linux-next/drivers/dma/xilinx/xilinx_dpdma.c
Uwe Kleine-König c962eca73c dmaengine: xilinx: xilinx_dpdma: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is ignored (apart
from emitting a warning) and this typically results in resource leaks.
To improve here there is a quest to make the remove callback return
void. In the first step of this quest all drivers are converted to
.remove_new() which already returns void. Eventually after all drivers
are converted, .remove_new() is renamed to .remove().

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20230919133207.1400430-59-u.kleine-koenig@pengutronix.de
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2023-09-28 13:10:59 +05:30

1776 lines
50 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Xilinx ZynqMP DPDMA Engine driver
*
* Copyright (C) 2015 - 2020 Xilinx, Inc.
*
* Author: Hyun Woo Kwon <hyun.kwon@xilinx.com>
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/dma/xilinx_dpdma.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <dt-bindings/dma/xlnx-zynqmp-dpdma.h>
#include "../dmaengine.h"
#include "../virt-dma.h"
/* DPDMA registers */
#define XILINX_DPDMA_ERR_CTRL 0x000
#define XILINX_DPDMA_ISR 0x004
#define XILINX_DPDMA_IMR 0x008
#define XILINX_DPDMA_IEN 0x00c
#define XILINX_DPDMA_IDS 0x010
#define XILINX_DPDMA_INTR_DESC_DONE(n) BIT((n) + 0)
#define XILINX_DPDMA_INTR_DESC_DONE_MASK GENMASK(5, 0)
#define XILINX_DPDMA_INTR_NO_OSTAND(n) BIT((n) + 6)
#define XILINX_DPDMA_INTR_NO_OSTAND_MASK GENMASK(11, 6)
#define XILINX_DPDMA_INTR_AXI_ERR(n) BIT((n) + 12)
#define XILINX_DPDMA_INTR_AXI_ERR_MASK GENMASK(17, 12)
#define XILINX_DPDMA_INTR_DESC_ERR(n) BIT((n) + 16)
#define XILINX_DPDMA_INTR_DESC_ERR_MASK GENMASK(23, 18)
#define XILINX_DPDMA_INTR_WR_CMD_FIFO_FULL BIT(24)
#define XILINX_DPDMA_INTR_WR_DATA_FIFO_FULL BIT(25)
#define XILINX_DPDMA_INTR_AXI_4K_CROSS BIT(26)
#define XILINX_DPDMA_INTR_VSYNC BIT(27)
#define XILINX_DPDMA_INTR_CHAN_ERR_MASK 0x00041000
#define XILINX_DPDMA_INTR_CHAN_ERR 0x00fff000
#define XILINX_DPDMA_INTR_GLOBAL_ERR 0x07000000
#define XILINX_DPDMA_INTR_ERR_ALL 0x07fff000
#define XILINX_DPDMA_INTR_CHAN_MASK 0x00041041
#define XILINX_DPDMA_INTR_GLOBAL_MASK 0x0f000000
#define XILINX_DPDMA_INTR_ALL 0x0fffffff
#define XILINX_DPDMA_EISR 0x014
#define XILINX_DPDMA_EIMR 0x018
#define XILINX_DPDMA_EIEN 0x01c
#define XILINX_DPDMA_EIDS 0x020
#define XILINX_DPDMA_EINTR_INV_APB BIT(0)
#define XILINX_DPDMA_EINTR_RD_AXI_ERR(n) BIT((n) + 1)
#define XILINX_DPDMA_EINTR_RD_AXI_ERR_MASK GENMASK(6, 1)
#define XILINX_DPDMA_EINTR_PRE_ERR(n) BIT((n) + 7)
#define XILINX_DPDMA_EINTR_PRE_ERR_MASK GENMASK(12, 7)
#define XILINX_DPDMA_EINTR_CRC_ERR(n) BIT((n) + 13)
#define XILINX_DPDMA_EINTR_CRC_ERR_MASK GENMASK(18, 13)
#define XILINX_DPDMA_EINTR_WR_AXI_ERR(n) BIT((n) + 19)
#define XILINX_DPDMA_EINTR_WR_AXI_ERR_MASK GENMASK(24, 19)
#define XILINX_DPDMA_EINTR_DESC_DONE_ERR(n) BIT((n) + 25)
#define XILINX_DPDMA_EINTR_DESC_DONE_ERR_MASK GENMASK(30, 25)
#define XILINX_DPDMA_EINTR_RD_CMD_FIFO_FULL BIT(32)
#define XILINX_DPDMA_EINTR_CHAN_ERR_MASK 0x02082082
#define XILINX_DPDMA_EINTR_CHAN_ERR 0x7ffffffe
#define XILINX_DPDMA_EINTR_GLOBAL_ERR 0x80000001
#define XILINX_DPDMA_EINTR_ALL 0xffffffff
#define XILINX_DPDMA_CNTL 0x100
#define XILINX_DPDMA_GBL 0x104
#define XILINX_DPDMA_GBL_TRIG_MASK(n) ((n) << 0)
#define XILINX_DPDMA_GBL_RETRIG_MASK(n) ((n) << 6)
#define XILINX_DPDMA_ALC0_CNTL 0x108
#define XILINX_DPDMA_ALC0_STATUS 0x10c
#define XILINX_DPDMA_ALC0_MAX 0x110
#define XILINX_DPDMA_ALC0_MIN 0x114
#define XILINX_DPDMA_ALC0_ACC 0x118
#define XILINX_DPDMA_ALC0_ACC_TRAN 0x11c
#define XILINX_DPDMA_ALC1_CNTL 0x120
#define XILINX_DPDMA_ALC1_STATUS 0x124
#define XILINX_DPDMA_ALC1_MAX 0x128
#define XILINX_DPDMA_ALC1_MIN 0x12c
#define XILINX_DPDMA_ALC1_ACC 0x130
#define XILINX_DPDMA_ALC1_ACC_TRAN 0x134
/* Channel register */
#define XILINX_DPDMA_CH_BASE 0x200
#define XILINX_DPDMA_CH_OFFSET 0x100
#define XILINX_DPDMA_CH_DESC_START_ADDRE 0x000
#define XILINX_DPDMA_CH_DESC_START_ADDRE_MASK GENMASK(15, 0)
#define XILINX_DPDMA_CH_DESC_START_ADDR 0x004
#define XILINX_DPDMA_CH_DESC_NEXT_ADDRE 0x008
#define XILINX_DPDMA_CH_DESC_NEXT_ADDR 0x00c
#define XILINX_DPDMA_CH_PYLD_CUR_ADDRE 0x010
#define XILINX_DPDMA_CH_PYLD_CUR_ADDR 0x014
#define XILINX_DPDMA_CH_CNTL 0x018
#define XILINX_DPDMA_CH_CNTL_ENABLE BIT(0)
#define XILINX_DPDMA_CH_CNTL_PAUSE BIT(1)
#define XILINX_DPDMA_CH_CNTL_QOS_DSCR_WR_MASK GENMASK(5, 2)
#define XILINX_DPDMA_CH_CNTL_QOS_DSCR_RD_MASK GENMASK(9, 6)
#define XILINX_DPDMA_CH_CNTL_QOS_DATA_RD_MASK GENMASK(13, 10)
#define XILINX_DPDMA_CH_CNTL_QOS_VID_CLASS 11
#define XILINX_DPDMA_CH_STATUS 0x01c
#define XILINX_DPDMA_CH_STATUS_OTRAN_CNT_MASK GENMASK(24, 21)
#define XILINX_DPDMA_CH_VDO 0x020
#define XILINX_DPDMA_CH_PYLD_SZ 0x024
#define XILINX_DPDMA_CH_DESC_ID 0x028
#define XILINX_DPDMA_CH_DESC_ID_MASK GENMASK(15, 0)
/* DPDMA descriptor fields */
#define XILINX_DPDMA_DESC_CONTROL_PREEMBLE 0xa5
#define XILINX_DPDMA_DESC_CONTROL_COMPLETE_INTR BIT(8)
#define XILINX_DPDMA_DESC_CONTROL_DESC_UPDATE BIT(9)
#define XILINX_DPDMA_DESC_CONTROL_IGNORE_DONE BIT(10)
#define XILINX_DPDMA_DESC_CONTROL_FRAG_MODE BIT(18)
#define XILINX_DPDMA_DESC_CONTROL_LAST BIT(19)
#define XILINX_DPDMA_DESC_CONTROL_ENABLE_CRC BIT(20)
#define XILINX_DPDMA_DESC_CONTROL_LAST_OF_FRAME BIT(21)
#define XILINX_DPDMA_DESC_ID_MASK GENMASK(15, 0)
#define XILINX_DPDMA_DESC_HSIZE_STRIDE_HSIZE_MASK GENMASK(17, 0)
#define XILINX_DPDMA_DESC_HSIZE_STRIDE_STRIDE_MASK GENMASK(31, 18)
