linux-next/drivers/iio/magnetometer/af8133j.c
Stephen Rothwell 9a884bdb6e iio: magnetometer: fix if () scoped_guard() formatting
Add mising braces after an if condition that contains scoped_guard().

This style is both preferred and necessary here, to fix warning after
scoped_guard() change in commit fcc22ac5ba ("cleanup: Adjust
scoped_guard() macros to avoid potential warning") to have if-else inside
of the macro. Current (no braces) use in af8133j_set_scale() yields
the following warnings:
af8133j.c:315:12: warning: suggest explicit braces to avoid ambiguous 'else' [-Wdangling-else]
af8133j.c:316:3: warning: add explicit braces to avoid dangling else [-Wdangling-else]

Fixes: fcc22ac5ba ("cleanup: Adjust scoped_guard() macros to avoid potential warning")
Closes: https://lore.kernel.org/oe-kbuild-all/202409270848.tTpyEAR7-lkp@intel.com/
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20241108154258.21411-1-przemyslaw.kitszel@intel.com
2024-11-11 11:49:47 +01:00

530 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* af8133j.c - Voltafield AF8133J magnetometer driver
*
* Copyright 2021 Icenowy Zheng <icenowy@aosc.io>
* Copyright 2024 Ondřej Jirman <megi@xff.cz>
*/
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#define AF8133J_REG_OUT 0x03
#define AF8133J_REG_PCODE 0x00
#define AF8133J_REG_PCODE_VAL 0x5e
#define AF8133J_REG_STATUS 0x02
#define AF8133J_REG_STATUS_ACQ BIT(0)
#define AF8133J_REG_STATE 0x0a
#define AF8133J_REG_STATE_STBY 0x00
#define AF8133J_REG_STATE_WORK 0x01
#define AF8133J_REG_RANGE 0x0b
#define AF8133J_REG_RANGE_22G 0x12
#define AF8133J_REG_RANGE_12G 0x34
#define AF8133J_REG_SWR 0x11
#define AF8133J_REG_SWR_PERFORM 0x81
static const char * const af8133j_supply_names[] = {
"avdd",
"dvdd",
};
struct af8133j_data {
struct i2c_client *client;
struct regmap *regmap;
/*
* Protect device internal state between starting a measurement
* and reading the result.
*/
struct mutex mutex;
struct iio_mount_matrix orientation;
struct gpio_desc *reset_gpiod;
struct regulator_bulk_data supplies[ARRAY_SIZE(af8133j_supply_names)];
u8 range;
};
enum af8133j_axis {
AXIS_X = 0,
AXIS_Y,
AXIS_Z,
};
static struct iio_mount_matrix *
af8133j_get_mount_matrix(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct af8133j_data *data = iio_priv(indio_dev);
return &data->orientation;
}
static const struct iio_chan_spec_ext_info af8133j_ext_info[] = {
IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, af8133j_get_mount_matrix),
{ }
};
#define AF8133J_CHANNEL(_si, _axis) { \
.type = IIO_MAGN, \
.modified = 1, \
.channel2 = IIO_MOD_ ## _axis, \
.address = AXIS_ ## _axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE), \
.ext_info = af8133j_ext_info, \
.scan_index = _si, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
}
static const struct iio_chan_spec af8133j_channels[] = {
AF8133J_CHANNEL(0, X),
AF8133J_CHANNEL(1, Y),
AF8133J_CHANNEL(2, Z),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
static int af8133j_product_check(struct af8133j_data *data)
{
struct device *dev = &data->client->dev;
unsigned int val;
int ret;
ret = regmap_read(data->regmap, AF8133J_REG_PCODE, &val);
if (ret) {
dev_err(dev, "Error reading product code (%d)\n", ret);
return ret;
}
if (val != AF8133J_REG_PCODE_VAL) {
dev_warn(dev, "Invalid product code (0x%02x)\n", val);
return 0; /* Allow unknown ID so fallback compatibles work */
}
return 0;
}
static int af8133j_reset(struct af8133j_data *data)
{
struct device *dev = &data->client->dev;
int ret;
if (data->reset_gpiod) {
/* If we have GPIO reset line, use it */
gpiod_set_value_cansleep(data->reset_gpiod, 1);
udelay(10);
