linux-next/drivers/iio/light/vcnl4000.c
Julien Stephan b4b42f28a0 iio: fix write_event_config signature
write_event_config callback use an int for state, but it is actually a
boolean. iio_ev_state_store is actually using kstrtobool to check user
input, then gives the converted boolean value to write_event_config.

Fix signature and update all iio drivers to use the new signature.

This patch has been partially written using coccinelle with the
following script:

$ cat iio-bool.cocci
// Options: --all-includes

virtual patch

@c1@
identifier iioinfo;
identifier wecfunc;
@@
 static const struct iio_info iioinfo = {
        ...,
        .write_event_config =
(
 wecfunc
|
 &wecfunc
),
        ...,
 };

@@
identifier c1.wecfunc;
identifier indio_dev, chan, type, dir, state;
@@
 int wecfunc(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir,
-int
+bool
 state) {
  ...
 }

make coccicheck MODE=patch COCCI=iio-bool.cocci M=drivers/iio

Unfortunately, this script didn't match all files:
* all write_event_config callbacks using iio_device_claim_direct_scoped
  were not detected and not patched.
* all files that do not assign and declare the write_event_config
  callback in the same file.

iio.h was also manually updated.

The patch was build tested using allmodconfig config.

cc: Julia Lawall <julia.lawall@inria.fr>
Signed-off-by: Julien Stephan <jstephan@baylibre.com>
Link: https://patch.msgid.link/20241031-iio-fix-write-event-config-signature-v2-7-2bcacbb517a2@baylibre.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2024-11-03 20:33:44 +00:00

2124 lines
52 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* vcnl4000.c - Support for Vishay VCNL4000/4010/4020/4040/4200 combined ambient
* light and proximity sensor
*
* Copyright 2012 Peter Meerwald <pmeerw@pmeerw.net>
* Copyright 2019 Pursim SPC
* Copyright 2020 Mathieu Othacehe <m.othacehe@gmail.com>
*
* IIO driver for:
* VCNL4000/10/20 (7-bit I2C slave address 0x13)
* VCNL4040 (7-bit I2C slave address 0x60)
* VCNL4200 (7-bit I2C slave address 0x51)
*
* TODO:
* allow to adjust IR current
* interrupts (VCNL4040, VCNL4200)
*/
#include <linux/bitfield.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/interrupt.h>
#include <linux/units.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#define VCNL4000_DRV_NAME "vcnl4000"
#define VCNL4000_PROD_ID 0x01
#define VCNL4010_PROD_ID 0x02 /* for VCNL4020, VCNL4010 */
#define VCNL4040_PROD_ID 0x86
#define VCNL4200_PROD_ID 0x58
#define VCNL4000_COMMAND 0x80 /* Command register */
#define VCNL4000_PROD_REV 0x81 /* Product ID and Revision ID */
#define VCNL4010_PROX_RATE 0x82 /* Proximity rate */
#define VCNL4000_LED_CURRENT 0x83 /* IR LED current for proximity mode */
#define VCNL4000_AL_PARAM 0x84 /* Ambient light parameter register */
#define VCNL4010_ALS_PARAM 0x84 /* ALS rate */
#define VCNL4000_AL_RESULT_HI 0x85 /* Ambient light result register, MSB */
#define VCNL4000_AL_RESULT_LO 0x86 /* Ambient light result register, LSB */
#define VCNL4000_PS_RESULT_HI 0x87 /* Proximity result register, MSB */
#define VCNL4000_PS_RESULT_LO 0x88 /* Proximity result register, LSB */
#define VCNL4000_PS_MEAS_FREQ 0x89 /* Proximity test signal frequency */
#define VCNL4010_INT_CTRL 0x89 /* Interrupt control */
#define VCNL4000_PS_MOD_ADJ 0x8a /* Proximity modulator timing adjustment */
#define VCNL4010_LOW_THR_HI 0x8a /* Low threshold, MSB */
#define VCNL4010_LOW_THR_LO 0x8b /* Low threshold, LSB */
#define VCNL4010_HIGH_THR_HI 0x8c /* High threshold, MSB */
#define VCNL4010_HIGH_THR_LO 0x8d /* High threshold, LSB */
#define VCNL4010_ISR 0x8e /* Interrupt status */
#define VCNL4200_AL_CONF 0x00 /* Ambient light configuration */
#define VCNL4200_PS_CONF1 0x03 /* Proximity configuration */
#define VCNL4200_PS_CONF3 0x04 /* Proximity configuration */
#define VCNL4040_PS_THDL_LM 0x06 /* Proximity threshold low */
#define VCNL4040_PS_THDH_LM 0x07 /* Proximity threshold high */
#define VCNL4040_ALS_THDL_LM 0x02 /* Ambient light threshold low */
#define VCNL4040_ALS_THDH_LM 0x01 /* Ambient light threshold high */
#define VCNL4200_PS_DATA 0x08 /* Proximity data */
#define VCNL4200_AL_DATA 0x09 /* Ambient light data */
#define VCNL4040_INT_FLAGS 0x0b /* Interrupt register */
#define VCNL4200_INT_FLAGS 0x0d /* Interrupt register */
#define VCNL4200_DEV_ID 0x0e /* Device ID, slave address and version */
#define VCNL4040_DEV_ID 0x0c /* Device ID and version */
/* Bit masks for COMMAND register */
#define VCNL4000_AL_RDY BIT(6) /* ALS data ready? */
#define VCNL4000_PS_RDY BIT(5) /* proximity data ready? */
#define VCNL4000_AL_OD BIT(4) /* start on-demand ALS measurement */
#define VCNL4000_PS_OD BIT(3) /* start on-demand proximity measurement */
#define VCNL4000_ALS_EN BIT(2) /* start ALS measurement */
#define VCNL4000_PROX_EN BIT(1) /* start proximity measurement */
#define VCNL4000_SELF_TIMED_EN BIT(0) /* start self-timed measurement */
#define VCNL4040_ALS_CONF_ALS_SHUTDOWN BIT(0)
#define VCNL4040_ALS_CONF_IT GENMASK(7, 6) /* Ambient integration time */
#define VCNL4040_ALS_CONF_INT_EN BIT(1) /* Ambient light Interrupt enable */
#define VCNL4040_ALS_CONF_PERS GENMASK(3, 2) /* Ambient interrupt persistence setting */
#define VCNL4040_PS_CONF1_PS_SHUTDOWN BIT(0)
#define VCNL4040_PS_CONF2_PS_IT GENMASK(3, 1) /* Proximity integration time */
#define VCNL4040_CONF1_PS_PERS GENMASK(5, 4) /* Proximity interrupt persistence setting */
#define VCNL4040_PS_CONF2_PS_HD BIT(11) /* Proximity high definition */
#define VCNL4040_PS_CONF2_PS_INT GENMASK(9, 8) /* Proximity interrupt mode */
#define VCNL4040_PS_CONF3_MPS GENMASK(6, 5) /* Proximity multi pulse number */
#define VCNL4040_PS_MS_LED_I GENMASK(10, 8) /* Proximity current */
#define VCNL4040_PS_IF_AWAY BIT(8) /* Proximity event cross low threshold */
#define VCNL4040_PS_IF_CLOSE BIT(9) /* Proximity event cross high threshold */