#define XILINX_DPDMA_DESC_ADDR_EXT_NEXT_ADDR_MASK GENMASK(15, 0)
#define XILINX_DPDMA_DESC_ADDR_EXT_SRC_ADDR_MASK GENMASK(31, 16)
#define XILINX_DPDMA_ALIGN_BYTES 256
#define XILINX_DPDMA_LINESIZE_ALIGN_BITS 128
#define XILINX_DPDMA_NUM_CHAN 6
struct xilinx_dpdma_chan;
/**
* struct xilinx_dpdma_hw_desc - DPDMA hardware descriptor
* @control: control configuration field
* @desc_id: descriptor ID
* @xfer_size: transfer size
* @hsize_stride: horizontal size and stride
* @timestamp_lsb: LSB of time stamp
* @timestamp_msb: MSB of time stamp
* @addr_ext: upper 16 bit of 48 bit address (next_desc and src_addr)
* @next_desc: next descriptor 32 bit address
* @src_addr: payload source address (1st page, 32 LSB)
* @addr_ext_23: payload source address (3nd and 3rd pages, 16 LSBs)
* @addr_ext_45: payload source address (4th and 5th pages, 16 LSBs)
* @src_addr2: payload source address (2nd page, 32 LSB)
* @src_addr3: payload source address (3rd page, 32 LSB)
* @src_addr4: payload source address (4th page, 32 LSB)
* @src_addr5: payload source address (5th page, 32 LSB)
* @crc: descriptor CRC
*/
struct xilinx_dpdma_hw_desc {
u32 control;
u32 desc_id;
u32 xfer_size;
u32 hsize_stride;
u32 timestamp_lsb;
u32 timestamp_msb;
u32 addr_ext;
u32 next_desc;
u32 src_addr;
u32 addr_ext_23;
u32 addr_ext_45;
u32 src_addr2;
u32 src_addr3;
u32 src_addr4;
u32 src_addr5;
u32 crc;
} __aligned(XILINX_DPDMA_ALIGN_BYTES);
/**
* struct xilinx_dpdma_sw_desc - DPDMA software descriptor
* @hw: DPDMA hardware descriptor
* @node: list node for software descriptors
* @dma_addr: DMA address of the software descriptor
*/
struct xilinx_dpdma_sw_desc {
struct xilinx_dpdma_hw_desc hw;
struct list_head node;
dma_addr_t dma_addr;
};
/**
* struct xilinx_dpdma_tx_desc - DPDMA transaction descriptor
* @vdesc: virtual DMA descriptor
* @chan: DMA channel
* @descriptors: list of software descriptors
* @error: an error has been detected with this descriptor
*/
struct xilinx_dpdma_tx_desc {
struct virt_dma_desc vdesc;
struct xilinx_dpdma_chan *chan;
struct list_head descriptors;
bool error;
};
#define to_dpdma_tx_desc(_desc) \
container_of(_desc, struct xilinx_dpdma_tx_desc, vdesc)
/**
* struct xilinx_dpdma_chan - DPDMA channel
* @vchan: virtual DMA channel
* @reg: register base address
* @id: channel ID
* @wait_to_stop: queue to wait for outstanding transacitons before stopping
* @running: true if the channel is running
* @first_frame: flag for the first frame of stream
* @video_group: flag if multi-channel operation is needed for video channels
* @lock: lock to access struct xilinx_dpdma_chan
* @desc_pool: descriptor allocation pool
* @err_task: error IRQ bottom half handler
* @desc: References to descriptors being processed
* @desc.pending: Descriptor schedule to the hardware, pending execution
* @desc.active: Descriptor being executed by the hardware
* @xdev: DPDMA device
*/
struct xilinx_dpdma_chan {
struct virt_dma_chan vchan;
void __iomem *reg;
unsigned int id;
wait_queue_head_t wait_to_stop;
bool running;
bool first_frame;
bool video_group;
spinlock_t lock; /* lock to access struct xilinx_dpdma_chan */
struct dma_pool *desc_pool;
struct tasklet_struct err_task;
struct {
struct xilinx_dpdma_tx_desc *pending;
struct xilinx_dpdma_tx_desc *active;
} desc;
struct xilinx_dpdma_device *xdev;
};
#define to_xilinx_chan(_chan) \
container_of(_chan, struct xilinx_dpdma_chan, vchan.chan)
/**
* struct xilinx_dpdma_device - DPDMA device
* @common: generic dma device structure
* @reg: register base address
* @dev: generic device structure
* @irq: the interrupt number
* @axi_clk: axi clock
* @chan: DPDMA channels
* @ext_addr: flag for 64 bit system (48 bit addressing)
*/
struct xilinx_dpdma_device {
struct dma_device common;
void __iomem *reg;
struct device *dev;
int irq;
struct clk *axi_clk;
struct xilinx_dpdma_chan *chan[XILINX_DPDMA_NUM_CHAN];
bool ext_addr;
};
/* -----------------------------------------------------------------------------
* DebugFS
*/
#define XILINX_DPDMA_DEBUGFS_READ_MAX_SIZE 32
#define XILINX_DPDMA_DEBUGFS_UINT16_MAX_STR "65535"
/* Match xilinx_dpdma_testcases vs dpdma_debugfs_reqs[] entry */
enum xilinx_dpdma_testcases {
DPDMA_TC_INTR_DONE,
DPDMA_TC_NONE
};
struct xilinx_dpdma_debugfs {
enum xilinx_dpdma_testcases testcase;
u16 xilinx_dpdma_irq_done_count;
unsigned int chan_id;
};
static struct xilinx_dpdma_debugfs dpdma_debugfs;
struct xilinx_dpdma_debugfs_request {
const char *name;
enum xilinx_dpdma_testcases tc;
ssize_t (*read)(char *buf);
int (*write)(char *args);
};
static void xilinx_dpdma_debugfs_desc_done_irq(struct xilinx_dpdma_chan *chan)
{
if (IS_ENABLED(CONFIG_DEBUG_FS) && chan->id == dpdma_debugfs.chan_id)
dpdma_debugfs.xilinx_dpdma_irq_done_count++;
}
static ssize_t xilinx_dpdma_debugfs_desc_done_irq_read(char *buf)
{
size_t out_str_len;
dpdma_debugfs.testcase = DPDMA_TC_NONE;
out_str_len = strlen(XILINX_DPDMA_DEBUGFS_UINT16_MAX_STR);
out_str_len = min_t(size_t, XILINX_DPDMA_DEBUGFS_READ_MAX_SIZE,
out_str_len);
snprintf(buf, out_str_len, "%d",
dpdma_debugfs.xilinx_dpdma_irq_done_count);
return 0;
}
static int xilinx_dpdma_debugfs_desc_done_irq_write(char *args)
{
char *arg;
int ret;
u32 id;
arg = strsep(&args, " ");
if (!arg || strncasecmp(arg, "start", 5))
return -EINVAL;
arg = strsep(&args, " ");
if (!arg)
return -EINVAL;
ret = kstrtou32(arg, 0, &id);
if (ret < 0)
return ret;
if (id < ZYNQMP_DPDMA_VIDEO0 || id > ZYNQMP_DPDMA_AUDIO1)
return -EINVAL;
dpdma_debugfs.testcase = DPDMA_TC_INTR_DONE;