gpiod_set_value_cansleep(data->reset_gpiod, 0);
} else {
/* Otherwise use software reset */
ret = regmap_write(data->regmap, AF8133J_REG_SWR,
AF8133J_REG_SWR_PERFORM);
if (ret) {
dev_err(dev, "Failed to reset the chip\n");
return ret;
}
}
/* Wait for reset to finish */
usleep_range(1000, 1100);
/* Restore range setting */
if (data->range == AF8133J_REG_RANGE_22G) {
ret = regmap_write(data->regmap, AF8133J_REG_RANGE, data->range);
if (ret)
return ret;
}
return 0;
}
static void af8133j_power_down(struct af8133j_data *data)
{
gpiod_set_value_cansleep(data->reset_gpiod, 1);
regulator_bulk_disable(ARRAY_SIZE(data->supplies), data->supplies);
}
static int af8133j_power_up(struct af8133j_data *data)
{
struct device *dev = &data->client->dev;
int ret;
ret = regulator_bulk_enable(ARRAY_SIZE(data->supplies), data->supplies);
if (ret) {
dev_err(dev, "Could not enable regulators\n");
return ret;
}
gpiod_set_value_cansleep(data->reset_gpiod, 0);
/* Wait for power on reset */
usleep_range(15000, 16000);
ret = af8133j_reset(data);
if (ret) {
af8133j_power_down(data);
return ret;
}
return 0;
}
static int af8133j_take_measurement(struct af8133j_data *data)
{
unsigned int val;
int ret;
ret = regmap_write(data->regmap,
AF8133J_REG_STATE, AF8133J_REG_STATE_WORK);
if (ret)
return ret;
/* The datasheet says "Mesaure Time <1.5ms" */
ret = regmap_read_poll_timeout(data->regmap, AF8133J_REG_STATUS, val,
val & AF8133J_REG_STATUS_ACQ,
500, 1500);
if (ret)
return ret;
ret = regmap_write(data->regmap,
AF8133J_REG_STATE, AF8133J_REG_STATE_STBY);
if (ret)
return ret;
return 0;
}
static int af8133j_read_measurement(struct af8133j_data *data, __le16 buf[3])
{
struct device *dev = &data->client->dev;
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret) {
/*
* Ignore EACCES because that happens when RPM is disabled
* during system sleep, while userspace leave eg. hrtimer
* trigger attached and IIO core keeps trying to do measurements.
*/
if (ret != -EACCES)
dev_err(dev, "Failed to power on (%d)\n", ret);
return ret;
}
scoped_guard(mutex, &data->mutex) {
ret = af8133j_take_measurement(data);
if (ret)
goto out_rpm_put;
ret = regmap_bulk_read(data->regmap, AF8133J_REG_OUT,
buf, sizeof(__le16) * 3);
}
out_rpm_put:
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
static const int af8133j_scales[][2] = {
[0] = { 0, 366210 }, /* 12 gauss */
[1] = { 0, 671386 }, /* 22 gauss */
};
static int af8133j_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct af8133j_data *data = iio_priv(indio_dev);
__le16 buf[3];
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = af8133j_read_measurement(data, buf);
if (ret)
return ret;
*val = sign_extend32(le16_to_cpu(buf[chan->address]),
chan->scan_type.realbits - 1);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 0;
if (data->range == AF8133J_REG_RANGE_12G)
*val2 = af8133j_scales[0][1];
else
*val2 = af8133j_scales[1][1];
return IIO_VAL_INT_PLUS_NANO;
default:
return -EINVAL;
}
}
static int af8133j_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
*vals = (const int *)af8133j_scales;
*length = ARRAY_SIZE(af8133j_scales) * 2;
*type = IIO_VAL_INT_PLUS_NANO;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int af8133j_set_scale(struct af8133j_data *data,
unsigned int val, unsigned int val2)
{
struct device *dev = &data->client->dev;
u8 range;
int ret = 0;
if (af8133j_scales[0][0] == val && af8133j_scales[0][1] == val2)
range = AF8133J_REG_RANGE_12G;
else if (af8133j_scales[1][0] == val && af8133j_scales[1][1] == val2)
range = AF8133J_REG_RANGE_22G;
else
return -EINVAL;
pm_runtime_disable(dev);
/*
* When suspended, just store the new range to data->range to be
* applied later during power up.
