Jens Axboe aa00f67adc io_uring: add support for fixed wait regions
Generally applications have 1 or a few waits of waiting, yet they pass
in a struct io_uring_getevents_arg every time. This needs to get copied
and, in turn, the timeout value needs to get copied.

Rather than do this for every invocation, allow the application to
register a fixed set of wait regions that can simply be indexed when
asking the kernel to wait on events.

At ring setup time, the application can register a number of these wait
regions and initialize region/index 0 upfront:

	struct io_uring_reg_wait *reg;

	reg = io_uring_setup_reg_wait(ring, nr_regions, &ret);

	/* set timeout and mark as set, sigmask/sigmask_sz as needed */
	reg->ts.tv_sec = 0;
	reg->ts.tv_nsec = 100000;
	reg->flags = IORING_REG_WAIT_TS;

where nr_regions >= 1 && nr_regions <= PAGE_SIZE / sizeof(*reg). The
above initializes index 0, but 63 other regions can be initialized,
if needed. Now, instead of doing:

	struct __kernel_timespec timeout = { .tv_nsec = 100000, };

	io_uring_submit_and_wait_timeout(ring, &cqe, nr, &t, NULL);

to wait for events for each submit_and_wait, or just wait, operation, it
can just reference the above region at offset 0 and do:

	io_uring_submit_and_wait_reg(ring, &cqe, nr, 0);

to achieve the same goal of waiting 100usec without needing to copy
both struct io_uring_getevents_arg (24b) and struct __kernel_timeout
(16b) for each invocation. Struct io_uring_reg_wait looks as follows:

struct io_uring_reg_wait {
	struct __kernel_timespec	ts;
	__u32				min_wait_usec;
	__u32				flags;
	__u64				sigmask;
	__u32				sigmask_sz;
	__u32				pad[3];
	__u64				pad2[2];
};

embedding the timeout itself in the region, rather than passing it as
a pointer as well. Note that the signal mask is still passed as a
pointer, both for compatability reasons, but also because there doesn't
seem to be a lot of high frequency waits scenarios that involve setting
and resetting the signal mask for each wait.

The application is free to modify any region before a wait call, or it
can use keep multiple regions with different settings to avoid needing to
modify the same one for wait calls. Up to a page size of regions is mapped
by default, allowing PAGE_SIZE / 64 available regions for use.

The registered region must fit within a page. On a 4kb page size system,
that allows for 64 wait regions if a full page is used, as the size of
struct io_uring_reg_wait is 64b. The region registered must be aligned
to io_uring_reg_wait in size. It's valid to register less than 64
entries.

In network performance testing with zero-copy, this reduced the time
spent waiting on the TX side from 3.12% to 0.3% and the RX side from 4.4%
to 0.3%.

Wait regions are fixed for the lifetime of the ring - once registered,
they are persistent until the ring is torn down. The regions support
minimum wait timeout as well as the regular waits.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-29 13:43:28 -06:00
2024-10-18 15:53:00 -07:00
2024-10-20 14:08:17 -07:00
2024-10-20 11:30:56 -07:00
2024-10-19 08:32:47 -07:00
2024-09-01 20:43:24 -07:00
2024-10-20 14:08:17 -07:00
2024-10-13 09:10:52 -07:00
2024-10-18 16:27:14 -07:00
2024-09-24 13:02:06 -07:00
2024-10-17 00:28:08 -07:00
2022-09-28 09:02:20 +02:00
2024-10-09 12:47:19 -07:00
2022-10-10 12:00:45 -07:00
2024-10-20 13:10:44 -07:00
2024-10-20 15:19:38 -07:00
2024-03-18 03:36:32 -06:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the reStructuredText markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
The linux-next integration testing tree
Readme 3.8 GiB
Languages
C 97.5%
Assembly 1%
Shell 0.6%
Python 0.3%
Makefile 0.3%