Thomas Gleixner c942fddf87 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157
Based on 3 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version [author] [kishon] [vijay] [abraham]
  [i] [kishon]@[ti] [com] this program is distributed in the hope that
  it will be useful but without any warranty without even the implied
  warranty of merchantability or fitness for a particular purpose see
  the gnu general public license for more details

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version [author] [graeme] [gregory]
  [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i]
  [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema]
  [hk] [hemahk]@[ti] [com] this program is distributed in the hope
  that it will be useful but without any warranty without even the
  implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 1105 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:37 -07:00

505 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Mirics MSi001 silicon tuner driver
*
* Copyright (C) 2013 Antti Palosaari <crope@iki.fi>
* Copyright (C) 2014 Antti Palosaari <crope@iki.fi>
*/
#include <linux/module.h>
#include <linux/gcd.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ctrls.h>
static const struct v4l2_frequency_band bands[] = {
{
.type = V4L2_TUNER_RF,
.index = 0,
.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
.rangelow = 49000000,
.rangehigh = 263000000,
}, {
.type = V4L2_TUNER_RF,
.index = 1,
.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
.rangelow = 390000000,
.rangehigh = 960000000,
},
};
struct msi001_dev {
struct spi_device *spi;
struct v4l2_subdev sd;
/* Controls */
struct v4l2_ctrl_handler hdl;
struct v4l2_ctrl *bandwidth_auto;
struct v4l2_ctrl *bandwidth;
struct v4l2_ctrl *lna_gain;
struct v4l2_ctrl *mixer_gain;
struct v4l2_ctrl *if_gain;
unsigned int f_tuner;
};
static inline struct msi001_dev *sd_to_msi001_dev(struct v4l2_subdev *sd)
{
return container_of(sd, struct msi001_dev, sd);
}
static int msi001_wreg(struct msi001_dev *dev, u32 data)
{
/* Register format: 4 bits addr + 20 bits value */
return spi_write(dev->spi, &data, 3);
};
static int msi001_set_gain(struct msi001_dev *dev, int lna_gain, int mixer_gain,
int if_gain)
{
struct spi_device *spi = dev->spi;
int ret;
u32 reg;
dev_dbg(&spi->dev, "lna=%d mixer=%d if=%d\n",
lna_gain, mixer_gain, if_gain);
reg = 1 << 0;
reg |= (59 - if_gain) << 4;
reg |= 0 << 10;
reg |= (1 - mixer_gain) << 12;
reg |= (1 - lna_gain) << 13;
reg |= 4 << 14;
reg |= 0 << 17;
ret = msi001_wreg(dev, reg);
if (ret)
goto err;
return 0;
err:
dev_dbg(&spi->dev, "failed %d\n", ret);
return ret;
};
static int msi001_set_tuner(struct msi001_dev *dev)
{
struct spi_device *spi = dev->spi;
int ret, i;
unsigned int uitmp, div_n, k, k_thresh, k_frac, div_lo, f_if1;
u32 reg;
u64 f_vco;
u8 mode, filter_mode;
static const struct {
u32 rf;
u8 mode;
u8 div_lo;
} band_lut[] = {
{ 50000000, 0xe1, 16}, /* AM_MODE2, antenna 2 */
{108000000, 0x42, 32}, /* VHF_MODE */
{330000000, 0x44, 16}, /* B3_MODE */
{960000000, 0x48, 4}, /* B45_MODE */
{ ~0U, 0x50, 2}, /* BL_MODE */
};
static const struct {
u32 freq;
u8 filter_mode;
} if_freq_lut[] = {
{ 0, 0x03}, /* Zero IF */
{ 450000, 0x02}, /* 450 kHz IF */
{1620000, 0x01}, /* 1.62 MHz IF */
{2048000, 0x00}, /* 2.048 MHz IF */
};
static const struct {
u32 freq;
u8 val;
} bandwidth_lut[] = {
{ 200000, 0x00}, /* 200 kHz */
{ 300000, 0x01}, /* 300 kHz */
{ 600000, 0x02}, /* 600 kHz */
{1536000, 0x03}, /* 1.536 MHz */
{5000000, 0x04}, /* 5 MHz */
{6000000, 0x05}, /* 6 MHz */
{7000000, 0x06}, /* 7 MHz */
{8000000, 0x07}, /* 8 MHz */
};
unsigned int f_rf = dev->f_tuner;
/*
* bandwidth (Hz)
* 200000, 300000, 600000, 1536000, 5000000, 6000000, 7000000, 8000000
*/
unsigned int bandwidth;
/*
* intermediate frequency (Hz)
* 0, 450000, 1620000, 2048000
*/
unsigned int f_if = 0;
#define F_REF 24000000
#define DIV_PRE_N 4
#define F_VCO_STEP div_lo
dev_dbg(&spi->dev, "f_rf=%d f_if=%d\n", f_rf, f_if);