dpdma_debugfs.xilinx_dpdma_irq_done_count = 0;
dpdma_debugfs.chan_id = id;
return 0;
}
/* Match xilinx_dpdma_testcases vs dpdma_debugfs_reqs[] entry */
static struct xilinx_dpdma_debugfs_request dpdma_debugfs_reqs[] = {
{
.name = "DESCRIPTOR_DONE_INTR",
.tc = DPDMA_TC_INTR_DONE,
.read = xilinx_dpdma_debugfs_desc_done_irq_read,
.write = xilinx_dpdma_debugfs_desc_done_irq_write,
},
};
static ssize_t xilinx_dpdma_debugfs_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
enum xilinx_dpdma_testcases testcase;
char *kern_buff;
int ret = 0;
if (*pos != 0 || size <= 0)
return -EINVAL;
kern_buff = kzalloc(XILINX_DPDMA_DEBUGFS_READ_MAX_SIZE, GFP_KERNEL);
if (!kern_buff) {
dpdma_debugfs.testcase = DPDMA_TC_NONE;
return -ENOMEM;
}
testcase = READ_ONCE(dpdma_debugfs.testcase);
if (testcase != DPDMA_TC_NONE) {
ret = dpdma_debugfs_reqs[testcase].read(kern_buff);
if (ret < 0)
goto done;
} else {
strscpy(kern_buff, "No testcase executed",
XILINX_DPDMA_DEBUGFS_READ_MAX_SIZE);
}
size = min(size, strlen(kern_buff));
if (copy_to_user(buf, kern_buff, size))
ret = -EFAULT;
done:
kfree(kern_buff);
if (ret)
return ret;
*pos = size + 1;
return size;
}
static ssize_t xilinx_dpdma_debugfs_write(struct file *f,
const char __user *buf, size_t size,
loff_t *pos)
{
char *kern_buff, *kern_buff_start;
char *testcase;
unsigned int i;
int ret;
if (*pos != 0 || size <= 0)
return -EINVAL;
/* Supporting single instance of test as of now. */
if (dpdma_debugfs.testcase != DPDMA_TC_NONE)
return -EBUSY;
kern_buff = kzalloc(size, GFP_KERNEL);
if (!kern_buff)
return -ENOMEM;
kern_buff_start = kern_buff;
ret = strncpy_from_user(kern_buff, buf, size);
if (ret < 0)
goto done;
/* Read the testcase name from a user request. */
testcase = strsep(&kern_buff, " ");
for (i = 0; i < ARRAY_SIZE(dpdma_debugfs_reqs); i++) {
if (!strcasecmp(testcase, dpdma_debugfs_reqs[i].name))
break;
}
if (i == ARRAY_SIZE(dpdma_debugfs_reqs)) {
ret = -EINVAL;
goto done;
}
ret = dpdma_debugfs_reqs[i].write(kern_buff);
if (ret < 0)
goto done;
ret = size;
done:
kfree(kern_buff_start);
return ret;
}
static const struct file_operations fops_xilinx_dpdma_dbgfs = {
.owner = THIS_MODULE,
.read = xilinx_dpdma_debugfs_read,
.write = xilinx_dpdma_debugfs_write,
};
static void xilinx_dpdma_debugfs_init(struct xilinx_dpdma_device *xdev)
{
struct dentry *dent;
dpdma_debugfs.testcase = DPDMA_TC_NONE;
dent = debugfs_create_file("testcase", 0444, xdev->common.dbg_dev_root,
NULL, &fops_xilinx_dpdma_dbgfs);
if (IS_ERR(dent))
dev_err(xdev->dev, "Failed to create debugfs testcase file\n");
}
/* -----------------------------------------------------------------------------
* I/O Accessors
*/
static inline u32 dpdma_read(void __iomem *base, u32 offset)
{
return ioread32(base + offset);
}
static inline void dpdma_write(void __iomem *base, u32 offset, u32 val)
{
iowrite32(val, base + offset);
}
static inline void dpdma_clr(void __iomem *base, u32 offset, u32 clr)
{
dpdma_write(base, offset, dpdma_read(base, offset) & ~clr);
}
static inline void dpdma_set(void __iomem *base, u32 offset, u32 set)
{
dpdma_write(base, offset, dpdma_read(base, offset) | set);
}
/* -----------------------------------------------------------------------------
* Descriptor Operations
*/
/**
* xilinx_dpdma_sw_desc_set_dma_addrs - Set DMA addresses in the descriptor
* @xdev: DPDMA device
* @sw_desc: The software descriptor in which to set DMA addresses
* @prev: The previous descriptor
* @dma_addr: array of dma addresses
* @num_src_addr: number of addresses in @dma_addr
*
* Set all the DMA addresses in the hardware descriptor corresponding to @dev
* from @dma_addr. If a previous descriptor is specified in @prev, its next
* descriptor DMA address is set to the DMA address of @sw_desc. @prev may be
* identical to @sw_desc for cyclic transfers.
*/
static void xilinx_dpdma_sw_desc_set_dma_addrs(struct xilinx_dpdma_device *xdev,
struct xilinx_dpdma_sw_desc *sw_desc,
struct xilinx_dpdma_sw_desc *prev,
dma_addr_t dma_addr[],
unsigned int num_src_addr)
{
struct xilinx_dpdma_hw_desc *hw_desc = &sw_desc->hw;
unsigned int i;
hw_desc->src_addr = lower_32_bits(dma_addr[0]);
if (xdev->ext_addr)
hw_desc->addr_ext |=
FIELD_PREP(XILINX_DPDMA_DESC_ADDR_EXT_SRC_ADDR_MASK,
upper_32_bits(dma_addr[0]));
for (i = 1; i < num_src_addr; i++) {
u32 *addr = &hw_desc->src_addr2;
addr[i - 1] = lower_32_bits(dma_addr[i]);
if (xdev->ext_addr) {
u32 *addr_ext = &hw_desc->addr_ext_23;
u32 addr_msb;
addr_msb = upper_32_bits(dma_addr[i]) & GENMASK(15, 0);
addr_msb <<= 16 * ((i - 1) % 2);
addr_ext[(i - 1) / 2] |= addr_msb;
}
}
if (!prev)
return;
prev->hw.next_desc = lower_32_bits(sw_desc->dma_addr);
if (xdev->ext_addr)
prev->hw.addr_ext |=
FIELD_PREP(XILINX_DPDMA_DESC_ADDR_EXT_NEXT_ADDR_MASK,
upper_32_bits(sw_desc->dma_addr));
}
/**
* xilinx_dpdma_chan_alloc_sw_desc - Allocate a software descriptor
* @chan: DPDMA channel
*
* Allocate a software descriptor from the channel's descriptor pool.
*
* Return: a software descriptor or NULL.
*/
static struct xilinx_dpdma_sw_desc *
xilinx_dpdma_chan_alloc_sw_desc(struct xilinx_dpdma_chan *chan)
{
struct xilinx_dpdma_sw_desc *sw_desc;
dma_addr_t dma_addr;
sw_desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &dma_addr);
if (!sw_desc)
return NULL;
sw_desc->dma_addr = dma_addr;
return sw_desc;
}
/**
* xilinx_dpdma_chan_free_sw_desc - Free a software descriptor
* @chan: DPDMA channel
* @sw_desc: software descriptor to free
*
* Free a software descriptor from the channel's descriptor pool.
