mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-09 07:23:14 +00:00
cd8c732ce1
In order to use this dmaengine with sound devices, let's add cyclic transfers support. Most of the code is reused from the existing scatter-gather implementation, only the final linking between descriptors, the control fields (to trigger interrupts more often) and the interrupt handling are really different. This controller supports up to 32 adjacent descriptors, we assume this is way more than enough for the purpose of cyclic transfers and limit to 32 the number of cycled descriptors. This way, we simplify a lot the overall handling of the descriptors. Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/r/20231005160237.2804238-4-miquel.raynal@bootlin.com Signed-off-by: Vinod Koul <vkoul@kernel.org>
1138 lines
28 KiB
C
1138 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* DMA driver for Xilinx DMA/Bridge Subsystem
|
|
*
|
|
* Copyright (C) 2017-2020 Xilinx, Inc. All rights reserved.
|
|
* Copyright (C) 2022, Advanced Micro Devices, Inc.
|
|
*/
|
|
|
|
/*
|
|
* The DMA/Bridge Subsystem for PCI Express allows for the movement of data
|
|
* between Host memory and the DMA subsystem. It does this by operating on
|
|
* 'descriptors' that contain information about the source, destination and
|
|
* amount of data to transfer. These direct memory transfers can be both in
|
|
* the Host to Card (H2C) and Card to Host (C2H) transfers. The DMA can be
|
|
* configured to have a single AXI4 Master interface shared by all channels
|
|
* or one AXI4-Stream interface for each channel enabled. Memory transfers are
|
|
* specified on a per-channel basis in descriptor linked lists, which the DMA
|
|
* fetches from host memory and processes. Events such as descriptor completion
|
|
* and errors are signaled using interrupts. The core also provides up to 16
|
|
* user interrupt wires that generate interrupts to the host.
|
|
*/
|
|
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma/amd_xdma.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/platform_data/amd_xdma.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/pci.h>
|
|
#include "../virt-dma.h"
|
|
#include "xdma-regs.h"
|
|
|
|
/* mmio regmap config for all XDMA registers */
|
|
static const struct regmap_config xdma_regmap_config = {
|
|
.reg_bits = 32,
|
|
.val_bits = 32,
|
|
.reg_stride = 4,
|
|
.max_register = XDMA_REG_SPACE_LEN,
|
|
};
|
|
|
|
/**
|
|
* struct xdma_desc_block - Descriptor block
|
|
* @virt_addr: Virtual address of block start
|
|
* @dma_addr: DMA address of block start
|
|
*/
|
|
struct xdma_desc_block {
|
|
void *virt_addr;
|
|
dma_addr_t dma_addr;
|
|
};
|
|
|
|
/**
|
|
* struct xdma_chan - Driver specific DMA channel structure
|
|
* @vchan: Virtual channel
|
|
* @xdev_hdl: Pointer to DMA device structure
|
|
* @base: Offset of channel registers
|
|
* @desc_pool: Descriptor pool
|
|
* @busy: Busy flag of the channel
|
|
* @dir: Transferring direction of the channel
|
|
* @cfg: Transferring config of the channel
|
|
* @irq: IRQ assigned to the channel
|
|
*/
|
|
struct xdma_chan {
|
|
struct virt_dma_chan vchan;
|
|
void *xdev_hdl;
|
|
u32 base;
|
|
struct dma_pool *desc_pool;
|
|
bool busy;
|
|
enum dma_transfer_direction dir;
|
|
struct dma_slave_config cfg;
|
|
u32 irq;
|
|
};
|
|
|
|
/**
|
|
* struct xdma_desc - DMA desc structure
|
|
* @vdesc: Virtual DMA descriptor
|
|
* @chan: DMA channel pointer
|
|
* @dir: Transferring direction of the request
|
|
* @dev_addr: Physical address on DMA device side
|
|
* @desc_blocks: Hardware descriptor blocks
|
|
* @dblk_num: Number of hardware descriptor blocks
|
|
* @desc_num: Number of hardware descriptors
|
|
* @completed_desc_num: Completed hardware descriptors
|
|
* @cyclic: Cyclic transfer vs. scatter-gather
|
|
* @periods: Number of periods in the cyclic transfer
|
|
* @period_size: Size of a period in bytes in cyclic transfers
|
|
*/
|
|
struct xdma_desc {
|
|
struct virt_dma_desc vdesc;
|
|
struct xdma_chan *chan;
|
|
enum dma_transfer_direction dir;
|
|
u64 dev_addr;
|
|
struct xdma_desc_block *desc_blocks;
|
|
u32 dblk_num;
|
|
u32 desc_num;
|
|
u32 completed_desc_num;
|
|
bool cyclic;
|
|
u32 periods;
|
|
u32 period_size;
|
|
};
|
|
|
|
#define XDMA_DEV_STATUS_REG_DMA BIT(0)
|
|
#define XDMA_DEV_STATUS_INIT_MSIX BIT(1)
|
|
|
|
/**
|
|
* struct xdma_device - DMA device structure
|
|
* @pdev: Platform device pointer
|
|
* @dma_dev: DMA device structure
|
|