#define VCNL4040_ALS_RISING BIT(12) /* Ambient Light cross high threshold */
#define VCNL4040_ALS_FALLING BIT(13) /* Ambient Light cross low threshold */
/* Bit masks for interrupt registers. */
#define VCNL4010_INT_THR_SEL BIT(0) /* Select threshold interrupt source */
#define VCNL4010_INT_THR_EN BIT(1) /* Threshold interrupt type */
#define VCNL4010_INT_ALS_EN BIT(2) /* Enable on ALS data ready */
#define VCNL4010_INT_PROX_EN BIT(3) /* Enable on proximity data ready */
#define VCNL4010_INT_THR_HIGH 0 /* High threshold exceeded */
#define VCNL4010_INT_THR_LOW 1 /* Low threshold exceeded */
#define VCNL4010_INT_ALS 2 /* ALS data ready */
#define VCNL4010_INT_PROXIMITY 3 /* Proximity data ready */
#define VCNL4010_INT_THR \
(BIT(VCNL4010_INT_THR_LOW) | BIT(VCNL4010_INT_THR_HIGH))
#define VCNL4010_INT_DRDY \
(BIT(VCNL4010_INT_PROXIMITY) | BIT(VCNL4010_INT_ALS))
#define VCNL4040_CONF3_PS_MPS_16BITS 3 /* 8 multi pulses */
#define VCNL4040_CONF3_PS_LED_I_16BITS 3 /* 120 mA */
#define VCNL4040_CONF3_PS_SAMPLE_16BITS \
(FIELD_PREP(VCNL4040_PS_CONF3_MPS, VCNL4040_CONF3_PS_MPS_16BITS) | \
FIELD_PREP(VCNL4040_PS_MS_LED_I, VCNL4040_CONF3_PS_LED_I_16BITS))
static const int vcnl4010_prox_sampling_frequency[][2] = {
{1, 950000},
{3, 906250},
{7, 812500},
{16, 625000},
{31, 250000},
{62, 500000},
{125, 0},
{250, 0},
};
static const int vcnl4040_ps_it_times[][2] = {
{0, 100},
{0, 150},
{0, 200},
{0, 250},
{0, 300},
{0, 350},
{0, 400},
{0, 800},
};
static const int vcnl4200_ps_it_times[][2] = {
{0, 96},
{0, 144},
{0, 192},
{0, 384},
{0, 768},
{0, 864},
};
static const int vcnl4040_als_it_times[][2] = {
{0, 80000},
{0, 160000},
{0, 320000},
{0, 640000},
};
static const int vcnl4200_als_it_times[][2] = {
{0, 50000},
{0, 100000},
{0, 200000},
{0, 400000},
};
static const int vcnl4040_ps_calibbias_ua[][2] = {
{0, 50000},
{0, 75000},
{0, 100000},
{0, 120000},
{0, 140000},
{0, 160000},
{0, 180000},
{0, 200000},
};
static const int vcnl4040_als_persistence[] = {1, 2, 4, 8};
static const int vcnl4040_ps_persistence[] = {1, 2, 3, 4};
static const int vcnl4040_ps_oversampling_ratio[] = {1, 2, 4, 8};
#define VCNL4000_SLEEP_DELAY_MS 2000 /* before we enter pm_runtime_suspend */
enum vcnl4000_device_ids {
VCNL4000,
VCNL4010,
VCNL4040,
VCNL4200,
};
struct vcnl4200_channel {
u8 reg;
ktime_t last_measurement;
ktime_t sampling_rate;
struct mutex lock;
};
struct vcnl4000_data {
struct i2c_client *client;
enum vcnl4000_device_ids id;
int rev;
int al_scale;
int ps_scale;
u8 ps_int; /* proximity interrupt mode */
u8 als_int; /* ambient light interrupt mode*/
const struct vcnl4000_chip_spec *chip_spec;
struct mutex vcnl4000_lock;
struct vcnl4200_channel vcnl4200_al;
struct vcnl4200_channel vcnl4200_ps;
uint32_t near_level;
};
struct vcnl4000_chip_spec {
const char *prod;
struct iio_chan_spec const *channels;
const int num_channels;
const struct iio_info *info;
const struct iio_buffer_setup_ops *buffer_setup_ops;
int (*init)(struct vcnl4000_data *data);
int (*measure_light)(struct vcnl4000_data *data, int *val);
int (*measure_proximity)(struct vcnl4000_data *data, int *val);
int (*set_power_state)(struct vcnl4000_data *data, bool on);
irqreturn_t (*irq_thread)(int irq, void *priv);
irqreturn_t (*trig_buffer_func)(int irq, void *priv);
u8 int_reg;
const int(*ps_it_times)[][2];
const int num_ps_it_times;
const int(*als_it_times)[][2];
const int num_als_it_times;
const unsigned int ulux_step;
};
static const struct i2c_device_id vcnl4000_id[] = {
{ "vcnl4000", VCNL4000 },
{ "vcnl4010", VCNL4010 },
{ "vcnl4020", VCNL4010 },
{ "vcnl4040", VCNL4040 },
{ "vcnl4200", VCNL4200 },
{ }
};
MODULE_DEVICE_TABLE(i2c, vcnl4000_id);
static int vcnl4000_set_power_state(struct vcnl4000_data *data, bool on)
{
/* no suspend op */
return 0;
}
static int vcnl4000_init(struct vcnl4000_data *data)
{
int ret, prod_id;
ret = i2c_smbus_read_byte_data(data->client, VCNL4000_PROD_REV);
if (ret < 0)
return ret;
prod_id = ret >> 4;
switch (prod_id) {
case VCNL4000_PROD_ID:
if (data->id != VCNL4000)
dev_warn(&data->client->dev,
"wrong device id, use vcnl4000");
break;
case VCNL4010_PROD_ID:
if (data->id != VCNL4010)
dev_warn(&data->client->dev,
"wrong device id, use vcnl4010/4020");
break;
default:
return -ENODEV;
}
data->rev = ret & 0xf;
data->al_scale = 250000;
return data->chip_spec->set_power_state(data, true);
};
static ssize_t vcnl4000_write_als_enable(struct vcnl4000_data *data, bool en)
{
int ret;
mutex_lock(&data->vcnl4000_lock);
ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF);
if (ret < 0)
goto out;
if (en)
ret &= ~VCNL4040_ALS_CONF_ALS_SHUTDOWN;
else
ret |= VCNL4040_ALS_CONF_ALS_SHUTDOWN;
ret = i2c_smbus_write_word_data(data->client, VCNL4200_AL_CONF, ret);
out:
mutex_unlock(&data->vcnl4000_lock);
return ret;
}
static ssize_t vcnl4000_write_ps_enable(struct vcnl4000_data *data, bool en)
{
int ret;
mutex_lock(&data->vcnl4000_lock);
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1);
if (ret < 0)
goto out;
if (en)
ret &= ~VCNL4040_PS_CONF1_PS_SHUTDOWN;
else
ret |= VCNL4040_PS_CONF1_PS_SHUTDOWN;
ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF1, ret);
out:
mutex_unlock(&data->vcnl4000_lock);
return ret;
}
static int vcnl4200_set_power_state(struct vcnl4000_data *data, bool on)
{
int ret;
/* Do not power down if interrupts are enabled */
if (!on && (data->ps_int || data->als_int))
return 0;
ret = vcnl4000_write_als_enable(data, on);
if (ret < 0)
return ret;
ret = vcnl4000_write_ps_enable(data, on);
if (ret < 0)
return ret;
if (on) {
/* Wait at least one integration cycle before fetching data */
data->vcnl4200_al.last_measurement = ktime_get();
data->vcnl4200_ps.last_measurement = ktime_get();
}
return 0;
}
static int vcnl4200_init(struct vcnl4000_data *data)
{
int ret, id;
u16 regval;
ret = i2c_smbus_read_word_data(data->client, VCNL4200_DEV_ID);
if (ret < 0)
return ret;
id = ret & 0xff;