*/
static void
xilinx_dpdma_chan_free_sw_desc(struct xilinx_dpdma_chan *chan,
struct xilinx_dpdma_sw_desc *sw_desc)
{
dma_pool_free(chan->desc_pool, sw_desc, sw_desc->dma_addr);
}
/**
* xilinx_dpdma_chan_dump_tx_desc - Dump a tx descriptor
* @chan: DPDMA channel
* @tx_desc: tx descriptor to dump
*
* Dump contents of a tx descriptor
*/
static void xilinx_dpdma_chan_dump_tx_desc(struct xilinx_dpdma_chan *chan,
struct xilinx_dpdma_tx_desc *tx_desc)
{
struct xilinx_dpdma_sw_desc *sw_desc;
struct device *dev = chan->xdev->dev;
unsigned int i = 0;
dev_dbg(dev, "------- TX descriptor dump start -------\n");
dev_dbg(dev, "------- channel ID = %d -------\n", chan->id);
list_for_each_entry(sw_desc, &tx_desc->descriptors, node) {
struct xilinx_dpdma_hw_desc *hw_desc = &sw_desc->hw;
dev_dbg(dev, "------- HW descriptor %d -------\n", i++);
dev_dbg(dev, "descriptor DMA addr: %pad\n", &sw_desc->dma_addr);
dev_dbg(dev, "control: 0x%08x\n", hw_desc->control);
dev_dbg(dev, "desc_id: 0x%08x\n", hw_desc->desc_id);
dev_dbg(dev, "xfer_size: 0x%08x\n", hw_desc->xfer_size);
dev_dbg(dev, "hsize_stride: 0x%08x\n", hw_desc->hsize_stride);
dev_dbg(dev, "timestamp_lsb: 0x%08x\n", hw_desc->timestamp_lsb);
dev_dbg(dev, "timestamp_msb: 0x%08x\n", hw_desc->timestamp_msb);
dev_dbg(dev, "addr_ext: 0x%08x\n", hw_desc->addr_ext);
dev_dbg(dev, "next_desc: 0x%08x\n", hw_desc->next_desc);
dev_dbg(dev, "src_addr: 0x%08x\n", hw_desc->src_addr);
dev_dbg(dev, "addr_ext_23: 0x%08x\n", hw_desc->addr_ext_23);
dev_dbg(dev, "addr_ext_45: 0x%08x\n", hw_desc->addr_ext_45);
dev_dbg(dev, "src_addr2: 0x%08x\n", hw_desc->src_addr2);
dev_dbg(dev, "src_addr3: 0x%08x\n", hw_desc->src_addr3);
dev_dbg(dev, "src_addr4: 0x%08x\n", hw_desc->src_addr4);
dev_dbg(dev, "src_addr5: 0x%08x\n", hw_desc->src_addr5);
dev_dbg(dev, "crc: 0x%08x\n", hw_desc->crc);
}
dev_dbg(dev, "------- TX descriptor dump end -------\n");
}
/**
* xilinx_dpdma_chan_alloc_tx_desc - Allocate a transaction descriptor
* @chan: DPDMA channel
*
* Allocate a tx descriptor.
*
* Return: a tx descriptor or NULL.
*/
static struct xilinx_dpdma_tx_desc *
xilinx_dpdma_chan_alloc_tx_desc(struct xilinx_dpdma_chan *chan)
{
struct xilinx_dpdma_tx_desc *tx_desc;
tx_desc = kzalloc(sizeof(*tx_desc), GFP_NOWAIT);
if (!tx_desc)
return NULL;
INIT_LIST_HEAD(&tx_desc->descriptors);
tx_desc->chan = chan;
tx_desc->error = false;
return tx_desc;
}
/**
* xilinx_dpdma_chan_free_tx_desc - Free a virtual DMA descriptor
* @vdesc: virtual DMA descriptor
*
* Free the virtual DMA descriptor @vdesc including its software descriptors.
*/
static void xilinx_dpdma_chan_free_tx_desc(struct virt_dma_desc *vdesc)
{
struct xilinx_dpdma_sw_desc *sw_desc, *next;
struct xilinx_dpdma_tx_desc *desc;
if (!vdesc)
return;
desc = to_dpdma_tx_desc(vdesc);
list_for_each_entry_safe(sw_desc, next, &desc->descriptors, node) {
list_del(&sw_desc->node);
xilinx_dpdma_chan_free_sw_desc(desc->chan, sw_desc);
}
kfree(desc);
}
/**
* xilinx_dpdma_chan_prep_interleaved_dma - Prepare an interleaved dma
* descriptor
* @chan: DPDMA channel
* @xt: dma interleaved template
*
* Prepare a tx descriptor including internal software/hardware descriptors
* based on @xt.
*
* Return: A DPDMA TX descriptor on success, or NULL.
*/
static struct xilinx_dpdma_tx_desc *
xilinx_dpdma_chan_prep_interleaved_dma(struct xilinx_dpdma_chan *chan,
struct dma_interleaved_template *xt)
{
struct xilinx_dpdma_tx_desc *tx_desc;
struct xilinx_dpdma_sw_desc *sw_desc;
struct xilinx_dpdma_hw_desc *hw_desc;
size_t hsize = xt->sgl[0].size;
size_t stride = hsize + xt->sgl[0].icg;
if (!IS_ALIGNED(xt->src_start, XILINX_DPDMA_ALIGN_BYTES)) {
dev_err(chan->xdev->dev,
"chan%u: buffer should be aligned at %d B\n",
chan->id, XILINX_DPDMA_ALIGN_BYTES);
return NULL;
}
tx_desc = xilinx_dpdma_chan_alloc_tx_desc(chan);
if (!tx_desc)
return NULL;
sw_desc = xilinx_dpdma_chan_alloc_sw_desc(chan);
if (!sw_desc) {
xilinx_dpdma_chan_free_tx_desc(&tx_desc->vdesc);
return NULL;
}
xilinx_dpdma_sw_desc_set_dma_addrs(chan->xdev, sw_desc, sw_desc,
&xt->src_start, 1);
hw_desc = &sw_desc->hw;
hsize = ALIGN(hsize, XILINX_DPDMA_LINESIZE_ALIGN_BITS / 8);
hw_desc->xfer_size = hsize * xt->numf;
hw_desc->hsize_stride =
FIELD_PREP(XILINX_DPDMA_DESC_HSIZE_STRIDE_HSIZE_MASK, hsize) |
FIELD_PREP(XILINX_DPDMA_DESC_HSIZE_STRIDE_STRIDE_MASK,
stride / 16);
hw_desc->control |= XILINX_DPDMA_DESC_CONTROL_PREEMBLE;
hw_desc->control |= XILINX_DPDMA_DESC_CONTROL_COMPLETE_INTR;
hw_desc->control |= XILINX_DPDMA_DESC_CONTROL_IGNORE_DONE;
hw_desc->control |= XILINX_DPDMA_DESC_CONTROL_LAST_OF_FRAME;
list_add_tail(&sw_desc->node, &tx_desc->descriptors);
return tx_desc;
}
/* -----------------------------------------------------------------------------
* DPDMA Channel Operations
*/
/**
* xilinx_dpdma_chan_enable - Enable the channel
* @chan: DPDMA channel
*
* Enable the channel and its interrupts. Set the QoS values for video class.
*/
static void xilinx_dpdma_chan_enable(struct xilinx_dpdma_chan *chan)
{
u32 reg;
reg = (XILINX_DPDMA_INTR_CHAN_MASK << chan->id)
| XILINX_DPDMA_INTR_GLOBAL_MASK;
dpdma_write(chan->xdev->reg, XILINX_DPDMA_IEN, reg);
reg = (XILINX_DPDMA_EINTR_CHAN_ERR_MASK << chan->id)
| XILINX_DPDMA_INTR_GLOBAL_ERR;
dpdma_write(chan->xdev->reg, XILINX_DPDMA_EIEN, reg);
reg = XILINX_DPDMA_CH_CNTL_ENABLE
| FIELD_PREP(XILINX_DPDMA_CH_CNTL_QOS_DSCR_WR_MASK,
XILINX_DPDMA_CH_CNTL_QOS_VID_CLASS)
| FIELD_PREP(XILINX_DPDMA_CH_CNTL_QOS_DSCR_RD_MASK,
XILINX_DPDMA_CH_CNTL_QOS_VID_CLASS)
| FIELD_PREP(XILINX_DPDMA_CH_CNTL_QOS_DATA_RD_MASK,
XILINX_DPDMA_CH_CNTL_QOS_VID_CLASS);
dpdma_set(chan->reg, XILINX_DPDMA_CH_CNTL, reg);
}
/**
* xilinx_dpdma_chan_disable - Disable the channel
* @chan: DPDMA channel
*
* Disable the channel and its interrupts.
*/
static void xilinx_dpdma_chan_disable(struct xilinx_dpdma_chan *chan)
{
u32 reg;
reg = XILINX_DPDMA_INTR_CHAN_MASK << chan->id;
dpdma_write(chan->xdev->reg, XILINX_DPDMA_IEN, reg);
reg = XILINX_DPDMA_EINTR_CHAN_ERR_MASK << chan->id;
dpdma_write(chan->xdev->reg, XILINX_DPDMA_EIEN, reg);
dpdma_clr(chan->reg, XILINX_DPDMA_CH_CNTL, XILINX_DPDMA_CH_CNTL_ENABLE);
}
/**
* xilinx_dpdma_chan_pause - Pause the channel
* @chan: DPDMA channel
*
* Pause the channel.
*/
static void xilinx_dpdma_chan_pause(struct xilinx_dpdma_chan *chan)
{
dpdma_set(chan->reg, XILINX_DPDMA_CH_CNTL, XILINX_DPDMA_CH_CNTL_PAUSE);
}
/**
* xilinx_dpdma_chan_unpause - Unpause the channel
* @chan: DPDMA channel
*
* Unpause the channel.
