mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 11:37:47 +00:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
401 lines
9.8 KiB
C
401 lines
9.8 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (2004) Linus Torvalds
|
|
*
|
|
* Author: Zwane Mwaikambo <zwane@fsmlabs.com>
|
|
*
|
|
* Copyright (2004, 2005) Ingo Molnar
|
|
*
|
|
* This file contains the spinlock/rwlock implementations for the
|
|
* SMP and the DEBUG_SPINLOCK cases. (UP-nondebug inlines them)
|
|
*
|
|
* Note that some architectures have special knowledge about the
|
|
* stack frames of these functions in their profile_pc. If you
|
|
* change anything significant here that could change the stack
|
|
* frame contact the architecture maintainers.
|
|
*/
|
|
|
|
#include <linux/linkage.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/debug_locks.h>
|
|
#include <linux/export.h>
|
|
|
|
/*
|
|
* If lockdep is enabled then we use the non-preemption spin-ops
|
|
* even on CONFIG_PREEMPT, because lockdep assumes that interrupts are
|
|
* not re-enabled during lock-acquire (which the preempt-spin-ops do):
|
|
*/
|
|
#if !defined(CONFIG_GENERIC_LOCKBREAK) || defined(CONFIG_DEBUG_LOCK_ALLOC)
|
|
/*
|
|
* The __lock_function inlines are taken from
|
|
* include/linux/spinlock_api_smp.h
|
|
*/
|
|
#else
|
|
#define raw_read_can_lock(l) read_can_lock(l)
|
|
#define raw_write_can_lock(l) write_can_lock(l)
|
|
|
|
/*
|
|
* Some architectures can relax in favour of the CPU owning the lock.
|
|
*/
|
|
#ifndef arch_read_relax
|
|
# define arch_read_relax(l) cpu_relax()
|
|
#endif
|
|
#ifndef arch_write_relax
|
|
# define arch_write_relax(l) cpu_relax()
|
|
#endif
|
|
#ifndef arch_spin_relax
|
|
# define arch_spin_relax(l) cpu_relax()
|
|
#endif
|
|
|
|
/*
|
|
* We build the __lock_function inlines here. They are too large for
|
|
* inlining all over the place, but here is only one user per function
|
|
* which embedds them into the calling _lock_function below.
|
|
*
|
|
* This could be a long-held lock. We both prepare to spin for a long
|
|
* time (making _this_ CPU preemptable if possible), and we also signal
|
|
* towards that other CPU that it should break the lock ASAP.
|
|
*/
|
|
#define BUILD_LOCK_OPS(op, locktype) \
|
|
void __lockfunc __raw_##op##_lock(locktype##_t *lock) \
|
|
{ \
|
|
for (;;) { \
|
|
preempt_disable(); \
|
|
if (likely(do_raw_##op##_trylock(lock))) \
|
|
break; \
|
|
preempt_enable(); \
|
|
\
|
|
if (!(lock)->break_lock) \
|
|
(lock)->break_lock = 1; \
|
|
while (!raw_##op##_can_lock(lock) && (lock)->break_lock)\
|
|
arch_##op##_relax(&lock->raw_lock); \
|
|
} \
|
|
(lock)->break_lock = 0; \
|
|
} \
|
|
\
|
|
unsigned long __lockfunc __raw_##op##_lock_irqsave(locktype##_t *lock) \
|
|
{ \
|
|
unsigned long flags; \
|
|
\
|
|
for (;;) { \
|
|
preempt_disable(); \
|
|
local_irq_save(flags); \
|
|
if (likely(do_raw_##op##_trylock(lock))) \
|
|
break; \
|
|
local_irq_restore(flags); \
|
|
preempt_enable(); \
|
|
\
|
|
if (!(lock)->break_lock) \
|
|
(lock)->break_lock = 1; \
|
|
while (!raw_##op##_can_lock(lock) && (lock)->break_lock)\
|
|
arch_##op##_relax(&lock->raw_lock); \
|
|
} \
|
|
(lock)->break_lock = 0; \
|
|
return flags; \
|
|
} \
|
|
\
|
|
void __lockfunc __raw_##op##_lock_irq(locktype##_t *lock) \
|
|
{ \
|
|
_raw_##op##_lock_irqsave(lock); \
|
|
} \
|
|
\
|
|
void __lockfunc __raw_##op##_lock_bh(locktype##_t *lock) \
|
|
{ \
|
|
unsigned long flags; \
|
|
\
|
|
/* */ \
|
|
/* Careful: we must exclude softirqs too, hence the */ \
|
|
/* irq-disabling. We use the generic preemption-aware */ \
|
|
/* function: */ \
|
|
/**/ \
|
|
flags = _raw_##op##_lock_irqsave(lock); \
|
|
local_bh_disable(); \
|
|
local_irq_restore(flags); \
|
|
} \
|
|
|
|
/*
|
|
* Build preemption-friendly versions of the following
|
|
* lock-spinning functions:
|
|
*
|
|
* __[spin|read|write]_lock()
|
|
* __[spin|read|write]_lock_irq()
|
|
* __[spin|read|write]_lock_irqsave()
|
|
* __[spin|read|write]_lock_bh()
|
|
*/
|
|
BUILD_LOCK_OPS(spin, raw_spinlock);
|
|