*/
if (!pm_runtime_status_suspended(dev)) {
scoped_guard(mutex, &data->mutex)
ret = regmap_write(data->regmap,
AF8133J_REG_RANGE, range);
}
pm_runtime_enable(dev);
data->range = range;
return ret;
}
static int af8133j_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct af8133j_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return af8133j_set_scale(data, val, val2);
default:
return -EINVAL;
}
}
static int af8133j_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
return IIO_VAL_INT_PLUS_NANO;
}
static const struct iio_info af8133j_info = {
.read_raw = af8133j_read_raw,
.read_avail = af8133j_read_avail,
.write_raw = af8133j_write_raw,
.write_raw_get_fmt = af8133j_write_raw_get_fmt,
};
static irqreturn_t af8133j_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct af8133j_data *data = iio_priv(indio_dev);
s64 timestamp = iio_get_time_ns(indio_dev);
struct {
__le16 values[3];
s64 timestamp __aligned(8);
} sample;
int ret;
memset(&sample, 0, sizeof(sample));
ret = af8133j_read_measurement(data, sample.values);
if (ret)
goto out_done;
iio_push_to_buffers_with_timestamp(indio_dev, &sample, timestamp);
out_done:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static const struct regmap_config af8133j_regmap_config = {
.name = "af8133j_regmap",
.reg_bits = 8,
.val_bits = 8,
.max_register = AF8133J_REG_SWR,
.cache_type = REGCACHE_NONE,
};
static void af8133j_power_down_action(void *ptr)
{
struct af8133j_data *data = ptr;
if (!pm_runtime_status_suspended(&data->client->dev))
af8133j_power_down(data);
}
static int af8133j_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct af8133j_data *data;
struct iio_dev *indio_dev;
struct regmap *regmap;
int ret, i;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
regmap = devm_regmap_init_i2c(client, &af8133j_regmap_config);
if (IS_ERR(regmap))
return dev_err_probe(dev, PTR_ERR(regmap),
"regmap initialization failed\n");
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
data->regmap = regmap;
data->range = AF8133J_REG_RANGE_12G;
mutex_init(&data->mutex);
data->reset_gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(data->reset_gpiod))
return dev_err_probe(dev, PTR_ERR(data->reset_gpiod),
"Failed to get reset gpio\n");
for (i = 0; i < ARRAY_SIZE(af8133j_supply_names); i++)
data->supplies[i].supply = af8133j_supply_names[i];
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->supplies),
data->supplies);
if (ret)
return ret;
ret = iio_read_mount_matrix(dev, &data->orientation);
if (ret)
return dev_err_probe(dev, ret, "Failed to read mount matrix\n");
ret = af8133j_power_up(data);
if (ret)
return ret;
pm_runtime_set_active(dev);
ret = devm_add_action_or_reset(dev, af8133j_power_down_action, data);
if (ret)
return ret;
ret = af8133j_product_check(data);
if (ret)
return ret;
pm_runtime_get_noresume(dev);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, 500);
ret = devm_pm_runtime_enable(dev);
if (ret)
return ret;
pm_runtime_put_autosuspend(dev);
indio_dev->info = &af8133j_info;
indio_dev->name = "af8133j";
indio_dev->channels = af8133j_channels;
indio_dev->num_channels = ARRAY_SIZE(af8133j_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
&af8133j_trigger_handler, NULL);
if (ret)
return dev_err_probe(&client->dev, ret,
"Failed to setup iio triggered buffer\n");
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return dev_err_probe(dev, ret, "Failed to register iio device");
return 0;
}
static int af8133j_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct af8133j_data *data = iio_priv(indio_dev);
af8133j_power_down(data);
return 0;
}
static int af8133j_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct af8133j_data *data = iio_priv(indio_dev);
return af8133j_power_up(data);
}
static const struct dev_pm_ops af8133j_pm_ops = {
SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
RUNTIME_PM_OPS(af8133j_runtime_suspend, af8133j_runtime_resume, NULL)
};
static const struct of_device_id af8133j_of_match[] = {
{ .compatible = "voltafield,af8133j", },
{ }
};
MODULE_DEVICE_TABLE(of, af8133j_of_match);
static const struct i2c_device_id af8133j_id[] = {
{ "af8133j" },
{ }
};
MODULE_DEVICE_TABLE(i2c, af8133j_id);
static struct i2c_driver af8133j_driver = {
.driver = {
.name = "af8133j",
.of_match_table = af8133j_of_match,
.pm = pm_ptr(&af8133j_pm_ops),
},
.probe = af8133j_probe,
.id_table = af8133j_id,
};
module_i2c_driver(af8133j_driver);
MODULE_AUTHOR("Icenowy Zheng <icenowy@aosc.io>");
MODULE_AUTHOR("Ondřej Jirman <megi@xff.cz>");
MODULE_DESCRIPTION("Voltafield AF8133J magnetic sensor driver");
MODULE_LICENSE("GPL");