*/
static void xilinx_dpdma_chan_unpause(struct xilinx_dpdma_chan *chan)
{
dpdma_clr(chan->reg, XILINX_DPDMA_CH_CNTL, XILINX_DPDMA_CH_CNTL_PAUSE);
}
static u32 xilinx_dpdma_chan_video_group_ready(struct xilinx_dpdma_chan *chan)
{
struct xilinx_dpdma_device *xdev = chan->xdev;
u32 channels = 0;
unsigned int i;
for (i = ZYNQMP_DPDMA_VIDEO0; i <= ZYNQMP_DPDMA_VIDEO2; i++) {
if (xdev->chan[i]->video_group && !xdev->chan[i]->running)
return 0;
if (xdev->chan[i]->video_group)
channels |= BIT(i);
}
return channels;
}
/**
* xilinx_dpdma_chan_queue_transfer - Queue the next transfer
* @chan: DPDMA channel
*
* Queue the next descriptor, if any, to the hardware. If the channel is
* stopped, start it first. Otherwise retrigger it with the next descriptor.
*/
static void xilinx_dpdma_chan_queue_transfer(struct xilinx_dpdma_chan *chan)
{
struct xilinx_dpdma_device *xdev = chan->xdev;
struct xilinx_dpdma_sw_desc *sw_desc;
struct xilinx_dpdma_tx_desc *desc;
struct virt_dma_desc *vdesc;
u32 reg, channels;
bool first_frame;
lockdep_assert_held(&chan->lock);
if (chan->desc.pending)
return;
if (!chan->running) {
xilinx_dpdma_chan_unpause(chan);
xilinx_dpdma_chan_enable(chan);
chan->first_frame = true;
chan->running = true;
}
vdesc = vchan_next_desc(&chan->vchan);
if (!vdesc)
return;
desc = to_dpdma_tx_desc(vdesc);
chan->desc.pending = desc;
list_del(&desc->vdesc.node);
/*
* Assign the cookie to descriptors in this transaction. Only 16 bit
* will be used, but it should be enough.
*/
list_for_each_entry(sw_desc, &desc->descriptors, node)
sw_desc->hw.desc_id = desc->vdesc.tx.cookie
& XILINX_DPDMA_CH_DESC_ID_MASK;
sw_desc = list_first_entry(&desc->descriptors,
struct xilinx_dpdma_sw_desc, node);
dpdma_write(chan->reg, XILINX_DPDMA_CH_DESC_START_ADDR,
lower_32_bits(sw_desc->dma_addr));
if (xdev->ext_addr)
dpdma_write(chan->reg, XILINX_DPDMA_CH_DESC_START_ADDRE,
FIELD_PREP(XILINX_DPDMA_CH_DESC_START_ADDRE_MASK,
upper_32_bits(sw_desc->dma_addr)));
first_frame = chan->first_frame;
chan->first_frame = false;
if (chan->video_group) {
channels = xilinx_dpdma_chan_video_group_ready(chan);
/*
* Trigger the transfer only when all channels in the group are
* ready.
*/
if (!channels)
return;
} else {
channels = BIT(chan->id);
}
if (first_frame)
reg = XILINX_DPDMA_GBL_TRIG_MASK(channels);
else
reg = XILINX_DPDMA_GBL_RETRIG_MASK(channels);
dpdma_write(xdev->reg, XILINX_DPDMA_GBL, reg);
}
/**
* xilinx_dpdma_chan_ostand - Number of outstanding transactions
* @chan: DPDMA channel
*
* Read and return the number of outstanding transactions from register.
*
* Return: Number of outstanding transactions from the status register.
*/
static u32 xilinx_dpdma_chan_ostand(struct xilinx_dpdma_chan *chan)
{
return FIELD_GET(XILINX_DPDMA_CH_STATUS_OTRAN_CNT_MASK,
dpdma_read(chan->reg, XILINX_DPDMA_CH_STATUS));
}
/**
* xilinx_dpdma_chan_notify_no_ostand - Notify no outstanding transaction event
* @chan: DPDMA channel
*
* Notify waiters for no outstanding event, so waiters can stop the channel
* safely. This function is supposed to be called when 'no outstanding'
* interrupt is generated. The 'no outstanding' interrupt is disabled and
* should be re-enabled when this event is handled. If the channel status
* register still shows some number of outstanding transactions, the interrupt
* remains enabled.
*
* Return: 0 on success. On failure, -EWOULDBLOCK if there's still outstanding
* transaction(s).
*/
static int xilinx_dpdma_chan_notify_no_ostand(struct xilinx_dpdma_chan *chan)
{
u32 cnt;
cnt = xilinx_dpdma_chan_ostand(chan);
if (cnt) {
dev_dbg(chan->xdev->dev,
"chan%u: %d outstanding transactions\n",
chan->id, cnt);
return -EWOULDBLOCK;
}
/* Disable 'no outstanding' interrupt */
dpdma_write(chan->xdev->reg, XILINX_DPDMA_IDS,
XILINX_DPDMA_INTR_NO_OSTAND(chan->id));
wake_up(&chan->wait_to_stop);
return 0;
}
/**
* xilinx_dpdma_chan_wait_no_ostand - Wait for the no outstanding irq
* @chan: DPDMA channel
*
* Wait for the no outstanding transaction interrupt. This functions can sleep
* for 50ms.
*
* Return: 0 on success. On failure, -ETIMEOUT for time out, or the error code
* from wait_event_interruptible_timeout().
*/
static int xilinx_dpdma_chan_wait_no_ostand(struct xilinx_dpdma_chan *chan)
{
int ret;
/* Wait for a no outstanding transaction interrupt upto 50msec */
ret = wait_event_interruptible_timeout(chan->wait_to_stop,
!xilinx_dpdma_chan_ostand(chan),
msecs_to_jiffies(50));
if (ret > 0) {
dpdma_write(chan->xdev->reg, XILINX_DPDMA_IEN,
XILINX_DPDMA_INTR_NO_OSTAND(chan->id));
return 0;
}
dev_err(chan->xdev->dev, "chan%u: not ready to stop: %d trans\n",
chan->id, xilinx_dpdma_chan_ostand(chan));
if (ret == 0)
return -ETIMEDOUT;
return ret;
}
/**
* xilinx_dpdma_chan_poll_no_ostand - Poll the outstanding transaction status
* @chan: DPDMA channel
*
* Poll the outstanding transaction status, and return when there's no
* outstanding transaction. This functions can be used in the interrupt context
* or where the atomicity is required. Calling thread may wait more than 50ms.
*
* Return: 0 on success, or -ETIMEDOUT.
*/
static int xilinx_dpdma_chan_poll_no_ostand(struct xilinx_dpdma_chan *chan)
{
u32 cnt, loop = 50000;
/* Poll at least for 50ms (20 fps). */
do {
cnt = xilinx_dpdma_chan_ostand(chan);
udelay(1);
} while (loop-- > 0 && cnt);
if (loop) {
dpdma_write(chan->xdev->reg, XILINX_DPDMA_IEN,
XILINX_DPDMA_INTR_NO_OSTAND(chan->id));
return 0;
}
dev_err(chan->xdev->dev, "chan%u: not ready to stop: %d trans\n",
chan->id, xilinx_dpdma_chan_ostand(chan));
return -ETIMEDOUT;
}
/**
* xilinx_dpdma_chan_stop - Stop the channel
* @chan: DPDMA channel
*
* Stop a previously paused channel by first waiting for completion of all
* outstanding transaction and then disabling the channel.
*
* Return: 0 on success, or -ETIMEDOUT if the channel failed to stop.
*/
static int xilinx_dpdma_chan_stop(struct xilinx_dpdma_chan *chan)
{
unsigned long flags;
int ret;
ret = xilinx_dpdma_chan_wait_no_ostand(chan);
if (ret)
return ret;
spin_lock_irqsave(&chan->lock, flags);
xilinx_dpdma_chan_disable(chan);
chan->running = false;
spin_unlock_irqrestore(&chan->lock, flags);
return 0;
}
/**
* xilinx_dpdma_chan_done_irq - Handle hardware descriptor completion
* @chan: DPDMA channel
*
* Handle completion of the currently active descriptor (@chan->desc.active). As
* we currently support cyclic transfers only, this just invokes the cyclic
* callback. The descriptor will be completed at the VSYNC interrupt when a new
* descriptor replaces it.