* @rmap: MMIO regmap for DMA registers
|
|
* @h2c_chans: Host to Card channels
|
|
* @c2h_chans: Card to Host channels
|
|
* @h2c_chan_num: Number of H2C channels
|
|
* @c2h_chan_num: Number of C2H channels
|
|
* @irq_start: Start IRQ assigned to device
|
|
* @irq_num: Number of IRQ assigned to device
|
|
* @status: Initialization status
|
|
*/
|
|
struct xdma_device {
|
|
struct platform_device *pdev;
|
|
struct dma_device dma_dev;
|
|
struct regmap *rmap;
|
|
struct xdma_chan *h2c_chans;
|
|
struct xdma_chan *c2h_chans;
|
|
u32 h2c_chan_num;
|
|
u32 c2h_chan_num;
|
|
u32 irq_start;
|
|
u32 irq_num;
|
|
u32 status;
|
|
};
|
|
|
|
#define xdma_err(xdev, fmt, args...) \
|
|
dev_err(&(xdev)->pdev->dev, fmt, ##args)
|
|
#define XDMA_CHAN_NUM(_xd) ({ \
|
|
typeof(_xd) (xd) = (_xd); \
|
|
((xd)->h2c_chan_num + (xd)->c2h_chan_num); })
|
|
|
|
/* Get the last desc in a desc block */
|
|
static inline void *xdma_blk_last_desc(struct xdma_desc_block *block)
|
|
{
|
|
return block->virt_addr + (XDMA_DESC_ADJACENT - 1) * XDMA_DESC_SIZE;
|
|
}
|
|
|
|
/**
|
|
* xdma_link_sg_desc_blocks - Link SG descriptor blocks for DMA transfer
|
|
* @sw_desc: Tx descriptor pointer
|
|
*/
|
|
static void xdma_link_sg_desc_blocks(struct xdma_desc *sw_desc)
|
|
{
|
|
struct xdma_desc_block *block;
|
|
u32 last_blk_desc, desc_control;
|
|
struct xdma_hw_desc *desc;
|
|
int i;
|
|
|
|
desc_control = XDMA_DESC_CONTROL(XDMA_DESC_ADJACENT, 0);
|
|
for (i = 1; i < sw_desc->dblk_num; i++) {
|
|
block = &sw_desc->desc_blocks[i - 1];
|
|
desc = xdma_blk_last_desc(block);
|
|
|
|
if (!(i & XDMA_DESC_BLOCK_MASK)) {
|
|
desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
|
|
continue;
|
|
}
|
|
desc->control = cpu_to_le32(desc_control);
|
|
desc->next_desc = cpu_to_le64(block[1].dma_addr);
|
|
}
|
|
|
|
/* update the last block */
|
|
last_blk_desc = (sw_desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
|
|
if (((sw_desc->dblk_num - 1) & XDMA_DESC_BLOCK_MASK) > 0) {
|
|
block = &sw_desc->desc_blocks[sw_desc->dblk_num - 2];
|
|
desc = xdma_blk_last_desc(block);
|
|
desc_control = XDMA_DESC_CONTROL(last_blk_desc + 1, 0);
|
|
desc->control = cpu_to_le32(desc_control);
|
|
}
|
|
|
|
block = &sw_desc->desc_blocks[sw_desc->dblk_num - 1];
|
|
desc = block->virt_addr + last_blk_desc * XDMA_DESC_SIZE;
|
|
desc->control = cpu_to_le32(XDMA_DESC_CONTROL_LAST);
|
|
}
|
|
|
|
/**
|
|
* xdma_link_cyclic_desc_blocks - Link cyclic descriptor blocks for DMA transfer
|
|
* @sw_desc: Tx descriptor pointer
|
|
*/
|
|
static void xdma_link_cyclic_desc_blocks(struct xdma_desc *sw_desc)
|
|
{
|
|
struct xdma_desc_block *block;
|
|
struct xdma_hw_desc *desc;
|
|
int i;
|
|
|
|
block = sw_desc->desc_blocks;
|
|
for (i = 0; i < sw_desc->desc_num - 1; i++) {
|
|
desc = block->virt_addr + i * XDMA_DESC_SIZE;
|
|
desc->next_desc = cpu_to_le64(block->dma_addr + ((i + 1) * XDMA_DESC_SIZE));
|
|
}
|
|
desc = block->virt_addr + i * XDMA_DESC_SIZE;
|
|
desc->next_desc = cpu_to_le64(block->dma_addr);
|
|
}
|
|
|
|
static inline struct xdma_chan *to_xdma_chan(struct dma_chan *chan)
|
|
{
|
|
return container_of(chan, struct xdma_chan, vchan.chan);
|
|
}
|
|
|
|
static inline struct xdma_desc *to_xdma_desc(struct virt_dma_desc *vdesc)
|
|
{
|
|
return container_of(vdesc, struct xdma_desc, vdesc);
|
|
}
|
|
|
|
/**
|
|
* xdma_channel_init - Initialize DMA channel registers
|
|
* @chan: DMA channel pointer
|
|
*/
|
|
static int xdma_channel_init(struct xdma_chan *chan)
|
|
{
|
|
struct xdma_device *xdev = chan->xdev_hdl;
|
|
int ret;
|
|
|
|
ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_CONTROL_W1C,
|
|
CHAN_CTRL_NON_INCR_ADDR);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_write(xdev->rmap, chan->base + XDMA_CHAN_INTR_ENABLE,
|
|
CHAN_IM_ALL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xdma_free_desc - Free descriptor
|
|
* @vdesc: Virtual DMA descriptor
|
|
*/
|
|
static void xdma_free_desc(struct virt_dma_desc *vdesc)
|
|
{
|
|
struct xdma_desc *sw_desc;
|
|
int i;
|
|
|
|
sw_desc = to_xdma_desc(vdesc);
|
|
for (i = 0; i < sw_desc->dblk_num; i++) {
|
|
if (!sw_desc->desc_blocks[i].virt_addr)
|
|
break;
|
|
dma_pool_free(sw_desc->chan->desc_pool,
|
|
sw_desc->desc_blocks[i].virt_addr,
|
|
sw_desc->desc_blocks[i].dma_addr);
|
|
}
|
|
kfree(sw_desc->desc_blocks);
|
|
kfree(sw_desc);
|
|
}
|
|
|
|
/**
|
|
* xdma_alloc_desc - Allocate descriptor
|
|
* @chan: DMA channel pointer
|
|
* @desc_num: Number of hardware descriptors
|
|
