mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-15 13:15:57 +00:00
320f669309
Some SPI peripherals may require strict MOSI line state when the controller is not clocking out data. Implement support for MOSI idle state configuration (low or high) by setting the data output line level on controller setup and after transfers. Bitbang operations now call controller specific set_mosi_idle() callback to set MOSI to its idle state. The MOSI line is kept at its idle state if no tx buffer is provided. Acked-by: Nuno Sa <nuno.sa@analog.com> Reviewed-by: David Lechner <dlechner@baylibre.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Marcelo Schmitt <marcelo.schmitt@analog.com> Link: https://patch.msgid.link/de61a600b56ed9cb714d5ea87afa88948e70041e.1720810545.git.marcelo.schmitt@analog.com Signed-off-by: Mark Brown <broonie@kernel.org>
460 lines
12 KiB
C
460 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Polling/bitbanging SPI host controller controller driver utilities
|
|
*/
|
|
|
|
#include <linux/spinlock.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/time64.h>
|
|
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/spi_bitbang.h>
|
|
|
|
#define SPI_BITBANG_CS_DELAY 100
|
|
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
|
|
* Use this for GPIO or shift-register level hardware APIs.
|
|
*
|
|
* spi_bitbang_cs is in spi_device->controller_state, which is unavailable
|
|
* to glue code. These bitbang setup() and cleanup() routines are always
|
|
* used, though maybe they're called from controller-aware code.
|
|
*
|
|
* chipselect() and friends may use spi_device->controller_data and
|
|
* controller registers as appropriate.
|
|
*
|
|
*
|
|
* NOTE: SPI controller pins can often be used as GPIO pins instead,
|
|
* which means you could use a bitbang driver either to get hardware
|
|
* working quickly, or testing for differences that aren't speed related.
|
|
*/
|
|
|
|
typedef unsigned int (*spi_bb_txrx_bufs_fn)(struct spi_device *, spi_bb_txrx_word_fn,
|
|
unsigned int, struct spi_transfer *,
|
|
unsigned int);
|
|
|
|
struct spi_bitbang_cs {
|
|
unsigned int nsecs; /* (clock cycle time) / 2 */
|
|
spi_bb_txrx_word_fn txrx_word;
|
|
spi_bb_txrx_bufs_fn txrx_bufs;
|
|
};
|
|
|
|
static unsigned int bitbang_txrx_8(struct spi_device *spi,
|
|
spi_bb_txrx_word_fn txrx_word,
|
|
unsigned int ns,
|
|
struct spi_transfer *t,
|
|
unsigned int flags)
|
|
{
|
|
struct spi_bitbang *bitbang;
|
|
unsigned int bits = t->bits_per_word;
|
|
unsigned int count = t->len;
|
|
const u8 *tx = t->tx_buf;
|
|
u8 *rx = t->rx_buf;
|
|
|
|
bitbang = spi_controller_get_devdata(spi->controller);
|
|
while (likely(count > 0)) {
|
|
u8 word = 0;
|
|
|
|
if (tx)
|
|
word = *tx++;
|
|
else
|
|
word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFF : 0;
|
|
word = txrx_word(spi, ns, word, bits, flags);
|
|
if (rx)
|
|
*rx++ = word;
|
|
count -= 1;
|
|
}
|
|
if (bitbang->set_mosi_idle)
|
|
bitbang->set_mosi_idle(spi);
|
|
|
|
return t->len - count;
|
|
}
|
|
|
|
static unsigned int bitbang_txrx_16(struct spi_device *spi,
|
|
spi_bb_txrx_word_fn txrx_word,
|
|
unsigned int ns,
|
|
struct spi_transfer *t,
|
|
unsigned int flags)
|
|
{
|
|
struct spi_bitbang *bitbang;
|
|
unsigned int bits = t->bits_per_word;
|
|
unsigned int count = t->len;
|
|
const u16 *tx = t->tx_buf;
|
|
u16 *rx = t->rx_buf;
|
|
|
|
bitbang = spi_controller_get_devdata(spi->controller);
|
|
while (likely(count > 1)) {
|
|
u16 word = 0;
|
|
|
|
if (tx)
|
|
word = *tx++;
|
|
else
|
|
word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFFFF : 0;
|
|
word = txrx_word(spi, ns, word, bits, flags);
|
|
if (rx)
|
|
*rx++ = word;
|
|
count -= 2;
|
|
}
|
|
if (bitbang->set_mosi_idle)
|
|
bitbang->set_mosi_idle(spi);
|
|
|
|
return t->len - count;
|
|
}
|
|
|
|
static unsigned int bitbang_txrx_32(struct spi_device *spi,
|
|
spi_bb_txrx_word_fn txrx_word,
|
|
unsigned int ns,
|
|
struct spi_transfer *t,
|
|
unsigned int flags)
|
|
{
|
|
struct spi_bitbang *bitbang;
|
|
unsigned int bits = t->bits_per_word;
|
|
unsigned int count = t->len;
|
|
const u32 *tx = t->tx_buf;
|
|
u32 *rx = t->rx_buf;
|
|
|
|
bitbang = spi_controller_get_devdata(spi->controller);
|
|
while (likely(count > 3)) {
|
|
u32 word = 0;
|
|
|
|
if (tx)
|
|
word = *tx++;
|
|
else
|
|