if (id != VCNL4200_PROD_ID) {
ret = i2c_smbus_read_word_data(data->client, VCNL4040_DEV_ID);
if (ret < 0)
return ret;
id = ret & 0xff;
if (id != VCNL4040_PROD_ID)
return -ENODEV;
}
dev_dbg(&data->client->dev, "device id 0x%x", id);
data->rev = (ret >> 8) & 0xf;
data->ps_int = 0;
data->als_int = 0;
data->vcnl4200_al.reg = VCNL4200_AL_DATA;
data->vcnl4200_ps.reg = VCNL4200_PS_DATA;
switch (id) {
case VCNL4200_PROD_ID:
/* Default wait time is 50ms, add 20% tolerance. */
data->vcnl4200_al.sampling_rate = ktime_set(0, 60000 * 1000);
/* Default wait time is 4.8ms, add 20% tolerance. */
data->vcnl4200_ps.sampling_rate = ktime_set(0, 5760 * 1000);
break;
case VCNL4040_PROD_ID:
/* Default wait time is 80ms, add 20% tolerance. */
data->vcnl4200_al.sampling_rate = ktime_set(0, 96000 * 1000);
/* Default wait time is 5ms, add 20% tolerance. */
data->vcnl4200_ps.sampling_rate = ktime_set(0, 6000 * 1000);
break;
}
data->al_scale = data->chip_spec->ulux_step;
data->ps_scale = 16;
mutex_init(&data->vcnl4200_al.lock);
mutex_init(&data->vcnl4200_ps.lock);
/* Use 16 bits proximity sensor readings */
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1);
if (ret < 0)
return ret;
regval = ret | VCNL4040_PS_CONF2_PS_HD;
ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF1,
regval);
if (ret < 0)
return ret;
/* Align proximity sensor sample rate to 16 bits data width */
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF3);
if (ret < 0)
return ret;
regval = ret | VCNL4040_CONF3_PS_SAMPLE_16BITS;
ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF3,
regval);
if (ret < 0)
return ret;
ret = data->chip_spec->set_power_state(data, true);
if (ret < 0)
return ret;
return 0;
};
static int vcnl4000_read_data(struct vcnl4000_data *data, u8 data_reg, int *val)
{
s32 ret;
ret = i2c_smbus_read_word_swapped(data->client, data_reg);
if (ret < 0)
return ret;
*val = ret;
return 0;
}
static int vcnl4000_write_data(struct vcnl4000_data *data, u8 data_reg, int val)
{
if (val > U16_MAX)
return -ERANGE;
return i2c_smbus_write_word_swapped(data->client, data_reg, val);
}
static int vcnl4000_measure(struct vcnl4000_data *data, u8 req_mask,
u8 rdy_mask, u8 data_reg, int *val)
{
int tries = 20;
int ret;
mutex_lock(&data->vcnl4000_lock);
ret = i2c_smbus_write_byte_data(data->client, VCNL4000_COMMAND,
req_mask);
if (ret < 0)
goto fail;
/* wait for data to become ready */
while (tries--) {
ret = i2c_smbus_read_byte_data(data->client, VCNL4000_COMMAND);
if (ret < 0)
goto fail;
if (ret & rdy_mask)
break;
msleep(20); /* measurement takes up to 100 ms */
}
if (tries < 0) {
dev_err(&data->client->dev,
"vcnl4000_measure() failed, data not ready\n");
ret = -EIO;
goto fail;
}
ret = vcnl4000_read_data(data, data_reg, val);
if (ret < 0)
goto fail;
mutex_unlock(&data->vcnl4000_lock);
return 0;
fail:
mutex_unlock(&data->vcnl4000_lock);
return ret;
}
static int vcnl4200_measure(struct vcnl4000_data *data,
struct vcnl4200_channel *chan, int *val)
{
int ret;
s64 delta;
ktime_t next_measurement;
mutex_lock(&chan->lock);
next_measurement = ktime_add(chan->last_measurement,
chan->sampling_rate);
delta = ktime_us_delta(next_measurement, ktime_get());
if (delta > 0)
usleep_range(delta, delta + 500);
chan->last_measurement = ktime_get();
mutex_unlock(&chan->lock);
ret = i2c_smbus_read_word_data(data->client, chan->reg);
if (ret < 0)
return ret;
*val = ret;
return 0;
}
static int vcnl4000_measure_light(struct vcnl4000_data *data, int *val)
{
return vcnl4000_measure(data,
VCNL4000_AL_OD, VCNL4000_AL_RDY,
VCNL4000_AL_RESULT_HI, val);
}
static int vcnl4200_measure_light(struct vcnl4000_data *data, int *val)
{
return vcnl4200_measure(data, &data->vcnl4200_al, val);
}
static int vcnl4000_measure_proximity(struct vcnl4000_data *data, int *val)
{
return vcnl4000_measure(data,
VCNL4000_PS_OD, VCNL4000_PS_RDY,
VCNL4000_PS_RESULT_HI, val);
}
static int vcnl4200_measure_proximity(struct vcnl4000_data *data, int *val)
{
return vcnl4200_measure(data, &data->vcnl4200_ps, val);
}
static int vcnl4010_read_proxy_samp_freq(struct vcnl4000_data *data, int *val,
int *val2)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, VCNL4010_PROX_RATE);
if (ret < 0)
return ret;
if (ret >= ARRAY_SIZE(vcnl4010_prox_sampling_frequency))
return -EINVAL;
*val = vcnl4010_prox_sampling_frequency[ret][0];
*val2 = vcnl4010_prox_sampling_frequency[ret][1];
return 0;
}
static bool vcnl4010_is_in_periodic_mode(struct vcnl4000_data *data)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, VCNL4000_COMMAND);
if (ret < 0)
return false;
return !!(ret & VCNL4000_SELF_TIMED_EN);
}
static int vcnl4000_set_pm_runtime_state(struct vcnl4000_data *data, bool on)
{
struct device *dev = &data->client->dev;
int ret;
if (on) {
ret = pm_runtime_resume_and_get(dev);
} else {
pm_runtime_mark_last_busy(dev);
ret = pm_runtime_put_autosuspend(dev);
}
return ret;
}
static int vcnl4040_read_als_it(struct vcnl4000_data *data, int *val, int *val2)
{
int ret;
ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF);
if (ret < 0)
return ret;
ret = FIELD_GET(VCNL4040_ALS_CONF_IT, ret);
if (ret >= data->chip_spec->num_als_it_times)
return -EINVAL;
*val = (*data->chip_spec->als_it_times)[ret][0];
*val2 = (*data->chip_spec->als_it_times)[ret][1];
return 0;
}
static ssize_t vcnl4040_write_als_it(struct vcnl4000_data *data, int val)
{
unsigned int i;
int ret;
u16 regval;
for (i = 0; i < data->chip_spec->num_als_it_times; i++) {
if (val == (*data->chip_spec->als_it_times)[i][1])
break;
}
if (i == data->chip_spec->num_als_it_times)
return -EINVAL;
data->vcnl4200_al.sampling_rate = ktime_set(0, val * 1200);
data->al_scale = div_u64(mul_u32_u32(data->chip_spec->ulux_step,
(*data->chip_spec->als_it_times)[0][1]),
val);
mutex_lock(&data->vcnl4000_lock);
ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF);
if (ret < 0)
goto out_unlock;
regval = FIELD_PREP(VCNL4040_ALS_CONF_IT, i);