* @cyclic: Whether this is a cyclic transfer
|
|
*/
|
|
static struct xdma_desc *
|
|
xdma_alloc_desc(struct xdma_chan *chan, u32 desc_num, bool cyclic)
|
|
{
|
|
struct xdma_desc *sw_desc;
|
|
struct xdma_hw_desc *desc;
|
|
dma_addr_t dma_addr;
|
|
u32 dblk_num;
|
|
u32 control;
|
|
void *addr;
|
|
int i, j;
|
|
|
|
sw_desc = kzalloc(sizeof(*sw_desc), GFP_NOWAIT);
|
|
if (!sw_desc)
|
|
return NULL;
|
|
|
|
sw_desc->chan = chan;
|
|
sw_desc->desc_num = desc_num;
|
|
sw_desc->cyclic = cyclic;
|
|
dblk_num = DIV_ROUND_UP(desc_num, XDMA_DESC_ADJACENT);
|
|
sw_desc->desc_blocks = kcalloc(dblk_num, sizeof(*sw_desc->desc_blocks),
|
|
GFP_NOWAIT);
|
|
if (!sw_desc->desc_blocks)
|
|
goto failed;
|
|
|
|
if (cyclic)
|
|
control = XDMA_DESC_CONTROL_CYCLIC;
|
|
else
|
|
control = XDMA_DESC_CONTROL(1, 0);
|
|
|
|
sw_desc->dblk_num = dblk_num;
|
|
for (i = 0; i < sw_desc->dblk_num; i++) {
|
|
addr = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &dma_addr);
|
|
if (!addr)
|
|
goto failed;
|
|
|
|
sw_desc->desc_blocks[i].virt_addr = addr;
|
|
sw_desc->desc_blocks[i].dma_addr = dma_addr;
|
|
for (j = 0, desc = addr; j < XDMA_DESC_ADJACENT; j++)
|
|
desc[j].control = cpu_to_le32(control);
|
|
}
|
|
|
|
if (cyclic)
|
|
xdma_link_cyclic_desc_blocks(sw_desc);
|
|
else
|
|
xdma_link_sg_desc_blocks(sw_desc);
|
|
|
|
return sw_desc;
|
|
|
|
failed:
|
|
xdma_free_desc(&sw_desc->vdesc);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xdma_xfer_start - Start DMA transfer
|
|
* @xchan: DMA channel pointer
|
|
*/
|
|
static int xdma_xfer_start(struct xdma_chan *xchan)
|
|
{
|
|
struct virt_dma_desc *vd = vchan_next_desc(&xchan->vchan);
|
|
struct xdma_device *xdev = xchan->xdev_hdl;
|
|
struct xdma_desc_block *block;
|
|
u32 val, completed_blocks;
|
|
struct xdma_desc *desc;
|
|
int ret;
|
|
|
|
/*
|
|
* check if there is not any submitted descriptor or channel is busy.
|
|
* vchan lock should be held where this function is called.
|
|
*/
|
|
if (!vd || xchan->busy)
|
|
return -EINVAL;
|
|
|
|
/* clear run stop bit to get ready for transfer */
|
|
ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL_W1C,
|
|
CHAN_CTRL_RUN_STOP);
|
|
if (ret)
|
|
return ret;
|
|
|
|
desc = to_xdma_desc(vd);
|
|
if (desc->dir != xchan->dir) {
|
|
xdma_err(xdev, "incorrect request direction");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* set DMA engine to the first descriptor block */
|
|
completed_blocks = desc->completed_desc_num / XDMA_DESC_ADJACENT;
|
|
block = &desc->desc_blocks[completed_blocks];
|
|
val = lower_32_bits(block->dma_addr);
|
|
ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_LO, val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
val = upper_32_bits(block->dma_addr);
|
|
ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_HI, val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (completed_blocks + 1 == desc->dblk_num)
|
|
val = (desc->desc_num - 1) & XDMA_DESC_ADJACENT_MASK;
|
|
else
|
|
val = XDMA_DESC_ADJACENT - 1;
|
|
ret = regmap_write(xdev->rmap, xchan->base + XDMA_SGDMA_DESC_ADJ, val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* kick off DMA transfer */
|
|
ret = regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_CONTROL,
|
|
CHAN_CTRL_START);
|
|
if (ret)
|
|
return ret;
|
|
|
|
xchan->busy = true;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xdma_alloc_channels - Detect and allocate DMA channels
|
|
* @xdev: DMA device pointer
|
|
* @dir: Channel direction
|
|
*/
|
|
static int xdma_alloc_channels(struct xdma_device *xdev,
|
|
enum dma_transfer_direction dir)
|
|
{
|
|
struct xdma_platdata *pdata = dev_get_platdata(&xdev->pdev->dev);
|
|
struct xdma_chan **chans, *xchan;
|
|
u32 base, identifier, target;
|
|
u32 *chan_num;
|
|
int i, j, ret;
|
|
|
|
if (dir == DMA_MEM_TO_DEV) {
|
|
base = XDMA_CHAN_H2C_OFFSET;
|
|
target = XDMA_CHAN_H2C_TARGET;
|
|
chans = &xdev->h2c_chans;
|
|
chan_num = &xdev->h2c_chan_num;
|
|
} else if (dir == DMA_DEV_TO_MEM) {
|
|
base = XDMA_CHAN_C2H_OFFSET;
|
|
target = XDMA_CHAN_C2H_TARGET;
|
|
chans = &xdev->c2h_chans;
|
|
chan_num = &xdev->c2h_chan_num;
|
|
} else {
|
|
xdma_err(xdev, "invalid direction specified");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* detect number of available DMA channels */
|
|
for (i = 0, *chan_num = 0; i < pdata->max_dma_channels; i++) {
|
|
ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
|
|
&identifier);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* check if it is available DMA channel */