for (i = 0; i < ARRAY_SIZE(band_lut); i++) {
if (f_rf <= band_lut[i].rf) {
mode = band_lut[i].mode;
div_lo = band_lut[i].div_lo;
break;
}
}
if (i == ARRAY_SIZE(band_lut)) {
ret = -EINVAL;
goto err;
}
/* AM_MODE is upconverted */
if ((mode >> 0) & 0x1)
f_if1 = 5 * F_REF;
else
f_if1 = 0;
for (i = 0; i < ARRAY_SIZE(if_freq_lut); i++) {
if (f_if == if_freq_lut[i].freq) {
filter_mode = if_freq_lut[i].filter_mode;
break;
}
}
if (i == ARRAY_SIZE(if_freq_lut)) {
ret = -EINVAL;
goto err;
}
/* filters */
bandwidth = dev->bandwidth->val;
bandwidth = clamp(bandwidth, 200000U, 8000000U);
for (i = 0; i < ARRAY_SIZE(bandwidth_lut); i++) {
if (bandwidth <= bandwidth_lut[i].freq) {
bandwidth = bandwidth_lut[i].val;
break;
}
}
if (i == ARRAY_SIZE(bandwidth_lut)) {
ret = -EINVAL;
goto err;
}
dev->bandwidth->val = bandwidth_lut[i].freq;
dev_dbg(&spi->dev, "bandwidth selected=%d\n", bandwidth_lut[i].freq);
/*
* Fractional-N synthesizer
*
* +---------------------------------------+
* v |
* Fref +----+ +-------+ +----+ +------+ +---+
* ------> | PD | --> | VCO | ------> | /4 | --> | /N.F | <-- | K |
* +----+ +-------+ +----+ +------+ +---+
* |
* |
* v
* +-------+ Fout
* | /Rout | ------>
* +-------+
*/
/* Calculate PLL integer and fractional control word. */
f_vco = (u64) (f_rf + f_if + f_if1) * div_lo;
div_n = div_u64_rem(f_vco, DIV_PRE_N * F_REF, &k);
k_thresh = (DIV_PRE_N * F_REF) / F_VCO_STEP;
k_frac = div_u64((u64) k * k_thresh, (DIV_PRE_N * F_REF));
/* Find out greatest common divisor and divide to smaller. */
uitmp = gcd(k_thresh, k_frac);
k_thresh /= uitmp;
k_frac /= uitmp;
/* Force divide to reg max. Resolution will be reduced. */
uitmp = DIV_ROUND_UP(k_thresh, 4095);
k_thresh = DIV_ROUND_CLOSEST(k_thresh, uitmp);
k_frac = DIV_ROUND_CLOSEST(k_frac, uitmp);
/* Calculate real RF set. */
uitmp = (unsigned int) F_REF * DIV_PRE_N * div_n;
uitmp += (unsigned int) F_REF * DIV_PRE_N * k_frac / k_thresh;
uitmp /= div_lo;
dev_dbg(&spi->dev,
"f_rf=%u:%u f_vco=%llu div_n=%u k_thresh=%u k_frac=%u div_lo=%u\n",
f_rf, uitmp, f_vco, div_n, k_thresh, k_frac, div_lo);
ret = msi001_wreg(dev, 0x00000e);
if (ret)
goto err;
ret = msi001_wreg(dev, 0x000003);
if (ret)
goto err;
reg = 0 << 0;
reg |= mode << 4;
reg |= filter_mode << 12;
reg |= bandwidth << 14;
reg |= 0x02 << 17;
reg |= 0x00 << 20;
ret = msi001_wreg(dev, reg);
if (ret)
goto err;
reg = 5 << 0;
reg |= k_thresh << 4;
reg |= 1 << 19;
reg |= 1 << 21;
ret = msi001_wreg(dev, reg);
if (ret)
goto err;
reg = 2 << 0;
reg |= k_frac << 4;
reg |= div_n << 16;
ret = msi001_wreg(dev, reg);
if (ret)
goto err;
ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
dev->mixer_gain->cur.val, dev->if_gain->cur.val);
if (ret)
goto err;
reg = 6 << 0;
reg |= 63 << 4;
reg |= 4095 << 10;
ret = msi001_wreg(dev, reg);
if (ret)
goto err;
return 0;
err:
dev_dbg(&spi->dev, "failed %d\n", ret);
return ret;
}
static int msi001_standby(struct v4l2_subdev *sd)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
return msi001_wreg(dev, 0x000000);
}
static int msi001_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
struct spi_device *spi = dev->spi;
dev_dbg(&spi->dev, "index=%d\n", v->index);
strscpy(v->name, "Mirics MSi001", sizeof(v->name));
v->type = V4L2_TUNER_RF;
v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
v->rangelow = 49000000;
v->rangehigh = 960000000;
return 0;
}
static int msi001_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
struct spi_device *spi = dev->spi;
dev_dbg(&spi->dev, "index=%d\n", v->index);
return 0;
}
static int msi001_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
struct spi_device *spi = dev->spi;
dev_dbg(&spi->dev, "tuner=%d\n", f->tuner);
f->frequency = dev->f_tuner;
return 0;
}
static int msi001_s_frequency(struct v4l2_subdev *sd,
const struct v4l2_frequency *f)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
struct spi_device *spi = dev->spi;
unsigned int band;
dev_dbg(&spi->dev, "tuner=%d type=%d frequency=%u\n",