regval |= (ret & ~VCNL4040_ALS_CONF_IT);
ret = i2c_smbus_write_word_data(data->client,
VCNL4200_AL_CONF,
regval);
out_unlock:
mutex_unlock(&data->vcnl4000_lock);
return ret;
}
static int vcnl4040_read_ps_it(struct vcnl4000_data *data, int *val, int *val2)
{
int ret;
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1);
if (ret < 0)
return ret;
ret = FIELD_GET(VCNL4040_PS_CONF2_PS_IT, ret);
if (ret >= data->chip_spec->num_ps_it_times)
return -EINVAL;
*val = (*data->chip_spec->ps_it_times)[ret][0];
*val2 = (*data->chip_spec->ps_it_times)[ret][1];
return 0;
}
static ssize_t vcnl4040_write_ps_it(struct vcnl4000_data *data, int val)
{
unsigned int i;
int ret, index = -1;
u16 regval;
for (i = 0; i < data->chip_spec->num_ps_it_times; i++) {
if (val == (*data->chip_spec->ps_it_times)[i][1]) {
index = i;
break;
}
}
if (index < 0)
return -EINVAL;
data->vcnl4200_ps.sampling_rate = ktime_set(0, val * 60 * NSEC_PER_USEC);
mutex_lock(&data->vcnl4000_lock);
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1);
if (ret < 0)
goto out;
regval = (ret & ~VCNL4040_PS_CONF2_PS_IT) |
FIELD_PREP(VCNL4040_PS_CONF2_PS_IT, index);
ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF1,
regval);
out:
mutex_unlock(&data->vcnl4000_lock);
return ret;
}
static ssize_t vcnl4040_read_als_period(struct vcnl4000_data *data, int *val, int *val2)
{
int ret, ret_pers, it;
int64_t val_c;
ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF);
if (ret < 0)
return ret;
ret_pers = FIELD_GET(VCNL4040_ALS_CONF_PERS, ret);
if (ret_pers >= ARRAY_SIZE(vcnl4040_als_persistence))
return -EINVAL;
it = FIELD_GET(VCNL4040_ALS_CONF_IT, ret);
if (it >= data->chip_spec->num_als_it_times)
return -EINVAL;
val_c = mul_u32_u32((*data->chip_spec->als_it_times)[it][1],
vcnl4040_als_persistence[ret_pers]);
*val = div_u64_rem(val_c, MICRO, val2);
return IIO_VAL_INT_PLUS_MICRO;
}
static ssize_t vcnl4040_write_als_period(struct vcnl4000_data *data, int val, int val2)
{
unsigned int i;
int ret, it;
u16 regval;
u64 val_n = mul_u32_u32(val, MICRO) + val2;
ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF);
if (ret < 0)
return ret;
it = FIELD_GET(VCNL4040_ALS_CONF_IT, ret);
if (it >= data->chip_spec->num_als_it_times)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(vcnl4040_als_persistence) - 1; i++) {
if (val_n < mul_u32_u32(vcnl4040_als_persistence[i],
(*data->chip_spec->als_it_times)[it][1]))
break;
}
mutex_lock(&data->vcnl4000_lock);
ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF);
if (ret < 0)
goto out_unlock;
regval = FIELD_PREP(VCNL4040_ALS_CONF_PERS, i);
regval |= (ret & ~VCNL4040_ALS_CONF_PERS);
ret = i2c_smbus_write_word_data(data->client, VCNL4200_AL_CONF,
regval);
out_unlock:
mutex_unlock(&data->vcnl4000_lock);
return ret;
}
static ssize_t vcnl4040_read_ps_period(struct vcnl4000_data *data, int *val, int *val2)
{
int ret, ret_pers, it;
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1);
if (ret < 0)
return ret;
ret_pers = FIELD_GET(VCNL4040_CONF1_PS_PERS, ret);
if (ret_pers >= ARRAY_SIZE(vcnl4040_ps_persistence))
return -EINVAL;
it = FIELD_GET(VCNL4040_PS_CONF2_PS_IT, ret);
if (it >= data->chip_spec->num_ps_it_times)
return -EINVAL;
*val = (*data->chip_spec->ps_it_times)[it][0];
*val2 = (*data->chip_spec->ps_it_times)[it][1] *
vcnl4040_ps_persistence[ret_pers];
return IIO_VAL_INT_PLUS_MICRO;
}
static ssize_t vcnl4040_write_ps_period(struct vcnl4000_data *data, int val, int val2)
{
int ret, it, i;
u16 regval;
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1);
if (ret < 0)
return ret;
it = FIELD_GET(VCNL4040_PS_CONF2_PS_IT, ret);
if (it >= data->chip_spec->num_ps_it_times)
return -EINVAL;
if (val > 0)
i = ARRAY_SIZE(vcnl4040_ps_persistence) - 1;
else {
for (i = 0; i < ARRAY_SIZE(vcnl4040_ps_persistence) - 1; i++) {
if (val2 <= vcnl4040_ps_persistence[i] *
(*data->chip_spec->ps_it_times)[it][1])
break;
}
}
mutex_lock(&data->vcnl4000_lock);
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1);
if (ret < 0)
goto out_unlock;
regval = FIELD_PREP(VCNL4040_CONF1_PS_PERS, i);
regval |= (ret & ~VCNL4040_CONF1_PS_PERS);
ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF1,
regval);
out_unlock:
mutex_unlock(&data->vcnl4000_lock);
return ret;
}
static ssize_t vcnl4040_read_ps_oversampling_ratio(struct vcnl4000_data *data, int *val)
{
int ret;
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF3);
if (ret < 0)
return ret;
ret = FIELD_GET(VCNL4040_PS_CONF3_MPS, ret);
if (ret >= ARRAY_SIZE(vcnl4040_ps_oversampling_ratio))
return -EINVAL;
*val = vcnl4040_ps_oversampling_ratio[ret];
return ret;
}
static ssize_t vcnl4040_write_ps_oversampling_ratio(struct vcnl4000_data *data, int val)
{
unsigned int i;
int ret;
u16 regval;
for (i = 0; i < ARRAY_SIZE(vcnl4040_ps_oversampling_ratio); i++) {
if (val == vcnl4040_ps_oversampling_ratio[i])
break;
}
if (i >= ARRAY_SIZE(vcnl4040_ps_oversampling_ratio))
return -EINVAL;
mutex_lock(&data->vcnl4000_lock);
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF3);
if (ret < 0)
goto out_unlock;
regval = FIELD_PREP(VCNL4040_PS_CONF3_MPS, i);
regval |= (ret & ~VCNL4040_PS_CONF3_MPS);
ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF3,
regval);
out_unlock:
mutex_unlock(&data->vcnl4000_lock);
return ret;
}
static ssize_t vcnl4040_read_ps_calibbias(struct vcnl4000_data *data, int *val, int *val2)
{
int ret;
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF3);
if (ret < 0)
return ret;
ret = FIELD_GET(VCNL4040_PS_MS_LED_I, ret);
if (ret >= ARRAY_SIZE(vcnl4040_ps_calibbias_ua))
return -EINVAL;
*val = vcnl4040_ps_calibbias_ua[ret][0];
*val2 = vcnl4040_ps_calibbias_ua[ret][1];
return ret;
}
static ssize_t vcnl4040_write_ps_calibbias(struct vcnl4000_data *data, int val)
{
unsigned int i;
int ret;
u16 regval;
for (i = 0; i < ARRAY_SIZE(vcnl4040_ps_calibbias_ua); i++) {
if (val == vcnl4040_ps_calibbias_ua[i][1])
break;
}
if (i >= ARRAY_SIZE(vcnl4040_ps_calibbias_ua))