|
|
if (XDMA_CHAN_CHECK_TARGET(identifier, target))
|
|
(*chan_num)++;
|
|
}
|
|
|
|
if (!*chan_num) {
|
|
xdma_err(xdev, "does not probe any channel");
|
|
return -EINVAL;
|
|
}
|
|
|
|
*chans = devm_kcalloc(&xdev->pdev->dev, *chan_num, sizeof(**chans),
|
|
GFP_KERNEL);
|
|
if (!*chans)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0, j = 0; i < pdata->max_dma_channels; i++) {
|
|
ret = regmap_read(xdev->rmap, base + i * XDMA_CHAN_STRIDE,
|
|
&identifier);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!XDMA_CHAN_CHECK_TARGET(identifier, target))
|
|
continue;
|
|
|
|
if (j == *chan_num) {
|
|
xdma_err(xdev, "invalid channel number");
|
|
return -EIO;
|
|
}
|
|
|
|
/* init channel structure and hardware */
|
|
xchan = &(*chans)[j];
|
|
xchan->xdev_hdl = xdev;
|
|
xchan->base = base + i * XDMA_CHAN_STRIDE;
|
|
xchan->dir = dir;
|
|
|
|
ret = xdma_channel_init(xchan);
|
|
if (ret)
|
|
return ret;
|
|
xchan->vchan.desc_free = xdma_free_desc;
|
|
vchan_init(&xchan->vchan, &xdev->dma_dev);
|
|
|
|
j++;
|
|
}
|
|
|
|
dev_info(&xdev->pdev->dev, "configured %d %s channels", j,
|
|
(dir == DMA_MEM_TO_DEV) ? "H2C" : "C2H");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xdma_issue_pending - Issue pending transactions
|
|
* @chan: DMA channel pointer
|
|
*/
|
|
static void xdma_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
|
|
if (vchan_issue_pending(&xdma_chan->vchan))
|
|
xdma_xfer_start(xdma_chan);
|
|
spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
|
|
}
|
|
|
|
/**
|
|
* xdma_prep_device_sg - prepare a descriptor for a DMA transaction
|
|
* @chan: DMA channel pointer
|
|
* @sgl: Transfer scatter gather list
|
|
* @sg_len: Length of scatter gather list
|
|
* @dir: Transfer direction
|
|
* @flags: transfer ack flags
|
|
* @context: APP words of the descriptor
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction dir,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
|
|
struct dma_async_tx_descriptor *tx_desc;
|
|
u32 desc_num = 0, i, len, rest;
|
|
struct xdma_desc_block *dblk;
|
|
struct xdma_hw_desc *desc;
|
|
struct xdma_desc *sw_desc;
|
|
u64 dev_addr, *src, *dst;
|
|
struct scatterlist *sg;
|
|
u64 addr;
|
|
|
|
for_each_sg(sgl, sg, sg_len, i)
|
|
desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX);
|
|
|
|
sw_desc = xdma_alloc_desc(xdma_chan, desc_num, false);
|
|
if (!sw_desc)
|
|
return NULL;
|
|
sw_desc->dir = dir;
|
|
|
|
if (dir == DMA_MEM_TO_DEV) {
|
|
dev_addr = xdma_chan->cfg.dst_addr;
|
|
src = &addr;
|
|
dst = &dev_addr;
|
|
} else {
|
|
dev_addr = xdma_chan->cfg.src_addr;
|
|
src = &dev_addr;
|
|
dst = &addr;
|
|
}
|
|
|
|
dblk = sw_desc->desc_blocks;
|
|
desc = dblk->virt_addr;
|
|
desc_num = 1;
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
addr = sg_dma_address(sg);
|
|
rest = sg_dma_len(sg);
|
|
|
|
do {
|
|
len = min_t(u32, rest, XDMA_DESC_BLEN_MAX);
|
|
/* set hardware descriptor */
|
|
desc->bytes = cpu_to_le32(len);
|
|
desc->src_addr = cpu_to_le64(*src);
|
|
desc->dst_addr = cpu_to_le64(*dst);
|
|
|
|
if (!(desc_num & XDMA_DESC_ADJACENT_MASK)) {
|
|
dblk++;
|
|
desc = dblk->virt_addr;
|
|
} else {
|
|
desc++;
|
|
}
|
|
|
|
desc_num++;
|
|
dev_addr += len;
|
|
addr += len;
|
|
rest -= len;
|
|
} while (rest);
|
|
}
|
|
|
|
tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
|
|
if (!tx_desc)
|
|
goto failed;
|
|
|
|
return tx_desc;
|
|
|
|
failed:
|
|
xdma_free_desc(&sw_desc->vdesc);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xdma_prep_dma_cyclic - prepare for cyclic DMA transactions
|
|
* @chan: DMA channel pointer
|
|
* @address: Device DMA address to access
|
|
* @size: Total length to transfer
|
|
* @period_size: Period size to use for each transfer
|
|
* @dir: Transfer direction
|
|
* @flags: Transfer ack flags
|
|
*/
|
|
static struct dma_async_tx_descriptor *
|
|
xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address,
|
|
size_t size, size_t period_size,
|
|
enum dma_transfer_direction dir,
|
|
unsigned long flags)
|
|
{
|
|
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
|
|
struct xdma_device *xdev = xdma_chan->xdev_hdl;
|
|
unsigned int periods = size / period_size;
|
|
struct dma_async_tx_descriptor *tx_desc;
|
|
struct xdma_desc_block *dblk;
|
|
struct xdma_hw_desc *desc;
|
|
struct xdma_desc *sw_desc;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Simplify the whole logic by preventing an abnormally high number of
|
|
* periods and periods size.