BUILD_LOCK_OPS(read, rwlock);
|
|
BUILD_LOCK_OPS(write, rwlock);
|
|
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_SPIN_TRYLOCK
|
|
int __lockfunc _raw_spin_trylock(raw_spinlock_t *lock)
|
|
{
|
|
return __raw_spin_trylock(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_trylock);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_SPIN_TRYLOCK_BH
|
|
int __lockfunc _raw_spin_trylock_bh(raw_spinlock_t *lock)
|
|
{
|
|
return __raw_spin_trylock_bh(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_trylock_bh);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_SPIN_LOCK
|
|
void __lockfunc _raw_spin_lock(raw_spinlock_t *lock)
|
|
{
|
|
__raw_spin_lock(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_lock);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_SPIN_LOCK_IRQSAVE
|
|
unsigned long __lockfunc _raw_spin_lock_irqsave(raw_spinlock_t *lock)
|
|
{
|
|
return __raw_spin_lock_irqsave(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_lock_irqsave);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_SPIN_LOCK_IRQ
|
|
void __lockfunc _raw_spin_lock_irq(raw_spinlock_t *lock)
|
|
{
|
|
__raw_spin_lock_irq(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_lock_irq);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_SPIN_LOCK_BH
|
|
void __lockfunc _raw_spin_lock_bh(raw_spinlock_t *lock)
|
|
{
|
|
__raw_spin_lock_bh(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_lock_bh);
|
|
#endif
|
|
|
|
#ifdef CONFIG_UNINLINE_SPIN_UNLOCK
|
|
void __lockfunc _raw_spin_unlock(raw_spinlock_t *lock)
|
|
{
|
|
__raw_spin_unlock(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_unlock);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_SPIN_UNLOCK_IRQRESTORE
|
|
void __lockfunc _raw_spin_unlock_irqrestore(raw_spinlock_t *lock, unsigned long flags)
|
|
{
|
|
__raw_spin_unlock_irqrestore(lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_unlock_irqrestore);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_SPIN_UNLOCK_IRQ
|
|
void __lockfunc _raw_spin_unlock_irq(raw_spinlock_t *lock)
|
|
{
|
|
__raw_spin_unlock_irq(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_unlock_irq);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_SPIN_UNLOCK_BH
|
|
void __lockfunc _raw_spin_unlock_bh(raw_spinlock_t *lock)
|
|
{
|
|
__raw_spin_unlock_bh(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_unlock_bh);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_READ_TRYLOCK
|
|
int __lockfunc _raw_read_trylock(rwlock_t *lock)
|
|
{
|
|
return __raw_read_trylock(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_read_trylock);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_READ_LOCK
|
|
void __lockfunc _raw_read_lock(rwlock_t *lock)
|
|
{
|
|
__raw_read_lock(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_read_lock);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_READ_LOCK_IRQSAVE
|
|
unsigned long __lockfunc _raw_read_lock_irqsave(rwlock_t *lock)
|
|
{
|
|
return __raw_read_lock_irqsave(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_read_lock_irqsave);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_READ_LOCK_IRQ
|
|
void __lockfunc _raw_read_lock_irq(rwlock_t *lock)
|
|
{
|
|
__raw_read_lock_irq(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_read_lock_irq);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_READ_LOCK_BH
|
|
void __lockfunc _raw_read_lock_bh(rwlock_t *lock)
|
|
{
|
|
__raw_read_lock_bh(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_read_lock_bh);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_READ_UNLOCK
|
|
void __lockfunc _raw_read_unlock(rwlock_t *lock)
|
|
{
|
|
__raw_read_unlock(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_read_unlock);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_READ_UNLOCK_IRQRESTORE
|
|
void __lockfunc _raw_read_unlock_irqrestore(rwlock_t *lock, unsigned long flags)
|
|
{
|
|
__raw_read_unlock_irqrestore(lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(_raw_read_unlock_irqrestore);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_READ_UNLOCK_IRQ
|