return -EINVAL;
mutex_lock(&data->vcnl4000_lock);
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF3);
if (ret < 0)
goto out_unlock;
regval = (ret & ~VCNL4040_PS_MS_LED_I);
regval |= FIELD_PREP(VCNL4040_PS_MS_LED_I, i);
ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF3,
regval);
out_unlock:
mutex_unlock(&data->vcnl4000_lock);
return ret;
}
static int vcnl4000_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
int ret;
struct vcnl4000_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = vcnl4000_set_pm_runtime_state(data, true);
if (ret < 0)
return ret;
switch (chan->type) {
case IIO_LIGHT:
ret = data->chip_spec->measure_light(data, val);
if (!ret)
ret = IIO_VAL_INT;
break;
case IIO_PROXIMITY:
ret = data->chip_spec->measure_proximity(data, val);
*val2 = data->ps_scale;
if (!ret)
ret = IIO_VAL_FRACTIONAL;
break;
default:
ret = -EINVAL;
}
vcnl4000_set_pm_runtime_state(data, false);
return ret;
case IIO_CHAN_INFO_SCALE:
if (chan->type != IIO_LIGHT)
return -EINVAL;
*val = 0;
*val2 = data->al_scale;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_INT_TIME:
switch (chan->type) {
case IIO_LIGHT:
ret = vcnl4040_read_als_it(data, val, val2);
break;
case IIO_PROXIMITY:
ret = vcnl4040_read_ps_it(data, val, val2);
break;
default:
return -EINVAL;
}
if (ret < 0)
return ret;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
switch (chan->type) {
case IIO_PROXIMITY:
ret = vcnl4040_read_ps_oversampling_ratio(data, val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_CALIBBIAS:
switch (chan->type) {
case IIO_PROXIMITY:
ret = vcnl4040_read_ps_calibbias(data, val, val2);
if (ret < 0)
return ret;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int vcnl4040_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct vcnl4000_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
if (val != 0)
return -EINVAL;
switch (chan->type) {
case IIO_LIGHT:
return vcnl4040_write_als_it(data, val2);
case IIO_PROXIMITY:
return vcnl4040_write_ps_it(data, val2);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
switch (chan->type) {
case IIO_PROXIMITY:
return vcnl4040_write_ps_oversampling_ratio(data, val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_CALIBBIAS:
switch (chan->type) {
case IIO_PROXIMITY:
return vcnl4040_write_ps_calibbias(data, val2);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int vcnl4040_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct vcnl4000_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
switch (chan->type) {
case IIO_LIGHT:
*vals = (int *)(*data->chip_spec->als_it_times);
*length = 2 * data->chip_spec->num_als_it_times;
break;
case IIO_PROXIMITY:
*vals = (int *)(*data->chip_spec->ps_it_times);
*length = 2 * data->chip_spec->num_ps_it_times;
break;
default:
return -EINVAL;
}
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
switch (chan->type) {
case IIO_PROXIMITY:
*vals = (int *)vcnl4040_ps_oversampling_ratio;
*length = ARRAY_SIZE(vcnl4040_ps_oversampling_ratio);
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_CALIBBIAS:
switch (chan->type) {
case IIO_PROXIMITY:
*vals = (int *)vcnl4040_ps_calibbias_ua;
*length = 2 * ARRAY_SIZE(vcnl4040_ps_calibbias_ua);
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int vcnl4010_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
int ret;
struct vcnl4000_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_SCALE:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
/* Protect against event capture. */
if (vcnl4010_is_in_periodic_mode(data)) {
ret = -EBUSY;
} else {
ret = vcnl4000_read_raw(indio_dev, chan, val, val2,
mask);
}
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
switch (chan->type) {
case IIO_PROXIMITY:
ret = vcnl4010_read_proxy_samp_freq(data, val, val2);
if (ret < 0)
return ret;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int vcnl4010_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*vals = (int *)vcnl4010_prox_sampling_frequency;
*type = IIO_VAL_INT_PLUS_MICRO;
*length = 2 * ARRAY_SIZE(vcnl4010_prox_sampling_frequency);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int vcnl4010_write_proxy_samp_freq(struct vcnl4000_data *data, int val,
int val2)
{
unsigned int i;
int index = -1;
for (i = 0; i < ARRAY_SIZE(vcnl4010_prox_sampling_frequency); i++) {
if (val == vcnl4010_prox_sampling_frequency[i][0] &&
val2 == vcnl4010_prox_sampling_frequency[i][1]) {
index = i;
break;
}
}
if (index < 0)
return -EINVAL;
return i2c_smbus_write_byte_data(data->client, VCNL4010_PROX_RATE,
index);
}
static int vcnl4010_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
int ret;
struct vcnl4000_data *data = iio_priv(indio_dev);
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
/* Protect against event capture. */
if (vcnl4010_is_in_periodic_mode(data)) {
ret = -EBUSY;
goto end;
}
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
switch (chan->type) {
case IIO_PROXIMITY:
ret = vcnl4010_write_proxy_samp_freq(data, val, val2);
goto end;
default:
ret = -EINVAL;
goto end;
}
default:
ret = -EINVAL;
goto end;
}
end:
iio_device_release_direct_mode(indio_dev);
return ret;
}
static int vcnl4010_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
int ret;
struct vcnl4000_data *data = iio_priv(indio_dev);
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
ret = vcnl4000_read_data(data, VCNL4010_HIGH_THR_HI,
val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_EV_DIR_FALLING:
ret = vcnl4000_read_data(data, VCNL4010_LOW_THR_HI,
val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int vcnl4010_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
int ret;
struct vcnl4000_data *data = iio_priv(indio_dev);
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
ret = vcnl4000_write_data(data, VCNL4010_HIGH_THR_HI,
val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_EV_DIR_FALLING:
ret = vcnl4000_write_data(data, VCNL4010_LOW_THR_HI,