|
|
*/
|
|
if (period_size > XDMA_DESC_BLEN_MAX) {
|
|
xdma_err(xdev, "period size limited to %lu bytes\n", XDMA_DESC_BLEN_MAX);
|
|
return NULL;
|
|
}
|
|
|
|
if (periods > XDMA_DESC_ADJACENT) {
|
|
xdma_err(xdev, "number of periods limited to %u\n", XDMA_DESC_ADJACENT);
|
|
return NULL;
|
|
}
|
|
|
|
sw_desc = xdma_alloc_desc(xdma_chan, periods, true);
|
|
if (!sw_desc)
|
|
return NULL;
|
|
|
|
sw_desc->periods = periods;
|
|
sw_desc->period_size = period_size;
|
|
sw_desc->dir = dir;
|
|
|
|
dblk = sw_desc->desc_blocks;
|
|
desc = dblk->virt_addr;
|
|
|
|
/* fill hardware descriptor */
|
|
for (i = 0; i < periods; i++) {
|
|
desc->bytes = cpu_to_le32(period_size);
|
|
if (dir == DMA_MEM_TO_DEV) {
|
|
desc->src_addr = cpu_to_le64(address + i * period_size);
|
|
desc->dst_addr = cpu_to_le64(xdma_chan->cfg.dst_addr);
|
|
} else {
|
|
desc->src_addr = cpu_to_le64(xdma_chan->cfg.src_addr);
|
|
desc->dst_addr = cpu_to_le64(address + i * period_size);
|
|
}
|
|
|
|
desc++;
|
|
}
|
|
|
|
tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
|
|
if (!tx_desc)
|
|
goto failed;
|
|
|
|
return tx_desc;
|
|
|
|
failed:
|
|
xdma_free_desc(&sw_desc->vdesc);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xdma_device_config - Configure the DMA channel
|
|
* @chan: DMA channel
|
|
* @cfg: channel configuration
|
|
*/
|
|
static int xdma_device_config(struct dma_chan *chan,
|
|
struct dma_slave_config *cfg)
|
|
{
|
|
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
|
|
|
|
memcpy(&xdma_chan->cfg, cfg, sizeof(*cfg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xdma_free_chan_resources - Free channel resources
|
|
* @chan: DMA channel
|
|
*/
|
|
static void xdma_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
|
|
|
|
vchan_free_chan_resources(&xdma_chan->vchan);
|
|
dma_pool_destroy(xdma_chan->desc_pool);
|
|
xdma_chan->desc_pool = NULL;
|
|
}
|
|
|
|
/**
|
|
* xdma_alloc_chan_resources - Allocate channel resources
|
|
* @chan: DMA channel
|
|
*/
|
|
static int xdma_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
|
|
struct xdma_device *xdev = xdma_chan->xdev_hdl;
|
|
struct device *dev = xdev->dma_dev.dev;
|
|
|
|
while (dev && !dev_is_pci(dev))
|
|
dev = dev->parent;
|
|
if (!dev) {
|
|
xdma_err(xdev, "unable to find pci device");
|
|
return -EINVAL;
|
|
}
|
|
|
|
xdma_chan->desc_pool = dma_pool_create(dma_chan_name(chan),
|
|
dev, XDMA_DESC_BLOCK_SIZE,
|
|
XDMA_DESC_BLOCK_ALIGN, 0);
|
|
if (!xdma_chan->desc_pool) {
|
|
xdma_err(xdev, "unable to allocate descriptor pool");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum dma_status xdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
|
|
struct dma_tx_state *state)
|
|
{
|
|
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
|
|
struct xdma_desc *desc = NULL;
|
|
struct virt_dma_desc *vd;
|
|
enum dma_status ret;
|
|
unsigned long flags;
|
|
unsigned int period_idx;
|
|
u32 residue = 0;
|
|
|
|
ret = dma_cookie_status(chan, cookie, state);
|
|
if (ret == DMA_COMPLETE)
|
|
return ret;
|
|
|
|
spin_lock_irqsave(&xdma_chan->vchan.lock, flags);
|
|
|
|
vd = vchan_find_desc(&xdma_chan->vchan, cookie);
|
|
if (vd)
|
|
desc = to_xdma_desc(vd);
|
|
if (!desc || !desc->cyclic) {
|
|
spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
period_idx = desc->completed_desc_num % desc->periods;
|
|
residue = (desc->periods - period_idx) * desc->period_size;
|
|
|
|
spin_unlock_irqrestore(&xdma_chan->vchan.lock, flags);
|
|
|
|