*/
static void xilinx_dpdma_chan_done_irq(struct xilinx_dpdma_chan *chan)
{
struct xilinx_dpdma_tx_desc *active;
unsigned long flags;
spin_lock_irqsave(&chan->lock, flags);
xilinx_dpdma_debugfs_desc_done_irq(chan);
active = chan->desc.active;
if (active)
vchan_cyclic_callback(&active->vdesc);
else
dev_warn(chan->xdev->dev,
"chan%u: DONE IRQ with no active descriptor!\n",
chan->id);
spin_unlock_irqrestore(&chan->lock, flags);
}
/**
* xilinx_dpdma_chan_vsync_irq - Handle hardware descriptor scheduling
* @chan: DPDMA channel
*
* At VSYNC the active descriptor may have been replaced by the pending
* descriptor. Detect this through the DESC_ID and perform appropriate
* bookkeeping.
*/
static void xilinx_dpdma_chan_vsync_irq(struct xilinx_dpdma_chan *chan)
{
struct xilinx_dpdma_tx_desc *pending;
struct xilinx_dpdma_sw_desc *sw_desc;
unsigned long flags;
u32 desc_id;
spin_lock_irqsave(&chan->lock, flags);
pending = chan->desc.pending;
if (!chan->running || !pending)
goto out;
desc_id = dpdma_read(chan->reg, XILINX_DPDMA_CH_DESC_ID)
& XILINX_DPDMA_CH_DESC_ID_MASK;
/* If the retrigger raced with vsync, retry at the next frame. */
sw_desc = list_first_entry(&pending->descriptors,
struct xilinx_dpdma_sw_desc, node);
if (sw_desc->hw.desc_id != desc_id) {
dev_dbg(chan->xdev->dev,
"chan%u: vsync race lost (%u != %u), retrying\n",
chan->id, sw_desc->hw.desc_id, desc_id);
goto out;
}
/*
* Complete the active descriptor, if any, promote the pending
* descriptor to active, and queue the next transfer, if any.
*/
if (chan->desc.active)
vchan_cookie_complete(&chan->desc.active->vdesc);
chan->desc.active = pending;
chan->desc.pending = NULL;
xilinx_dpdma_chan_queue_transfer(chan);
out:
spin_unlock_irqrestore(&chan->lock, flags);
}
/**
* xilinx_dpdma_chan_err - Detect any channel error
* @chan: DPDMA channel
* @isr: masked Interrupt Status Register
* @eisr: Error Interrupt Status Register
*
* Return: true if any channel error occurs, or false otherwise.
*/
static bool
xilinx_dpdma_chan_err(struct xilinx_dpdma_chan *chan, u32 isr, u32 eisr)
{
if (!chan)
return false;
if (chan->running &&
((isr & (XILINX_DPDMA_INTR_CHAN_ERR_MASK << chan->id)) ||
(eisr & (XILINX_DPDMA_EINTR_CHAN_ERR_MASK << chan->id))))
return true;
return false;
}
/**
* xilinx_dpdma_chan_handle_err - DPDMA channel error handling
* @chan: DPDMA channel
*
* This function is called when any channel error or any global error occurs.
* The function disables the paused channel by errors and determines
* if the current active descriptor can be rescheduled depending on
* the descriptor status.
*/
static void xilinx_dpdma_chan_handle_err(struct xilinx_dpdma_chan *chan)
{
struct xilinx_dpdma_device *xdev = chan->xdev;
struct xilinx_dpdma_tx_desc *active;
unsigned long flags;
spin_lock_irqsave(&chan->lock, flags);
dev_dbg(xdev->dev, "chan%u: cur desc addr = 0x%04x%08x\n",
chan->id,
dpdma_read(chan->reg, XILINX_DPDMA_CH_DESC_START_ADDRE),
dpdma_read(chan->reg, XILINX_DPDMA_CH_DESC_START_ADDR));
dev_dbg(xdev->dev, "chan%u: cur payload addr = 0x%04x%08x\n",
chan->id,
dpdma_read(chan->reg, XILINX_DPDMA_CH_PYLD_CUR_ADDRE),
dpdma_read(chan->reg, XILINX_DPDMA_CH_PYLD_CUR_ADDR));
xilinx_dpdma_chan_disable(chan);
chan->running = false;
if (!chan->desc.active)
goto out_unlock;
active = chan->desc.active;
chan->desc.active = NULL;
xilinx_dpdma_chan_dump_tx_desc(chan, active);
if (active->error)
dev_dbg(xdev->dev, "chan%u: repeated error on desc\n",
chan->id);
/* Reschedule if there's no new descriptor */
if (!chan->desc.pending &&
list_empty(&chan->vchan.desc_issued)) {
active->error = true;
list_add_tail(&active->vdesc.node,
&chan->vchan.desc_issued);
} else {
xilinx_dpdma_chan_free_tx_desc(&active->vdesc);
}
out_unlock:
spin_unlock_irqrestore(&chan->lock, flags);
}
/* -----------------------------------------------------------------------------
* DMA Engine Operations
*/
static struct dma_async_tx_descriptor *
xilinx_dpdma_prep_interleaved_dma(struct dma_chan *dchan,
struct dma_interleaved_template *xt,
unsigned long flags)
{
struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dpdma_tx_desc *desc;
if (xt->dir != DMA_MEM_TO_DEV)
return NULL;
if (!xt->numf || !xt->sgl[0].size)
return NULL;
if (!(flags & DMA_PREP_REPEAT) || !(flags & DMA_PREP_LOAD_EOT))
return NULL;
desc = xilinx_dpdma_chan_prep_interleaved_dma(chan, xt);
if (!desc)
return NULL;
vchan_tx_prep(&chan->vchan, &desc->vdesc, flags | DMA_CTRL_ACK);
return &desc->vdesc.tx;
}
/**
* xilinx_dpdma_alloc_chan_resources - Allocate resources for the channel
* @dchan: DMA channel
*
* Allocate a descriptor pool for the channel.
*
* Return: 0 on success, or -ENOMEM if failed to allocate a pool.
*/
static int xilinx_dpdma_alloc_chan_resources(struct dma_chan *dchan)
{
struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan);
size_t align = __alignof__(struct xilinx_dpdma_sw_desc);
chan->desc_pool = dma_pool_create(dev_name(chan->xdev->dev),
chan->xdev->dev,
sizeof(struct xilinx_dpdma_sw_desc),
align, 0);
if (!chan->desc_pool) {
dev_err(chan->xdev->dev,
"chan%u: failed to allocate a descriptor pool\n",
chan->id);
return -ENOMEM;
}
return 0;
}
/**
* xilinx_dpdma_free_chan_resources - Free all resources for the channel
* @dchan: DMA channel
*
* Free resources associated with the virtual DMA channel, and destroy the
* descriptor pool.
*/
static void xilinx_dpdma_free_chan_resources(struct dma_chan *dchan)
{
struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan);
vchan_free_chan_resources(&chan->vchan);
dma_pool_destroy(chan->desc_pool);
chan->desc_pool = NULL;
}
static void xilinx_dpdma_issue_pending(struct dma_chan *dchan)
{
struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan);
unsigned long flags;
spin_lock_irqsave(&chan->vchan.lock, flags);
if (vchan_issue_pending(&chan->vchan))
xilinx_dpdma_chan_queue_transfer(chan);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
}
static int xilinx_dpdma_config(struct dma_chan *dchan,
struct dma_slave_config *config)
{
struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dpdma_peripheral_config *pconfig;
unsigned long flags;
/*
* The destination address doesn't need to be specified as the DPDMA is
* hardwired to the destination (the DP controller). The transfer
* width, burst size and port window size are thus meaningless, they're
* fixed both on the DPDMA side and on the DP controller side.
*/
/*
* Use the peripheral_config to indicate that the channel is part
* of a video group. This requires matching use of the custom
* structure in each driver.