val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int vcnl4040_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
int ret;
struct vcnl4000_data *data = iio_priv(indio_dev);
switch (chan->type) {
case IIO_LIGHT:
switch (info) {
case IIO_EV_INFO_PERIOD:
return vcnl4040_read_als_period(data, val, val2);
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
ret = i2c_smbus_read_word_data(data->client,
VCNL4040_ALS_THDH_LM);
break;
case IIO_EV_DIR_FALLING:
ret = i2c_smbus_read_word_data(data->client,
VCNL4040_ALS_THDL_LM);
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
break;
case IIO_PROXIMITY:
switch (info) {
case IIO_EV_INFO_PERIOD:
return vcnl4040_read_ps_period(data, val, val2);
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
ret = i2c_smbus_read_word_data(data->client,
VCNL4040_PS_THDH_LM);
break;
case IIO_EV_DIR_FALLING:
ret = i2c_smbus_read_word_data(data->client,
VCNL4040_PS_THDL_LM);
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
if (ret < 0)
return ret;
*val = ret;
return IIO_VAL_INT;
}
static int vcnl4040_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
int ret;
struct vcnl4000_data *data = iio_priv(indio_dev);
switch (chan->type) {
case IIO_LIGHT:
switch (info) {
case IIO_EV_INFO_PERIOD:
return vcnl4040_write_als_period(data, val, val2);
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
ret = i2c_smbus_write_word_data(data->client,
VCNL4040_ALS_THDH_LM,
val);
break;
case IIO_EV_DIR_FALLING:
ret = i2c_smbus_write_word_data(data->client,
VCNL4040_ALS_THDL_LM,
val);
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
break;
case IIO_PROXIMITY:
switch (info) {
case IIO_EV_INFO_PERIOD:
return vcnl4040_write_ps_period(data, val, val2);
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
ret = i2c_smbus_write_word_data(data->client,
VCNL4040_PS_THDH_LM,
val);
break;
case IIO_EV_DIR_FALLING:
ret = i2c_smbus_write_word_data(data->client,
VCNL4040_PS_THDL_LM,
val);
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
if (ret < 0)
return ret;
return IIO_VAL_INT;
}
static bool vcnl4010_is_thr_enabled(struct vcnl4000_data *data)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, VCNL4010_INT_CTRL);
if (ret < 0)
return false;
return !!(ret & VCNL4010_INT_THR_EN);
}
static int vcnl4010_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct vcnl4000_data *data = iio_priv(indio_dev);
switch (chan->type) {
case IIO_PROXIMITY:
return vcnl4010_is_thr_enabled(data);
default:
return -EINVAL;
}
}
static int vcnl4010_config_threshold(struct iio_dev *indio_dev, bool state)
{
struct vcnl4000_data *data = iio_priv(indio_dev);
int ret;
int icr;
int command;
if (state) {
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
/* Enable periodic measurement of proximity data. */
command = VCNL4000_SELF_TIMED_EN | VCNL4000_PROX_EN;
/*
* Enable interrupts on threshold, for proximity data by
* default.
*/
icr = VCNL4010_INT_THR_EN;
} else {
if (!vcnl4010_is_thr_enabled(data))
return 0;
command = 0;
icr = 0;
}
ret = i2c_smbus_write_byte_data(data->client, VCNL4000_COMMAND,
command);
if (ret < 0)
goto end;
ret = i2c_smbus_write_byte_data(data->client, VCNL4010_INT_CTRL, icr);
end:
if (state)
iio_device_release_direct_mode(indio_dev);
return ret;
}
static int vcnl4010_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
bool state)
{
switch (chan->type) {
case IIO_PROXIMITY:
return vcnl4010_config_threshold(indio_dev, state);
default:
return -EINVAL;
}
}
static int vcnl4040_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
int ret;
struct vcnl4000_data *data = iio_priv(indio_dev);
switch (chan->type) {
case IIO_LIGHT:
ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF);
if (ret < 0)
return ret;
data->als_int = FIELD_GET(VCNL4040_ALS_CONF_INT_EN, ret);
return data->als_int;
case IIO_PROXIMITY:
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1);
if (ret < 0)
return ret;
data->ps_int = FIELD_GET(VCNL4040_PS_CONF2_PS_INT, ret);
return (dir == IIO_EV_DIR_RISING) ?
FIELD_GET(VCNL4040_PS_IF_AWAY, ret) :
FIELD_GET(VCNL4040_PS_IF_CLOSE, ret);
default:
return -EINVAL;
}
}
static int vcnl4040_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
bool state)
{
int ret = -EINVAL;
u16 val, mask;
struct vcnl4000_data *data = iio_priv(indio_dev);
mutex_lock(&data->vcnl4000_lock);
switch (chan->type) {
case IIO_LIGHT:
ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF);
if (ret < 0)
goto out;
mask = VCNL4040_ALS_CONF_INT_EN;
if (state)
val = (ret | mask);
else
val = (ret & ~mask);
data->als_int = FIELD_GET(VCNL4040_ALS_CONF_INT_EN, val);
ret = i2c_smbus_write_word_data(data->client, VCNL4200_AL_CONF,
val);
break;
case IIO_PROXIMITY:
ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1);
if (ret < 0)
goto out;
if (dir == IIO_EV_DIR_RISING)
mask = VCNL4040_PS_IF_AWAY;
else
mask = VCNL4040_PS_IF_CLOSE;
val = state ? (ret | mask) : (ret & ~mask);
data->ps_int = FIELD_GET(VCNL4040_PS_CONF2_PS_INT, val);
ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF1,
val);
break;
default:
break;
}
out:
mutex_unlock(&data->vcnl4000_lock);
return ret;
}
static irqreturn_t vcnl4040_irq_thread(int irq, void *p)
{
struct iio_dev *indio_dev = p;
struct vcnl4000_data *data = iio_priv(indio_dev);
int ret;
ret = i2c_smbus_read_word_data(data->client, data->chip_spec->int_reg);
if (ret < 0)
return IRQ_HANDLED;
if (ret & VCNL4040_PS_IF_CLOSE) {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
iio_get_time_ns(indio_dev));
}
if (ret & VCNL4040_PS_IF_AWAY) {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING),
iio_get_time_ns(indio_dev));
}
if (ret & VCNL4040_ALS_FALLING) {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING),
iio_get_time_ns(indio_dev));
}
if (ret & VCNL4040_ALS_RISING) {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
iio_get_time_ns(indio_dev));
}
return IRQ_HANDLED;
}
