linux-next/fs/btrfs/root-tree.c
Qu Wenruo e85fde5162 btrfs: qgroup: fix qgroup meta rsv leak for subvolume operations
[BUG]
When quota is enabled for TEST_DEV, generic/013 sometimes fails like this:

  generic/013 14s ... _check_dmesg: something found in dmesg (see xfstests-dev/results//generic/013.dmesg)

And with the following metadata leak:

  BTRFS warning (device dm-3): qgroup 0/1370 has unreleased space, type 2 rsv 49152
  ------------[ cut here ]------------
  WARNING: CPU: 2 PID: 47912 at fs/btrfs/disk-io.c:4078 close_ctree+0x1dc/0x323 [btrfs]
  Call Trace:
   btrfs_put_super+0x15/0x17 [btrfs]
   generic_shutdown_super+0x72/0x110
   kill_anon_super+0x18/0x30
   btrfs_kill_super+0x17/0x30 [btrfs]
   deactivate_locked_super+0x3b/0xa0
   deactivate_super+0x40/0x50
   cleanup_mnt+0x135/0x190
   __cleanup_mnt+0x12/0x20
   task_work_run+0x64/0xb0
   __prepare_exit_to_usermode+0x1bc/0x1c0
   __syscall_return_slowpath+0x47/0x230
   do_syscall_64+0x64/0xb0
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  ---[ end trace a6cfd45ba80e4e06 ]---
  BTRFS error (device dm-3): qgroup reserved space leaked
  BTRFS info (device dm-3): disk space caching is enabled
  BTRFS info (device dm-3): has skinny extents

[CAUSE]
The qgroup preallocated meta rsv operations of that offending root are:

  btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072
  btrfs_delayed_inode_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=131072
  btrfs_subvolume_reserve_metadata: rsv_meta_prealloc root=1370 num_bytes=49152
  btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072
  btrfs_delayed_inode_release_metadata: convert_meta_prealloc root=1370 num_bytes=-131072

It's pretty obvious that, we reserve qgroup meta rsv in
btrfs_subvolume_reserve_metadata(), but doesn't have corresponding
release/convert calls in btrfs_subvolume_release_metadata().

This leads to the leakage.

[FIX]
To fix this bug, we should follow what we're doing in
btrfs_delalloc_reserve_metadata(), where we reserve qgroup space, and
add it to block_rsv->qgroup_rsv_reserved.

And free the qgroup reserved metadata space when releasing the
block_rsv.

To do this, we need to change the btrfs_subvolume_release_metadata() to
accept btrfs_root, and record the qgroup_to_release number, and call
btrfs_qgroup_convert_reserved_meta() for it.

Fixes: 733e03a0b26a ("btrfs: qgroup: Split meta rsv type into meta_prealloc and meta_pertrans")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:12:13 +02:00