*/
pconfig = config->peripheral_config;
if (WARN_ON(pconfig && config->peripheral_size != sizeof(*pconfig)))
return -EINVAL;
spin_lock_irqsave(&chan->lock, flags);
if (chan->id <= ZYNQMP_DPDMA_VIDEO2 && pconfig)
chan->video_group = pconfig->video_group;
spin_unlock_irqrestore(&chan->lock, flags);
return 0;
}
static int xilinx_dpdma_pause(struct dma_chan *dchan)
{
xilinx_dpdma_chan_pause(to_xilinx_chan(dchan));
return 0;
}
static int xilinx_dpdma_resume(struct dma_chan *dchan)
{
xilinx_dpdma_chan_unpause(to_xilinx_chan(dchan));
return 0;
}
/**
* xilinx_dpdma_terminate_all - Terminate the channel and descriptors
* @dchan: DMA channel
*
* Pause the channel without waiting for ongoing transfers to complete. Waiting
* for completion is performed by xilinx_dpdma_synchronize() that will disable
* the channel to complete the stop.
*
* All the descriptors associated with the channel that are guaranteed not to
* be touched by the hardware. The pending and active descriptor are not
* touched, and will be freed either upon completion, or by
* xilinx_dpdma_synchronize().
*
* Return: 0 on success, or -ETIMEDOUT if the channel failed to stop.
*/
static int xilinx_dpdma_terminate_all(struct dma_chan *dchan)
{
struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dpdma_device *xdev = chan->xdev;
LIST_HEAD(descriptors);
unsigned long flags;
unsigned int i;
/* Pause the channel (including the whole video group if applicable). */
if (chan->video_group) {
for (i = ZYNQMP_DPDMA_VIDEO0; i <= ZYNQMP_DPDMA_VIDEO2; i++) {
if (xdev->chan[i]->video_group &&
xdev->chan[i]->running) {
xilinx_dpdma_chan_pause(xdev->chan[i]);
xdev->chan[i]->video_group = false;
}
}
} else {
xilinx_dpdma_chan_pause(chan);
}
/* Gather all the descriptors we can free and free them. */
spin_lock_irqsave(&chan->vchan.lock, flags);
vchan_get_all_descriptors(&chan->vchan, &descriptors);
spin_unlock_irqrestore(&chan->vchan.lock, flags);
vchan_dma_desc_free_list(&chan->vchan, &descriptors);
return 0;
}
/**
* xilinx_dpdma_synchronize - Synchronize callback execution
* @dchan: DMA channel
*
* Synchronizing callback execution ensures that all previously issued
* transfers have completed and all associated callbacks have been called and
* have returned.
*
* This function waits for the DMA channel to stop. It assumes it has been
* paused by a previous call to dmaengine_terminate_async(), and that no new
* pending descriptors have been issued with dma_async_issue_pending(). The
* behaviour is undefined otherwise.
*/
static void xilinx_dpdma_synchronize(struct dma_chan *dchan)
{
struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan);
unsigned long flags;
xilinx_dpdma_chan_stop(chan);
spin_lock_irqsave(&chan->vchan.lock, flags);
if (chan->desc.pending) {
vchan_terminate_vdesc(&chan->desc.pending->vdesc);
chan->desc.pending = NULL;
}
if (chan->desc.active) {
vchan_terminate_vdesc(&chan->desc.active->vdesc);
chan->desc.active = NULL;
}
spin_unlock_irqrestore(&chan->vchan.lock, flags);
vchan_synchronize(&chan->vchan);
}
/* -----------------------------------------------------------------------------
* Interrupt and Tasklet Handling
*/
/**
* xilinx_dpdma_err - Detect any global error
* @isr: Interrupt Status Register
* @eisr: Error Interrupt Status Register
*
* Return: True if any global error occurs, or false otherwise.
*/
static bool xilinx_dpdma_err(u32 isr, u32 eisr)
{
if (isr & XILINX_DPDMA_INTR_GLOBAL_ERR ||
eisr & XILINX_DPDMA_EINTR_GLOBAL_ERR)
return true;
return false;
}
/**
* xilinx_dpdma_handle_err_irq - Handle DPDMA error interrupt
* @xdev: DPDMA device
* @isr: masked Interrupt Status Register
* @eisr: Error Interrupt Status Register
*
* Handle if any error occurs based on @isr and @eisr. This function disables
* corresponding error interrupts, and those should be re-enabled once handling
* is done.
*/
static void xilinx_dpdma_handle_err_irq(struct xilinx_dpdma_device *xdev,
u32 isr, u32 eisr)
{
bool err = xilinx_dpdma_err(isr, eisr);
unsigned int i;
dev_dbg_ratelimited(xdev->dev,
"error irq: isr = 0x%08x, eisr = 0x%08x\n",
isr, eisr);
/* Disable channel error interrupts until errors are handled. */
dpdma_write(xdev->reg, XILINX_DPDMA_IDS,
isr & ~XILINX_DPDMA_INTR_GLOBAL_ERR);
dpdma_write(xdev->reg, XILINX_DPDMA_EIDS,
eisr & ~XILINX_DPDMA_EINTR_GLOBAL_ERR);
for (i = 0; i < ARRAY_SIZE(xdev->chan); i++)
if (err || xilinx_dpdma_chan_err(xdev->chan[i], isr, eisr))
tasklet_schedule(&xdev->chan[i]->err_task);
}
/**
* xilinx_dpdma_enable_irq - Enable interrupts
* @xdev: DPDMA device
*
* Enable interrupts.
*/
static void xilinx_dpdma_enable_irq(struct xilinx_dpdma_device *xdev)
{
dpdma_write(xdev->reg, XILINX_DPDMA_IEN, XILINX_DPDMA_INTR_ALL);
dpdma_write(xdev->reg, XILINX_DPDMA_EIEN, XILINX_DPDMA_EINTR_ALL);
}
/**
* xilinx_dpdma_disable_irq - Disable interrupts
* @xdev: DPDMA device
*
* Disable interrupts.
*/
static void xilinx_dpdma_disable_irq(struct xilinx_dpdma_device *xdev)
{
dpdma_write(xdev->reg, XILINX_DPDMA_IDS, XILINX_DPDMA_INTR_ALL);
dpdma_write(xdev->reg, XILINX_DPDMA_EIDS, XILINX_DPDMA_EINTR_ALL);
}
/**
* xilinx_dpdma_chan_err_task - Per channel tasklet for error handling
* @t: pointer to the tasklet associated with this handler
*
* Per channel error handling tasklet. This function waits for the outstanding
* transaction to complete and triggers error handling. After error handling,
* re-enable channel error interrupts, and restart the channel if needed.
*/
static void xilinx_dpdma_chan_err_task(struct tasklet_struct *t)
{
struct xilinx_dpdma_chan *chan = from_tasklet(chan, t, err_task);
struct xilinx_dpdma_device *xdev = chan->xdev;
unsigned long flags;
/* Proceed error handling even when polling fails. */
xilinx_dpdma_chan_poll_no_ostand(chan);
xilinx_dpdma_chan_handle_err(chan);
dpdma_write(xdev->reg, XILINX_DPDMA_IEN,
XILINX_DPDMA_INTR_CHAN_ERR_MASK << chan->id);
dpdma_write(xdev->reg, XILINX_DPDMA_EIEN,
XILINX_DPDMA_EINTR_CHAN_ERR_MASK << chan->id);
spin_lock_irqsave(&chan->lock, flags);
xilinx_dpdma_chan_queue_transfer(chan);
spin_unlock_irqrestore(&chan->lock, flags);
}
static irqreturn_t xilinx_dpdma_irq_handler(int irq, void *data)
{
struct xilinx_dpdma_device *xdev = data;
unsigned long mask;
unsigned int i;
u32 status;
u32 error;
status = dpdma_read(xdev->reg, XILINX_DPDMA_ISR);
error = dpdma_read(xdev->reg, XILINX_DPDMA_EISR);
if (!status && !error)
return IRQ_NONE;
dpdma_write(xdev->reg, XILINX_DPDMA_ISR, status);
dpdma_write(xdev->reg, XILINX_DPDMA_EISR, error);
if (status & XILINX_DPDMA_INTR_VSYNC) {
/*
* There's a single VSYNC interrupt that needs to be processed
* by each running channel to update the active descriptor.