static ssize_t vcnl4000_read_near_level(struct iio_dev *indio_dev,
uintptr_t priv,
const struct iio_chan_spec *chan,
char *buf)
{
struct vcnl4000_data *data = iio_priv(indio_dev);
return sprintf(buf, "%u\n", data->near_level);
}
static irqreturn_t vcnl4010_irq_thread(int irq, void *p)
{
struct iio_dev *indio_dev = p;
struct vcnl4000_data *data = iio_priv(indio_dev);
unsigned long isr;
int ret;
ret = i2c_smbus_read_byte_data(data->client, VCNL4010_ISR);
if (ret < 0)
goto end;
isr = ret;
if (isr & VCNL4010_INT_THR) {
if (test_bit(VCNL4010_INT_THR_LOW, &isr)) {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(
IIO_PROXIMITY,
1,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_FALLING),
iio_get_time_ns(indio_dev));
}
if (test_bit(VCNL4010_INT_THR_HIGH, &isr)) {
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(
IIO_PROXIMITY,
1,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_RISING),
iio_get_time_ns(indio_dev));
}
i2c_smbus_write_byte_data(data->client, VCNL4010_ISR,
isr & VCNL4010_INT_THR);
}
if (isr & VCNL4010_INT_DRDY && iio_buffer_enabled(indio_dev))
iio_trigger_poll_nested(indio_dev->trig);
end:
return IRQ_HANDLED;
}
static irqreturn_t vcnl4010_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct vcnl4000_data *data = iio_priv(indio_dev);
const unsigned long *active_scan_mask = indio_dev->active_scan_mask;
u16 buffer[8] __aligned(8) = {0}; /* 1x16-bit + naturally aligned ts */
bool data_read = false;
unsigned long isr;
int val = 0;
int ret;
ret = i2c_smbus_read_byte_data(data->client, VCNL4010_ISR);
if (ret < 0)
goto end;
isr = ret;
if (test_bit(0, active_scan_mask)) {
if (test_bit(VCNL4010_INT_PROXIMITY, &isr)) {
ret = vcnl4000_read_data(data,
VCNL4000_PS_RESULT_HI,
&val);
if (ret < 0)
goto end;
buffer[0] = val;
data_read = true;
}
}
ret = i2c_smbus_write_byte_data(data->client, VCNL4010_ISR,
isr & VCNL4010_INT_DRDY);
if (ret < 0)
goto end;
if (!data_read)
goto end;
iio_push_to_buffers_with_timestamp(indio_dev, buffer,
iio_get_time_ns(indio_dev));
end:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int vcnl4010_buffer_postenable(struct iio_dev *indio_dev)
{
struct vcnl4000_data *data = iio_priv(indio_dev);
int ret;
int cmd;
/* Do not enable the buffer if we are already capturing events. */
if (vcnl4010_is_in_periodic_mode(data))
return -EBUSY;
ret = i2c_smbus_write_byte_data(data->client, VCNL4010_INT_CTRL,
VCNL4010_INT_PROX_EN);
if (ret < 0)
return ret;
cmd = VCNL4000_SELF_TIMED_EN | VCNL4000_PROX_EN;
return i2c_smbus_write_byte_data(data->client, VCNL4000_COMMAND, cmd);
}
static int vcnl4010_buffer_predisable(struct iio_dev *indio_dev)
{
struct vcnl4000_data *data = iio_priv(indio_dev);
int ret;
ret = i2c_smbus_write_byte_data(data->client, VCNL4010_INT_CTRL, 0);
if (ret < 0)
return ret;
return i2c_smbus_write_byte_data(data->client, VCNL4000_COMMAND, 0);
}
static const struct iio_buffer_setup_ops vcnl4010_buffer_ops = {
.postenable = &vcnl4010_buffer_postenable,
.predisable = &vcnl4010_buffer_predisable,
};
static const struct iio_chan_spec_ext_info vcnl4000_ext_info[] = {
{
.name = "nearlevel",
.shared = IIO_SEPARATE,
.read = vcnl4000_read_near_level,
},
{ /* sentinel */ }
};
static const struct iio_event_spec vcnl4000_event_spec[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_ENABLE),
}
};
static const struct iio_event_spec vcnl4040_als_event_spec[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD),
},
};
static const struct iio_event_spec vcnl4040_event_spec[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_PERIOD),
},
};
static const struct iio_chan_spec vcnl4000_channels[] = {
{
.type = IIO_LIGHT,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
}, {
.type = IIO_PROXIMITY,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.ext_info = vcnl4000_ext_info,
}
};
static const struct iio_chan_spec vcnl4010_channels[] = {
{
.type = IIO_LIGHT,
.scan_index = -1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
}, {
.type = IIO_PROXIMITY,
.scan_index = 0,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.event_spec = vcnl4000_event_spec,
.num_event_specs = ARRAY_SIZE(vcnl4000_event_spec),
.ext_info = vcnl4000_ext_info,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
IIO_CHAN_SOFT_TIMESTAMP(1),
};
static const struct iio_chan_spec vcnl4040_channels[] = {
{
.type = IIO_LIGHT,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_INT_TIME),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME),
.event_spec = vcnl4040_als_event_spec,
.num_event_specs = ARRAY_SIZE(vcnl4040_als_event_spec),
}, {
.type = IIO_PROXIMITY,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
BIT(IIO_CHAN_INFO_CALIBBIAS),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
BIT(IIO_CHAN_INFO_CALIBBIAS),
.ext_info = vcnl4000_ext_info,
.event_spec = vcnl4040_event_spec,
.num_event_specs = ARRAY_SIZE(vcnl4040_event_spec),
}
};
static const struct iio_info vcnl4000_info = {
.read_raw = vcnl4000_read_raw,
};
static const struct iio_info vcnl4010_info = {
.read_raw = vcnl4010_read_raw,
.read_avail = vcnl4010_read_avail,
.write_raw = vcnl4010_write_raw,
.read_event_value = vcnl4010_read_event,
.write_event_value = vcnl4010_write_event,
.read_event_config = vcnl4010_read_event_config,
.write_event_config = vcnl4010_write_event_config,
};
static const struct iio_info vcnl4040_info = {
.read_raw = vcnl4000_read_raw,
.write_raw = vcnl4040_write_raw,
.read_event_value = vcnl4040_read_event,
.write_event_value = vcnl4040_write_event,
.read_event_config = vcnl4040_read_event_config,
.write_event_config = vcnl4040_write_event_config,
.read_avail = vcnl4040_read_avail,
};
static const struct vcnl4000_chip_spec vcnl4000_chip_spec_cfg[] = {
[VCNL4000] = {
.prod = "VCNL4000",
.init = vcnl4000_init,
.measure_light = vcnl4000_measure_light,
.measure_proximity = vcnl4000_measure_proximity,
.set_power_state = vcnl4000_set_power_state,
.channels = vcnl4000_channels,