532 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/err.h>
#include <linux/uuid.h>
#include "ctree.h"
#include "transaction.h"
#include "disk-io.h"
#include "print-tree.h"
#include "qgroup.h"
#include "space-info.h"
/*
* Read a root item from the tree. In case we detect a root item smaller then
* sizeof(root_item), we know it's an old version of the root structure and
* initialize all new fields to zero. The same happens if we detect mismatching
* generation numbers as then we know the root was once mounted with an older
* kernel that was not aware of the root item structure change.
*/
static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
struct btrfs_root_item *item)
{
u32 len;
int need_reset = 0;
len = btrfs_item_size_nr(eb, slot);
read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
min_t(u32, len, sizeof(*item)));
if (len < sizeof(*item))
need_reset = 1;
if (!need_reset && btrfs_root_generation(item)
!= btrfs_root_generation_v2(item)) {
if (btrfs_root_generation_v2(item) != 0) {
btrfs_warn(eb->fs_info,
"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
}
need_reset = 1;
}
if (need_reset) {
memset(&item->generation_v2, 0,
sizeof(*item) - offsetof(struct btrfs_root_item,
generation_v2));
generate_random_guid(item->uuid);
}
}
/*
* btrfs_find_root - lookup the root by the key.
* root: the root of the root tree
* search_key: the key to search
* path: the path we search
* root_item: the root item of the tree we look for
* root_key: the root key of the tree we look for
*
* If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
* of the search key, just lookup the root with the highest offset for a
* given objectid.
*
* If we find something return 0, otherwise > 0, < 0 on error.
*/
int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
struct btrfs_path *path, struct btrfs_root_item *root_item,
struct btrfs_key *root_key)
{
struct btrfs_key found_key;
struct extent_buffer *l;
int ret;
int slot;
ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
if (ret < 0)
return ret;
if (search_key->offset != -1ULL) { /* the search key is exact */
if (ret > 0)
goto out;
} else {
BUG_ON(ret == 0); /* Logical error */
if (path->slots[0] == 0)
goto out;
path->slots[0]--;
ret = 0;
}
l = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(l, &found_key, slot);
if (found_key.objectid != search_key->objectid ||
found_key.type != BTRFS_ROOT_ITEM_KEY) {
ret = 1;
goto out;
}
if (root_item)
btrfs_read_root_item(l, slot, root_item);
if (root_key)
memcpy(root_key, &found_key, sizeof(found_key));
out:
btrfs_release_path(path);
return ret;
}
void btrfs_set_root_node(struct btrfs_root_item *item,
struct extent_buffer *node)
{
btrfs_set_root_bytenr(item, node->start);
btrfs_set_root_level(item, btrfs_header_level(node));
btrfs_set_root_generation(item, btrfs_header_generation(node));
}
/*
* copy the data in 'item' into the btree
*/
int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, struct btrfs_root_item
*item)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_path *path;
struct extent_buffer *l;
int ret;
int slot;
unsigned long ptr;
u32 old_len;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(trans, root, key, path, 0, 1);
if (ret < 0)
goto out;
if (ret > 0) {
btrfs_crit(fs_info,
"unable to find root key (%llu %u %llu) in tree %llu",
key->objectid, key->type, key->offset,
root->root_key.objectid);
ret = -EUCLEAN;
btrfs_abort_transaction(trans, ret);
goto out;
}
l = path->nodes[0];
slot = path->slots[0];
ptr = btrfs_item_ptr_offset(l, slot);
old_len = btrfs_item_size_nr(l, slot);
/*
* If this is the first time we update the root item which originated
* from an older kernel, we need to enlarge the item size to make room
* for the added fields.
*/
if (old_len < sizeof(*item)) {
btrfs_release_path(path);
ret = btrfs_search_slot(trans, root, key, path,
-1, 1);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out;
}
ret = btrfs_del_item(trans, root, path);
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out;
}
btrfs_release_path(path);
ret = btrfs_insert_empty_item(trans, root, path,
key, sizeof(*item));
if (ret < 0) {
btrfs_abort_transaction(trans, ret);
goto out;
}
l = path->nodes[0];
slot = path->slots[0];
ptr = btrfs_item_ptr_offset(l, slot);
}
/*
* Update generation_v2 so at the next mount we know the new root
* fields are valid.
*/
btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
write_extent_buffer(l, item, ptr, sizeof(*item));
btrfs_mark_buffer_dirty(path->nodes[0]);
out:
btrfs_free_path(path);
return ret;
}
int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
const struct btrfs_key *key, struct btrfs_root_item *item)
{
/*
* Make sure generation v1 and v2 match. See update_root for details.
*/
btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
return btrfs_insert_item(trans, root, key, item, sizeof(*item));
}
int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *tree_root = fs_info->tree_root;
struct extent_buffer *leaf;
struct btrfs_path *path;
struct btrfs_key key;
struct btrfs_root *root;
int err = 0;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = BTRFS_ORPHAN_OBJECTID;
key.type = BTRFS_ORPHAN_ITEM_KEY;
key.offset = 0;
while (1) {
u64 root_objectid;
ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
if (ret < 0) {
err = ret;
break;
}
leaf = path->nodes[0];
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(tree_root, path);
if (ret < 0)
err = ret;
if (ret != 0)
break;
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
btrfs_release_path(path);
if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
key.type != BTRFS_ORPHAN_ITEM_KEY)
break;
root_objectid = key.offset;
key.offset++;
root = btrfs_get_fs_root(fs_info, root_objectid, false);
err = PTR_ERR_OR_ZERO(root);
if (err && err != -ENOENT) {
break;
} else if (err == -ENOENT) {
struct btrfs_trans_handle *trans;
btrfs_release_path(path);
trans = btrfs_join_transaction(tree_root);
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
btrfs_handle_fs_error(fs_info, err,
"Failed to start trans to delete orphan item");
break;
}
err = btrfs_del_orphan_item(trans, tree_root,
root_objectid);
btrfs_end_transaction(trans);
if (err) {