*/
for (i = 0; i < ARRAY_SIZE(xdev->chan); i++) {
struct xilinx_dpdma_chan *chan = xdev->chan[i];
if (chan)
xilinx_dpdma_chan_vsync_irq(chan);
}
}
mask = FIELD_GET(XILINX_DPDMA_INTR_DESC_DONE_MASK, status);
if (mask) {
for_each_set_bit(i, &mask, ARRAY_SIZE(xdev->chan))
xilinx_dpdma_chan_done_irq(xdev->chan[i]);
}
mask = FIELD_GET(XILINX_DPDMA_INTR_NO_OSTAND_MASK, status);
if (mask) {
for_each_set_bit(i, &mask, ARRAY_SIZE(xdev->chan))
xilinx_dpdma_chan_notify_no_ostand(xdev->chan[i]);
}
mask = status & XILINX_DPDMA_INTR_ERR_ALL;
if (mask || error)
xilinx_dpdma_handle_err_irq(xdev, mask, error);
return IRQ_HANDLED;
}
/* -----------------------------------------------------------------------------
* Initialization & Cleanup
*/
static int xilinx_dpdma_chan_init(struct xilinx_dpdma_device *xdev,
unsigned int chan_id)
{
struct xilinx_dpdma_chan *chan;
chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
chan->id = chan_id;
chan->reg = xdev->reg + XILINX_DPDMA_CH_BASE
+ XILINX_DPDMA_CH_OFFSET * chan->id;
chan->running = false;
chan->xdev = xdev;
spin_lock_init(&chan->lock);
init_waitqueue_head(&chan->wait_to_stop);
tasklet_setup(&chan->err_task, xilinx_dpdma_chan_err_task);
chan->vchan.desc_free = xilinx_dpdma_chan_free_tx_desc;
vchan_init(&chan->vchan, &xdev->common);
xdev->chan[chan->id] = chan;
return 0;
}
static void xilinx_dpdma_chan_remove(struct xilinx_dpdma_chan *chan)
{
if (!chan)
return;
tasklet_kill(&chan->err_task);
list_del(&chan->vchan.chan.device_node);
}
static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct xilinx_dpdma_device *xdev = ofdma->of_dma_data;
u32 chan_id = dma_spec->args[0];
if (chan_id >= ARRAY_SIZE(xdev->chan))
return NULL;
if (!xdev->chan[chan_id])
return NULL;
return dma_get_slave_channel(&xdev->chan[chan_id]->vchan.chan);
}
static void dpdma_hw_init(struct xilinx_dpdma_device *xdev)
{
unsigned int i;
void __iomem *reg;
/* Disable all interrupts */
xilinx_dpdma_disable_irq(xdev);
/* Stop all channels */
for (i = 0; i < ARRAY_SIZE(xdev->chan); i++) {
reg = xdev->reg + XILINX_DPDMA_CH_BASE
+ XILINX_DPDMA_CH_OFFSET * i;
dpdma_clr(reg, XILINX_DPDMA_CH_CNTL, XILINX_DPDMA_CH_CNTL_ENABLE);
}
/* Clear the interrupt status registers */
dpdma_write(xdev->reg, XILINX_DPDMA_ISR, XILINX_DPDMA_INTR_ALL);
dpdma_write(xdev->reg, XILINX_DPDMA_EISR, XILINX_DPDMA_EINTR_ALL);
}
static int xilinx_dpdma_probe(struct platform_device *pdev)
{
struct xilinx_dpdma_device *xdev;
struct dma_device *ddev;
unsigned int i;
int ret;
xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL);
if (!xdev)
return -ENOMEM;
xdev->dev = &pdev->dev;
xdev->ext_addr = sizeof(dma_addr_t) > 4;
INIT_LIST_HEAD(&xdev->common.channels);
platform_set_drvdata(pdev, xdev);
xdev->axi_clk = devm_clk_get(xdev->dev, "axi_clk");
if (IS_ERR(xdev->axi_clk))
return PTR_ERR(xdev->axi_clk);
xdev->reg = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(xdev->reg))
return PTR_ERR(xdev->reg);
dpdma_hw_init(xdev);
xdev->irq = platform_get_irq(pdev, 0);
if (xdev->irq < 0)
return xdev->irq;
ret = request_irq(xdev->irq, xilinx_dpdma_irq_handler, IRQF_SHARED,
dev_name(xdev->dev), xdev);
if (ret) {
dev_err(xdev->dev, "failed to request IRQ\n");
return ret;
}
ddev = &xdev->common;
ddev->dev = &pdev->dev;
dma_cap_set(DMA_SLAVE, ddev->cap_mask);
dma_cap_set(DMA_PRIVATE, ddev->cap_mask);
dma_cap_set(DMA_INTERLEAVE, ddev->cap_mask);
dma_cap_set(DMA_REPEAT, ddev->cap_mask);
dma_cap_set(DMA_LOAD_EOT, ddev->cap_mask);
ddev->copy_align = fls(XILINX_DPDMA_ALIGN_BYTES - 1);
ddev->device_alloc_chan_resources = xilinx_dpdma_alloc_chan_resources;
ddev->device_free_chan_resources = xilinx_dpdma_free_chan_resources;
ddev->device_prep_interleaved_dma = xilinx_dpdma_prep_interleaved_dma;
/* TODO: Can we achieve better granularity ? */
ddev->device_tx_status = dma_cookie_status;
ddev->device_issue_pending = xilinx_dpdma_issue_pending;
ddev->device_config = xilinx_dpdma_config;
ddev->device_pause = xilinx_dpdma_pause;
ddev->device_resume = xilinx_dpdma_resume;
ddev->device_terminate_all = xilinx_dpdma_terminate_all;
ddev->device_synchronize = xilinx_dpdma_synchronize;
ddev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED);
ddev->directions = BIT(DMA_MEM_TO_DEV);
ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
for (i = 0; i < ARRAY_SIZE(xdev->chan); ++i) {
ret = xilinx_dpdma_chan_init(xdev, i);
if (ret < 0) {
dev_err(xdev->dev, "failed to initialize channel %u\n",
i);
goto error;
}
}
ret = clk_prepare_enable(xdev->axi_clk);
if (ret) {
dev_err(xdev->dev, "failed to enable the axi clock\n");
goto error;
}
ret = dma_async_device_register(ddev);
if (ret) {
dev_err(xdev->dev, "failed to register the dma device\n");
goto error_dma_async;
}
ret = of_dma_controller_register(xdev->dev->of_node,
of_dma_xilinx_xlate, ddev);
if (ret) {
dev_err(xdev->dev, "failed to register DMA to DT DMA helper\n");
goto error_of_dma;
}
xilinx_dpdma_enable_irq(xdev);
xilinx_dpdma_debugfs_init(xdev);
dev_info(&pdev->dev, "Xilinx DPDMA engine is probed\n");
return 0;
error_of_dma:
dma_async_device_unregister(ddev);
error_dma_async:
clk_disable_unprepare(xdev->axi_clk);
error:
for (i = 0; i < ARRAY_SIZE(xdev->chan); i++)
xilinx_dpdma_chan_remove(xdev->chan[i]);
free_irq(xdev->irq, xdev);
return ret;
}
static void xilinx_dpdma_remove(struct platform_device *pdev)
{
struct xilinx_dpdma_device *xdev = platform_get_drvdata(pdev);
unsigned int i;
/* Start by disabling the IRQ to avoid races during cleanup. */
free_irq(xdev->irq, xdev);
xilinx_dpdma_disable_irq(xdev);
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&xdev->common);
clk_disable_unprepare(xdev->axi_clk);
for (i = 0; i < ARRAY_SIZE(xdev->chan); i++)
xilinx_dpdma_chan_remove(xdev->chan[i]);
}
static const struct of_device_id xilinx_dpdma_of_match[] = {
{ .compatible = "xlnx,zynqmp-dpdma",},
{ /* end of table */ },
};
MODULE_DEVICE_TABLE(of, xilinx_dpdma_of_match);
static struct platform_driver xilinx_dpdma_driver = {
.probe = xilinx_dpdma_probe,
.remove_new = xilinx_dpdma_remove,
.driver = {
.name = "xilinx-zynqmp-dpdma",
.of_match_table = xilinx_dpdma_of_match,
},
};
module_platform_driver(xilinx_dpdma_driver);
MODULE_AUTHOR("Xilinx, Inc.");
MODULE_DESCRIPTION("Xilinx ZynqMP DPDMA driver");
MODULE_LICENSE("GPL v2");