.num_channels = ARRAY_SIZE(vcnl4000_channels),
.info = &vcnl4000_info,
},
[VCNL4010] = {
.prod = "VCNL4010/4020",
.init = vcnl4000_init,
.measure_light = vcnl4000_measure_light,
.measure_proximity = vcnl4000_measure_proximity,
.set_power_state = vcnl4000_set_power_state,
.channels = vcnl4010_channels,
.num_channels = ARRAY_SIZE(vcnl4010_channels),
.info = &vcnl4010_info,
.irq_thread = vcnl4010_irq_thread,
.trig_buffer_func = vcnl4010_trigger_handler,
.buffer_setup_ops = &vcnl4010_buffer_ops,
},
[VCNL4040] = {
.prod = "VCNL4040",
.init = vcnl4200_init,
.measure_light = vcnl4200_measure_light,
.measure_proximity = vcnl4200_measure_proximity,
.set_power_state = vcnl4200_set_power_state,
.channels = vcnl4040_channels,
.num_channels = ARRAY_SIZE(vcnl4040_channels),
.info = &vcnl4040_info,
.irq_thread = vcnl4040_irq_thread,
.int_reg = VCNL4040_INT_FLAGS,
.ps_it_times = &vcnl4040_ps_it_times,
.num_ps_it_times = ARRAY_SIZE(vcnl4040_ps_it_times),
.als_it_times = &vcnl4040_als_it_times,
.num_als_it_times = ARRAY_SIZE(vcnl4040_als_it_times),
.ulux_step = 100000,
},
[VCNL4200] = {
.prod = "VCNL4200",
.init = vcnl4200_init,
.measure_light = vcnl4200_measure_light,
.measure_proximity = vcnl4200_measure_proximity,
.set_power_state = vcnl4200_set_power_state,
.channels = vcnl4040_channels,
.num_channels = ARRAY_SIZE(vcnl4000_channels),
.info = &vcnl4040_info,
.irq_thread = vcnl4040_irq_thread,
.int_reg = VCNL4200_INT_FLAGS,
.ps_it_times = &vcnl4200_ps_it_times,
.num_ps_it_times = ARRAY_SIZE(vcnl4200_ps_it_times),
.als_it_times = &vcnl4200_als_it_times,
.num_als_it_times = ARRAY_SIZE(vcnl4200_als_it_times),
.ulux_step = 24000,
},
};
static const struct iio_trigger_ops vcnl4010_trigger_ops = {
.validate_device = iio_trigger_validate_own_device,
};
static int vcnl4010_probe_trigger(struct iio_dev *indio_dev)
{
struct vcnl4000_data *data = iio_priv(indio_dev);
struct i2c_client *client = data->client;
struct iio_trigger *trigger;
trigger = devm_iio_trigger_alloc(&client->dev, "%s-dev%d",
indio_dev->name,
iio_device_id(indio_dev));
if (!trigger)
return -ENOMEM;
trigger->ops = &vcnl4010_trigger_ops;
iio_trigger_set_drvdata(trigger, indio_dev);
return devm_iio_trigger_register(&client->dev, trigger);
}
static int vcnl4000_probe(struct i2c_client *client)
{
const struct i2c_device_id *id = i2c_client_get_device_id(client);
struct vcnl4000_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
data->id = id->driver_data;
data->chip_spec = &vcnl4000_chip_spec_cfg[data->id];
mutex_init(&data->vcnl4000_lock);
ret = data->chip_spec->init(data);
if (ret < 0)
return ret;
dev_dbg(&client->dev, "%s Ambient light/proximity sensor, Rev: %02x\n",
data->chip_spec->prod, data->rev);
if (device_property_read_u32(&client->dev, "proximity-near-level",
&data->near_level))
data->near_level = 0;
indio_dev->info = data->chip_spec->info;
indio_dev->channels = data->chip_spec->channels;
indio_dev->num_channels = data->chip_spec->num_channels;
indio_dev->name = VCNL4000_DRV_NAME;
indio_dev->modes = INDIO_DIRECT_MODE;
if (data->chip_spec->trig_buffer_func &&
data->chip_spec->buffer_setup_ops) {
ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev,
NULL,
data->chip_spec->trig_buffer_func,
data->chip_spec->buffer_setup_ops);
if (ret < 0) {
dev_err(&client->dev,
"unable to setup iio triggered buffer\n");
return ret;
}
}
if (client->irq && data->chip_spec->irq_thread) {
ret = devm_request_threaded_irq(&client->dev, client->irq,
NULL, data->chip_spec->irq_thread,
IRQF_TRIGGER_FALLING |
IRQF_ONESHOT,
"vcnl4000_irq",
indio_dev);
if (ret < 0) {
dev_err(&client->dev, "irq request failed\n");
return ret;
}
ret = vcnl4010_probe_trigger(indio_dev);
if (ret < 0)
return ret;
}
ret = pm_runtime_set_active(&client->dev);
if (ret < 0)
goto fail_poweroff;
ret = iio_device_register(indio_dev);
if (ret < 0)
goto fail_poweroff;
pm_runtime_enable(&client->dev);
pm_runtime_set_autosuspend_delay(&client->dev, VCNL4000_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(&client->dev);
return 0;
fail_poweroff:
data->chip_spec->set_power_state(data, false);
return ret;
}
static const struct of_device_id vcnl_4000_of_match[] = {
{
.compatible = "vishay,vcnl4000",
.data = (void *)VCNL4000,
},
{
.compatible = "vishay,vcnl4010",
.data = (void *)VCNL4010,
},
{
.compatible = "vishay,vcnl4020",
.data = (void *)VCNL4010,
},
{
.compatible = "vishay,vcnl4040",
.data = (void *)VCNL4040,
},
{
.compatible = "vishay,vcnl4200",
.data = (void *)VCNL4200,
},
{},
};
MODULE_DEVICE_TABLE(of, vcnl_4000_of_match);
static void vcnl4000_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct vcnl4000_data *data = iio_priv(indio_dev);
int ret;
pm_runtime_dont_use_autosuspend(&client->dev);
pm_runtime_disable(&client->dev);
iio_device_unregister(indio_dev);
pm_runtime_set_suspended(&client->dev);
ret = data->chip_spec->set_power_state(data, false);
if (ret)
dev_warn(&client->dev, "Failed to power down (%pe)\n",
ERR_PTR(ret));
}
static int vcnl4000_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct vcnl4000_data *data = iio_priv(indio_dev);
return data->chip_spec->set_power_state(data, false);
}
static int vcnl4000_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct vcnl4000_data *data = iio_priv(indio_dev);
return data->chip_spec->set_power_state(data, true);
}
static DEFINE_RUNTIME_DEV_PM_OPS(vcnl4000_pm_ops, vcnl4000_runtime_suspend,
vcnl4000_runtime_resume, NULL);
static struct i2c_driver vcnl4000_driver = {
.driver = {
.name = VCNL4000_DRV_NAME,
.pm = pm_ptr(&vcnl4000_pm_ops),
.of_match_table = vcnl_4000_of_match,
},
.probe = vcnl4000_probe,
.id_table = vcnl4000_id,
.remove = vcnl4000_remove,
};
module_i2c_driver(vcnl4000_driver);
MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
MODULE_AUTHOR("Mathieu Othacehe <m.othacehe@gmail.com>");
MODULE_DESCRIPTION("Vishay VCNL4000 proximity/ambient light sensor driver");
MODULE_LICENSE("GPL");