dma_set_residue(state, residue);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xdma_channel_isr - XDMA channel interrupt handler
|
|
* @irq: IRQ number
|
|
* @dev_id: Pointer to the DMA channel structure
|
|
*/
|
|
static irqreturn_t xdma_channel_isr(int irq, void *dev_id)
|
|
{
|
|
struct xdma_chan *xchan = dev_id;
|
|
u32 complete_desc_num = 0;
|
|
struct xdma_device *xdev;
|
|
struct virt_dma_desc *vd;
|
|
struct xdma_desc *desc;
|
|
int ret;
|
|
u32 st;
|
|
|
|
spin_lock(&xchan->vchan.lock);
|
|
|
|
/* get submitted request */
|
|
vd = vchan_next_desc(&xchan->vchan);
|
|
if (!vd)
|
|
goto out;
|
|
|
|
xchan->busy = false;
|
|
desc = to_xdma_desc(vd);
|
|
xdev = xchan->xdev_hdl;
|
|
|
|
ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_COMPLETED_DESC,
|
|
&complete_desc_num);
|
|
if (ret)
|
|
goto out;
|
|
|
|
desc->completed_desc_num += complete_desc_num;
|
|
|
|
if (desc->cyclic) {
|
|
ret = regmap_read(xdev->rmap, xchan->base + XDMA_CHAN_STATUS,
|
|
&st);
|
|
if (ret)
|
|
goto out;
|
|
|
|
regmap_write(xdev->rmap, xchan->base + XDMA_CHAN_STATUS, st);
|
|
|
|
vchan_cyclic_callback(vd);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* if all data blocks are transferred, remove and complete the request
|
|
*/
|
|
if (desc->completed_desc_num == desc->desc_num) {
|
|
list_del(&vd->node);
|
|
vchan_cookie_complete(vd);
|
|
goto out;
|
|
}
|
|
|
|
if (desc->completed_desc_num > desc->desc_num ||
|
|
complete_desc_num != XDMA_DESC_BLOCK_NUM * XDMA_DESC_ADJACENT)
|
|
goto out;
|
|
|
|
/* transfer the rest of data (SG only) */
|
|
xdma_xfer_start(xchan);
|
|
|
|
out:
|
|
spin_unlock(&xchan->vchan.lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* xdma_irq_fini - Uninitialize IRQ
|
|
* @xdev: DMA device pointer
|
|
*/
|
|
static void xdma_irq_fini(struct xdma_device *xdev)
|
|
{
|
|
int i;
|
|
|
|
/* disable interrupt */
|
|
regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1C, ~0);
|
|
|
|
/* free irq handler */
|
|
for (i = 0; i < xdev->h2c_chan_num; i++)
|
|
free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
|
|
|
|
for (i = 0; i < xdev->c2h_chan_num; i++)
|
|
free_irq(xdev->c2h_chans[i].irq, &xdev->c2h_chans[i]);
|
|
}
|
|
|
|
/**
|
|
* xdma_set_vector_reg - configure hardware IRQ registers
|
|
* @xdev: DMA device pointer
|
|
* @vec_tbl_start: Start of IRQ registers
|
|
* @irq_start: Start of IRQ
|
|
* @irq_num: Number of IRQ
|
|
*/
|
|
static int xdma_set_vector_reg(struct xdma_device *xdev, u32 vec_tbl_start,
|
|
u32 irq_start, u32 irq_num)
|
|
{
|
|
u32 shift, i, val = 0;
|
|
int ret;
|
|
|
|
/* Each IRQ register is 32 bit and contains 4 IRQs */
|
|
while (irq_num > 0) {
|
|
for (i = 0; i < 4; i++) {
|
|
shift = XDMA_IRQ_VEC_SHIFT * i;
|
|
val |= irq_start << shift;
|
|
irq_start++;
|
|
irq_num--;
|
|
if (!irq_num)
|
|
break;
|
|
}
|
|
|
|
/* write IRQ register */
|
|
ret = regmap_write(xdev->rmap, vec_tbl_start, val);
|
|
if (ret)
|
|
return ret;
|
|
vec_tbl_start += sizeof(u32);
|
|
val = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xdma_irq_init - initialize IRQs
|
|
* @xdev: DMA device pointer
|
|
*/
|
|
static int xdma_irq_init(struct xdma_device *xdev)
|
|
{
|
|
u32 irq = xdev->irq_start;
|
|
u32 user_irq_start;
|
|
int i, j, ret;
|
|
|
|
/* return failure if there are not enough IRQs */
|
|
if (xdev->irq_num < XDMA_CHAN_NUM(xdev)) {
|
|
xdma_err(xdev, "not enough irq");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* setup H2C interrupt handler */
|
|