f->tuner, f->type, f->frequency);
if (f->frequency < ((bands[0].rangehigh + bands[1].rangelow) / 2))
band = 0;
else
band = 1;
dev->f_tuner = clamp_t(unsigned int, f->frequency,
bands[band].rangelow, bands[band].rangehigh);
return msi001_set_tuner(dev);
}
static int msi001_enum_freq_bands(struct v4l2_subdev *sd,
struct v4l2_frequency_band *band)
{
struct msi001_dev *dev = sd_to_msi001_dev(sd);
struct spi_device *spi = dev->spi;
dev_dbg(&spi->dev, "tuner=%d type=%d index=%d\n",
band->tuner, band->type, band->index);
if (band->index >= ARRAY_SIZE(bands))
return -EINVAL;
band->capability = bands[band->index].capability;
band->rangelow = bands[band->index].rangelow;
band->rangehigh = bands[band->index].rangehigh;
return 0;
}
static const struct v4l2_subdev_tuner_ops msi001_tuner_ops = {
.standby = msi001_standby,
.g_tuner = msi001_g_tuner,
.s_tuner = msi001_s_tuner,
.g_frequency = msi001_g_frequency,
.s_frequency = msi001_s_frequency,
.enum_freq_bands = msi001_enum_freq_bands,
};
static const struct v4l2_subdev_ops msi001_ops = {
.tuner = &msi001_tuner_ops,
};
static int msi001_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct msi001_dev *dev = container_of(ctrl->handler, struct msi001_dev, hdl);
struct spi_device *spi = dev->spi;
int ret;
dev_dbg(&spi->dev, "id=%d name=%s val=%d min=%lld max=%lld step=%lld\n",
ctrl->id, ctrl->name, ctrl->val, ctrl->minimum, ctrl->maximum,
ctrl->step);
switch (ctrl->id) {
case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
case V4L2_CID_RF_TUNER_BANDWIDTH:
ret = msi001_set_tuner(dev);
break;
case V4L2_CID_RF_TUNER_LNA_GAIN:
ret = msi001_set_gain(dev, dev->lna_gain->val,
dev->mixer_gain->cur.val,
dev->if_gain->cur.val);
break;
case V4L2_CID_RF_TUNER_MIXER_GAIN:
ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
dev->mixer_gain->val,
dev->if_gain->cur.val);
break;
case V4L2_CID_RF_TUNER_IF_GAIN:
ret = msi001_set_gain(dev, dev->lna_gain->cur.val,
dev->mixer_gain->cur.val,
dev->if_gain->val);
break;
default:
dev_dbg(&spi->dev, "unknown control %d\n", ctrl->id);
ret = -EINVAL;
}
return ret;
}
static const struct v4l2_ctrl_ops msi001_ctrl_ops = {
.s_ctrl = msi001_s_ctrl,
};
static int msi001_probe(struct spi_device *spi)
{
struct msi001_dev *dev;
int ret;
dev_dbg(&spi->dev, "\n");
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
goto err;
}
dev->spi = spi;
dev->f_tuner = bands[0].rangelow;
v4l2_spi_subdev_init(&dev->sd, spi, &msi001_ops);
/* Register controls */
v4l2_ctrl_handler_init(&dev->hdl, 5);
dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_BANDWIDTH, 200000, 8000000, 1, 200000);
v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false);
dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_LNA_GAIN, 0, 1, 1, 1);
dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &msi001_ctrl_ops,
V4L2_CID_RF_TUNER_IF_GAIN, 0, 59, 1, 0);
if (dev->hdl.error) {
ret = dev->hdl.error;
dev_err(&spi->dev, "Could not initialize controls\n");
/* control init failed, free handler */
goto err_ctrl_handler_free;
}
dev->sd.ctrl_handler = &dev->hdl;
return 0;
err_ctrl_handler_free:
v4l2_ctrl_handler_free(&dev->hdl);
kfree(dev);
err:
return ret;
}
static int msi001_remove(struct spi_device *spi)
{
struct v4l2_subdev *sd = spi_get_drvdata(spi);
struct msi001_dev *dev = sd_to_msi001_dev(sd);
dev_dbg(&spi->dev, "\n");
/*
* Registered by v4l2_spi_new_subdev() from master driver, but we must
* unregister it from here. Weird.
*/
v4l2_device_unregister_subdev(&dev->sd);
v4l2_ctrl_handler_free(&dev->hdl);
kfree(dev);
return 0;
}
static const struct spi_device_id msi001_id_table[] = {
{"msi001", 0},
{}
};
MODULE_DEVICE_TABLE(spi, msi001_id_table);
static struct spi_driver msi001_driver = {
.driver = {
.name = "msi001",
.suppress_bind_attrs = true,
},
.probe = msi001_probe,
.remove = msi001_remove,
.id_table = msi001_id_table,
};
module_spi_driver(msi001_driver);
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_DESCRIPTION("Mirics MSi001");
MODULE_LICENSE("GPL");