2x_dmac_driver);
MODULE_DESCRIPTION("Loongson LS2X APB DMA Controller driver");
MODULE_AUTHOR("Loongson Technology Corporation Limited");
MODULE_LICENSE("GPL");