|
void __lockfunc _raw_read_unlock_irq(rwlock_t *lock)
|
|
{
|
|
__raw_read_unlock_irq(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_read_unlock_irq);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_READ_UNLOCK_BH
|
|
void __lockfunc _raw_read_unlock_bh(rwlock_t *lock)
|
|
{
|
|
__raw_read_unlock_bh(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_read_unlock_bh);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_WRITE_TRYLOCK
|
|
int __lockfunc _raw_write_trylock(rwlock_t *lock)
|
|
{
|
|
return __raw_write_trylock(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_write_trylock);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_WRITE_LOCK
|
|
void __lockfunc _raw_write_lock(rwlock_t *lock)
|
|
{
|
|
__raw_write_lock(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_write_lock);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_WRITE_LOCK_IRQSAVE
|
|
unsigned long __lockfunc _raw_write_lock_irqsave(rwlock_t *lock)
|
|
{
|
|
return __raw_write_lock_irqsave(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_write_lock_irqsave);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_WRITE_LOCK_IRQ
|
|
void __lockfunc _raw_write_lock_irq(rwlock_t *lock)
|
|
{
|
|
__raw_write_lock_irq(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_write_lock_irq);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_WRITE_LOCK_BH
|
|
void __lockfunc _raw_write_lock_bh(rwlock_t *lock)
|
|
{
|
|
__raw_write_lock_bh(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_write_lock_bh);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_WRITE_UNLOCK
|
|
void __lockfunc _raw_write_unlock(rwlock_t *lock)
|
|
{
|
|
__raw_write_unlock(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_write_unlock);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_WRITE_UNLOCK_IRQRESTORE
|
|
void __lockfunc _raw_write_unlock_irqrestore(rwlock_t *lock, unsigned long flags)
|
|
{
|
|
__raw_write_unlock_irqrestore(lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(_raw_write_unlock_irqrestore);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_WRITE_UNLOCK_IRQ
|
|
void __lockfunc _raw_write_unlock_irq(rwlock_t *lock)
|
|
{
|
|
__raw_write_unlock_irq(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_write_unlock_irq);
|
|
#endif
|
|
|
|
#ifndef CONFIG_INLINE_WRITE_UNLOCK_BH
|
|
void __lockfunc _raw_write_unlock_bh(rwlock_t *lock)
|
|
{
|
|
__raw_write_unlock_bh(lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_write_unlock_bh);
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
|
|
void __lockfunc _raw_spin_lock_nested(raw_spinlock_t *lock, int subclass)
|
|
{
|
|
preempt_disable();
|
|
spin_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
|
|
LOCK_CONTENDED(lock, do_raw_spin_trylock, do_raw_spin_lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_lock_nested);
|
|
|
|
unsigned long __lockfunc _raw_spin_lock_irqsave_nested(raw_spinlock_t *lock,
|
|
int subclass)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
preempt_disable();
|
|
spin_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
|
|
LOCK_CONTENDED_FLAGS(lock, do_raw_spin_trylock, do_raw_spin_lock,
|
|
do_raw_spin_lock_flags, &flags);
|
|
return flags;
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_lock_irqsave_nested);
|
|
|
|
void __lockfunc _raw_spin_lock_nest_lock(raw_spinlock_t *lock,
|
|
struct lockdep_map *nest_lock)
|
|
{
|
|
preempt_disable();
|
|
spin_acquire_nest(&lock->dep_map, 0, 0, nest_lock, _RET_IP_);
|
|
LOCK_CONTENDED(lock, do_raw_spin_trylock, do_raw_spin_lock);
|
|
}
|
|
EXPORT_SYMBOL(_raw_spin_lock_nest_lock);
|
|
|
|
#endif
|
|
|
|
notrace int in_lock_functions(unsigned long addr)
|
|
{
|
|
/* Linker adds these: start and end of __lockfunc functions */
|
|
extern char __lock_text_start[], __lock_text_end[];
|
|
|
|
return addr >= (unsigned long)__lock_text_start
|
|
&& addr < (unsigned long)__lock_text_end;
|
|
}
|
|
EXPORT_SYMBOL(in_lock_functions);
|