btrfs_handle_fs_error(fs_info, err,
"Failed to delete root orphan item");
break;
}
continue;
}
WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
if (btrfs_root_refs(&root->root_item) == 0) {
set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
btrfs_add_dead_root(root);
}
btrfs_put_root(root);
}
btrfs_free_path(path);
return err;
}
/* drop the root item for 'key' from the tree root */
int btrfs_del_root(struct btrfs_trans_handle *trans,
const struct btrfs_key *key)
{
struct btrfs_root *root = trans->fs_info->tree_root;
struct btrfs_path *path;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(trans, root, key, path, -1, 1);
if (ret < 0)
goto out;
BUG_ON(ret != 0);
ret = btrfs_del_item(trans, root, path);
out:
btrfs_free_path(path);
return ret;
}
int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
u64 ref_id, u64 dirid, u64 *sequence, const char *name,
int name_len)
{
struct btrfs_root *tree_root = trans->fs_info->tree_root;
struct btrfs_path *path;
struct btrfs_root_ref *ref;
struct extent_buffer *leaf;
struct btrfs_key key;
unsigned long ptr;
int err = 0;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = root_id;
key.type = BTRFS_ROOT_BACKREF_KEY;
key.offset = ref_id;
again:
ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
BUG_ON(ret < 0);
if (ret == 0) {
leaf = path->nodes[0];
ref = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_root_ref);
ptr = (unsigned long)(ref + 1);
if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
(btrfs_root_ref_name_len(leaf, ref) != name_len) ||
memcmp_extent_buffer(leaf, name, ptr, name_len)) {
err = -ENOENT;
goto out;
}
*sequence = btrfs_root_ref_sequence(leaf, ref);
ret = btrfs_del_item(trans, tree_root, path);
if (ret) {
err = ret;
goto out;
}
} else
err = -ENOENT;
if (key.type == BTRFS_ROOT_BACKREF_KEY) {
btrfs_release_path(path);
key.objectid = ref_id;
key.type = BTRFS_ROOT_REF_KEY;
key.offset = root_id;
goto again;
}
out:
btrfs_free_path(path);
return err;
}
/*
* add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
* or BTRFS_ROOT_BACKREF_KEY.
*
* The dirid, sequence, name and name_len refer to the directory entry
* that is referencing the root.
*
* For a forward ref, the root_id is the id of the tree referencing
* the root and ref_id is the id of the subvol or snapshot.
*
* For a back ref the root_id is the id of the subvol or snapshot and
* ref_id is the id of the tree referencing it.
*
* Will return 0, -ENOMEM, or anything from the CoW path
*/
int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
u64 ref_id, u64 dirid, u64 sequence, const char *name,
int name_len)
{
struct btrfs_root *tree_root = trans->fs_info->tree_root;
struct btrfs_key key;
int ret;
struct btrfs_path *path;
struct btrfs_root_ref *ref;
struct extent_buffer *leaf;
unsigned long ptr;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = root_id;
key.type = BTRFS_ROOT_BACKREF_KEY;
key.offset = ref_id;
again:
ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
sizeof(*ref) + name_len);
if (ret) {
btrfs_abort_transaction(trans, ret);
btrfs_free_path(path);
return ret;
}
leaf = path->nodes[0];
ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
btrfs_set_root_ref_dirid(leaf, ref, dirid);
btrfs_set_root_ref_sequence(leaf, ref, sequence);
btrfs_set_root_ref_name_len(leaf, ref, name_len);
ptr = (unsigned long)(ref + 1);
write_extent_buffer(leaf, name, ptr, name_len);
btrfs_mark_buffer_dirty(leaf);
if (key.type == BTRFS_ROOT_BACKREF_KEY) {
btrfs_release_path(path);
key.objectid = ref_id;
key.type = BTRFS_ROOT_REF_KEY;
key.offset = root_id;
goto again;
}
btrfs_free_path(path);
return 0;
}
/*
* Old btrfs forgets to init root_item->flags and root_item->byte_limit
* for subvolumes. To work around this problem, we steal a bit from
* root_item->inode_item->flags, and use it to indicate if those fields
* have been properly initialized.
*/
void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
{
u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
btrfs_set_root_flags(root_item, 0);
btrfs_set_root_limit(root_item, 0);
}
}
void btrfs_update_root_times(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_root_item *item = &root->root_item;
struct timespec64 ct;
ktime_get_real_ts64(&ct);
spin_lock(&root->root_item_lock);
btrfs_set_root_ctransid(item, trans->transid);
btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
spin_unlock(&root->root_item_lock);
}
/*
* btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
* root: the root of the parent directory
* rsv: block reservation
* items: the number of items that we need do reservation
* use_global_rsv: allow fallback to the global block reservation
*
* This function is used to reserve the space for snapshot/subvolume
* creation and deletion. Those operations are different with the
* common file/directory operations, they change two fs/file trees
* and root tree, the number of items that the qgroup reserves is
* different with the free space reservation. So we can not use
* the space reservation mechanism in start_transaction().
*/
int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
struct btrfs_block_rsv *rsv, int items,
bool use_global_rsv)
{
u64 qgroup_num_bytes = 0;
u64 num_bytes;
int ret;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
/* One for parent inode, two for dir entries */
qgroup_num_bytes = 3 * fs_info->nodesize;
ret = btrfs_qgroup_reserve_meta_prealloc(root,
qgroup_num_bytes, true);
if (ret)
return ret;
}
num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
rsv->space_info = btrfs_find_space_info(fs_info,
BTRFS_BLOCK_GROUP_METADATA);
ret = btrfs_block_rsv_add(root, rsv, num_bytes,
BTRFS_RESERVE_FLUSH_ALL);
if (ret == -ENOSPC && use_global_rsv)
ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
if (ret && qgroup_num_bytes)
btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
if (!ret) {
spin_lock(&rsv->lock);
rsv->qgroup_rsv_reserved += qgroup_num_bytes;
spin_unlock(&rsv->lock);
}
return ret;
}
void btrfs_subvolume_release_metadata(struct btrfs_root *root,
struct btrfs_block_rsv *rsv)
{
struct btrfs_fs_info *fs_info = root->fs_info;
u64 qgroup_to_release;
btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
}