for (i = 0; i < xdev->h2c_chan_num; i++) {
|
|
ret = request_irq(irq, xdma_channel_isr, 0,
|
|
"xdma-h2c-channel", &xdev->h2c_chans[i]);
|
|
if (ret) {
|
|
xdma_err(xdev, "H2C channel%d request irq%d failed: %d",
|
|
i, irq, ret);
|
|
goto failed_init_h2c;
|
|
}
|
|
xdev->h2c_chans[i].irq = irq;
|
|
irq++;
|
|
}
|
|
|
|
/* setup C2H interrupt handler */
|
|
for (j = 0; j < xdev->c2h_chan_num; j++) {
|
|
ret = request_irq(irq, xdma_channel_isr, 0,
|
|
"xdma-c2h-channel", &xdev->c2h_chans[j]);
|
|
if (ret) {
|
|
xdma_err(xdev, "C2H channel%d request irq%d failed: %d",
|
|
j, irq, ret);
|
|
goto failed_init_c2h;
|
|
}
|
|
xdev->c2h_chans[j].irq = irq;
|
|
irq++;
|
|
}
|
|
|
|
/* config hardware IRQ registers */
|
|
ret = xdma_set_vector_reg(xdev, XDMA_IRQ_CHAN_VEC_NUM, 0,
|
|
XDMA_CHAN_NUM(xdev));
|
|
if (ret) {
|
|
xdma_err(xdev, "failed to set channel vectors: %d", ret);
|
|
goto failed_init_c2h;
|
|
}
|
|
|
|
/* config user IRQ registers if needed */
|
|
user_irq_start = XDMA_CHAN_NUM(xdev);
|
|
if (xdev->irq_num > user_irq_start) {
|
|
ret = xdma_set_vector_reg(xdev, XDMA_IRQ_USER_VEC_NUM,
|
|
user_irq_start,
|
|
xdev->irq_num - user_irq_start);
|
|
if (ret) {
|
|
xdma_err(xdev, "failed to set user vectors: %d", ret);
|
|
goto failed_init_c2h;
|
|
}
|
|
}
|
|
|
|
/* enable interrupt */
|
|
ret = regmap_write(xdev->rmap, XDMA_IRQ_CHAN_INT_EN_W1S, ~0);
|
|
if (ret)
|
|
goto failed_init_c2h;
|
|
|
|
return 0;
|
|
|
|
failed_init_c2h:
|
|
while (j--)
|
|
free_irq(xdev->c2h_chans[j].irq, &xdev->c2h_chans[j]);
|
|
failed_init_h2c:
|
|
while (i--)
|
|
free_irq(xdev->h2c_chans[i].irq, &xdev->h2c_chans[i]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool xdma_filter_fn(struct dma_chan *chan, void *param)
|
|
{
|
|
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
|
|
struct xdma_chan_info *chan_info = param;
|
|
|
|
return chan_info->dir == xdma_chan->dir;
|
|
}
|
|
|
|
/**
|
|
* xdma_disable_user_irq - Disable user interrupt
|
|
* @pdev: Pointer to the platform_device structure
|
|
* @irq_num: System IRQ number
|
|
*/
|
|
void xdma_disable_user_irq(struct platform_device *pdev, u32 irq_num)
|
|
{
|
|
struct xdma_device *xdev = platform_get_drvdata(pdev);
|
|
u32 index;
|
|
|
|
index = irq_num - xdev->irq_start;
|
|
if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
|
|
xdma_err(xdev, "invalid user irq number");
|
|
return;
|
|
}
|
|
index -= XDMA_CHAN_NUM(xdev);
|
|
|
|
regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1C, 1 << index);
|
|
}
|
|
EXPORT_SYMBOL(xdma_disable_user_irq);
|
|
|
|
/**
|
|
* xdma_enable_user_irq - Enable user logic interrupt
|
|
* @pdev: Pointer to the platform_device structure
|
|
* @irq_num: System IRQ number
|
|
*/
|
|
int xdma_enable_user_irq(struct platform_device *pdev, u32 irq_num)
|
|
{
|
|
struct xdma_device *xdev = platform_get_drvdata(pdev);
|
|
u32 index;
|
|
int ret;
|
|
|
|
index = irq_num - xdev->irq_start;
|
|
if (index < XDMA_CHAN_NUM(xdev) || index >= xdev->irq_num) {
|
|
xdma_err(xdev, "invalid user irq number");
|
|
return -EINVAL;
|
|
}
|
|
index -= XDMA_CHAN_NUM(xdev);
|
|
|
|
ret = regmap_write(xdev->rmap, XDMA_IRQ_USER_INT_EN_W1S, 1 << index);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(xdma_enable_user_irq);
|
|
|
|
/**
|
|
* xdma_get_user_irq - Get system IRQ number
|
|
* @pdev: Pointer to the platform_device structure
|
|
* @user_irq_index: User logic IRQ wire index
|
|
*
|
|
* Return: The system IRQ number allocated for the given wire index.
|
|
*/
|
|
int xdma_get_user_irq(struct platform_device *pdev, u32 user_irq_index)
|
|
{
|
|
struct xdma_device *xdev = platform_get_drvdata(pdev);
|
|
|
|
if (XDMA_CHAN_NUM(xdev) + user_irq_index >= xdev->irq_num) {
|
|
xdma_err(xdev, "invalid user irq index");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return xdev->irq_start + XDMA_CHAN_NUM(xdev) + user_irq_index;
|
|
}
|
|
EXPORT_SYMBOL(xdma_get_user_irq);
|
|
|
|
/**
|
|
* xdma_remove - Driver remove function
|
|
* @pdev: Pointer to the platform_device structure
|
|
*/
|
|
static void xdma_remove(struct platform_device *pdev)
|
|
{
|
|
struct xdma_device *xdev = platform_get_drvdata(pdev);
|
|
|
|
if (xdev->status & XDMA_DEV_STATUS_INIT_MSIX)
|
|
xdma_irq_fini(xdev);
|
|
|
|
if (xdev->status & XDMA_DEV_STATUS_REG_DMA)
|
|
dma_async_device_unregister(&xdev->dma_dev);
|
|
}
|
|
|
|
/**
|
|
* xdma_probe - Driver probe function
|
|
* @pdev: Pointer to the platform_device structure
|
|
*/
|
|
static int xdma_probe(struct platform_device *pdev)
|
|
{
|
|
struct xdma_platdata *pdata = dev_get_platdata(&pdev->dev);
|
|
struct xdma_device *xdev;
|
|
void __iomem *reg_base;
|
|
struct resource *res;
|
|
int ret = -ENODEV;
|
|
|
|
if (pdata->max_dma_channels > XDMA_MAX_CHANNELS) {
|
|
dev_err(&pdev->dev, "invalid max dma channels %d",
|
|
pdata->max_dma_channels);
|
|
return -EINVAL;
|
|
}
|
|
|
|
xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
|
|
if (!xdev)
|
|
return -ENOMEM;
|
|
|
|
platform_set_drvdata(pdev, xdev);
|
|
xdev->pdev = pdev;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
|
|
if (!res) {
|
|
xdma_err(xdev, "failed to get irq resource");
|
|
goto failed;
|
|
}
|
|
xdev->irq_start = res->start;
|
|
xdev->irq_num = resource_size(res);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!res) {
|
|
xdma_err(xdev, "failed to get io resource");
|
|
goto failed;
|
|
}
|
|
|
|
reg_base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(reg_base)) {
|
|
xdma_err(xdev, "ioremap failed");
|
|
goto failed;
|
|
}
|
|
|
|
xdev->rmap = devm_regmap_init_mmio(&pdev->dev, reg_base,
|
|
&xdma_regmap_config);
|
|
if (!xdev->rmap) {
|
|
xdma_err(xdev, "config regmap failed: %d", ret);
|
|
goto failed;
|
|
}
|
|
INIT_LIST_HEAD(&xdev->dma_dev.channels);
|
|
|
|
ret = xdma_alloc_channels(xdev, DMA_MEM_TO_DEV);
|
|
if (ret) {
|
|
xdma_err(xdev, "config H2C channels failed: %d", ret);
|
|
goto failed;
|
|
}
|
|
|
|
ret = xdma_alloc_channels(xdev, DMA_DEV_TO_MEM);
|
|
if (ret) {
|
|
xdma_err(xdev, "config C2H channels failed: %d", ret);
|
|
goto failed;
|
|
}
|
|
|
|
dma_cap_set(DMA_SLAVE, xdev->dma_dev.cap_mask);
|
|
dma_cap_set(DMA_PRIVATE, xdev->dma_dev.cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, xdev->dma_dev.cap_mask);
|
|
|
|
xdev->dma_dev.dev = &pdev->dev;
|
|
xdev->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
|
|
xdev->dma_dev.device_free_chan_resources = xdma_free_chan_resources;
|
|
xdev->dma_dev.device_alloc_chan_resources = xdma_alloc_chan_resources;
|
|
xdev->dma_dev.device_tx_status = xdma_tx_status;
|
|
xdev->dma_dev.device_prep_slave_sg = xdma_prep_device_sg;
|
|
xdev->dma_dev.device_config = xdma_device_config;
|
|
xdev->dma_dev.device_issue_pending = xdma_issue_pending;
|
|
xdev->dma_dev.filter.map = pdata->device_map;
|
|
xdev->dma_dev.filter.mapcnt = pdata->device_map_cnt;
|
|
xdev->dma_dev.filter.fn = xdma_filter_fn;
|
|
xdev->dma_dev.device_prep_dma_cyclic = xdma_prep_dma_cyclic;
|
|
|
|
ret = dma_async_device_register(&xdev->dma_dev);
|
|
if (ret) {
|
|
xdma_err(xdev, "failed to register Xilinx XDMA: %d", ret);
|
|
goto failed;
|
|
}
|
|
xdev->status |= XDMA_DEV_STATUS_REG_DMA;
|
|
|
|
ret = xdma_irq_init(xdev);
|
|
if (ret) {
|
|
xdma_err(xdev, "failed to init msix: %d", ret);
|
|
goto failed;
|
|
}
|
|
xdev->status |= XDMA_DEV_STATUS_INIT_MSIX;
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
xdma_remove(pdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct platform_device_id xdma_id_table[] = {
|
|
{ "xdma", 0},
|
|
{ },
|
|
};
|
|
|
|
static struct platform_driver xdma_driver = {
|
|
.driver = {
|
|
.name = "xdma",
|
|
},
|
|
.id_table = xdma_id_table,
|
|
.probe = xdma_probe,
|
|
.remove_new = xdma_remove,
|
|
};
|
|
|
|
module_platform_driver(xdma_driver);
|
|
|
|
MODULE_DESCRIPTION("AMD XDMA driver");
|
|
MODULE_AUTHOR("XRT Team <runtimeca39d@amd.com>");
|
|
MODULE_LICENSE("GPL");
|