word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFFFFFFFF : 0;
|
|
word = txrx_word(spi, ns, word, bits, flags);
|
|
if (rx)
|
|
*rx++ = word;
|
|
count -= 4;
|
|
}
|
|
if (bitbang->set_mosi_idle)
|
|
bitbang->set_mosi_idle(spi);
|
|
|
|
return t->len - count;
|
|
}
|
|
|
|
int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
|
|
{
|
|
struct spi_bitbang_cs *cs = spi->controller_state;
|
|
u8 bits_per_word;
|
|
u32 hz;
|
|
|
|
if (t) {
|
|
bits_per_word = t->bits_per_word;
|
|
hz = t->speed_hz;
|
|
} else {
|
|
bits_per_word = 0;
|
|
hz = 0;
|
|
}
|
|
|
|
/* spi_transfer level calls that work per-word */
|
|
if (!bits_per_word)
|
|
bits_per_word = spi->bits_per_word;
|
|
if (bits_per_word <= 8)
|
|
cs->txrx_bufs = bitbang_txrx_8;
|
|
else if (bits_per_word <= 16)
|
|
cs->txrx_bufs = bitbang_txrx_16;
|
|
else if (bits_per_word <= 32)
|
|
cs->txrx_bufs = bitbang_txrx_32;
|
|
else
|
|
return -EINVAL;
|
|
|
|
/* nsecs = (clock period)/2 */
|
|
if (!hz)
|
|
hz = spi->max_speed_hz;
|
|
if (hz) {
|
|
cs->nsecs = (NSEC_PER_SEC / 2) / hz;
|
|
if (cs->nsecs > (MAX_UDELAY_MS * NSEC_PER_MSEC))
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
|
|
|
|
/*
|
|
* spi_bitbang_setup - default setup for per-word I/O loops
|
|
*/
|
|
int spi_bitbang_setup(struct spi_device *spi)
|
|
{
|
|
struct spi_bitbang_cs *cs = spi->controller_state;
|
|
struct spi_bitbang *bitbang;
|
|
bool initial_setup = false;
|
|
int retval;
|
|
|
|
bitbang = spi_controller_get_devdata(spi->controller);
|
|
|
|
if (!cs) {
|
|
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
|
|
if (!cs)
|
|
return -ENOMEM;
|
|
spi->controller_state = cs;
|
|
initial_setup = true;
|
|
}
|
|
|
|
/* per-word shift register access, in hardware or bitbanging */
|
|
cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
|
|
if (!cs->txrx_word) {
|
|
retval = -EINVAL;
|
|
goto err_free;
|
|
}
|
|
|
|
if (bitbang->setup_transfer) {
|
|
retval = bitbang->setup_transfer(spi, NULL);
|
|
if (retval < 0)
|
|
goto err_free;
|
|
}
|
|
|
|
if (bitbang->set_mosi_idle)
|
|
bitbang->set_mosi_idle(spi);
|
|
|
|
dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
|
|
|
|
return 0;
|
|
|
|
err_free:
|
|
if (initial_setup)
|
|
kfree(cs);
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_setup);
|
|
|
|
/*
|
|
* spi_bitbang_cleanup - default cleanup for per-word I/O loops
|
|
*/
|
|
void spi_bitbang_cleanup(struct spi_device *spi)
|
|
{
|
|
kfree(spi->controller_state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
|
|
|
|
static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
|
|
{
|
|
struct spi_bitbang_cs *cs = spi->controller_state;
|
|
unsigned int nsecs = cs->nsecs;
|
|
struct spi_bitbang *bitbang;
|
|
|
|
bitbang = spi_controller_get_devdata(spi->controller);
|
|
if (bitbang->set_line_direction) {
|
|
int err;
|
|
|
|
err = bitbang->set_line_direction(spi, !!(t->tx_buf));
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
|
|
if (spi->mode & SPI_3WIRE) {
|
|
unsigned int flags;
|
|
|
|
flags = t->tx_buf ? SPI_CONTROLLER_NO_RX : SPI_CONTROLLER_NO_TX;
|
|
return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
|
|
}
|
|
return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* SECOND PART ... simple transfer queue runner.
|
|
*
|
|
* This costs a task context per controller, running the queue by
|
|
* performing each transfer in sequence. Smarter hardware can queue
|
|
* several DMA transfers at once, and process several controller queues
|
|
* in parallel; this driver doesn't match such hardware very well.
|
|
*
|
|
* Drivers can provide word-at-a-time i/o primitives, or provide
|
|
* transfer-at-a-time ones to leverage dma or fifo hardware.
|
|
*/
|
|
|
|
static int spi_bitbang_prepare_hardware(struct spi_controller *spi)
|
|
{
|
|
struct spi_bitbang *bitbang;
|
|
|
|
bitbang = spi_controller_get_devdata(spi);
|
|
|
|
mutex_lock(&bitbang->lock);
|
|
bitbang->busy = 1;
|
|
mutex_unlock(&bitbang->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_bitbang_transfer_one(struct spi_controller *ctlr,
|
|
struct spi_device *spi,
|
|
struct spi_transfer *transfer)
|
|
{
|
|
struct spi_bitbang *bitbang = spi_controller_get_devdata(ctlr);
|
|
int status = 0;
|
|
|
|
if (bitbang->setup_transfer) {
|
|
status = bitbang->setup_transfer(spi, transfer);
|
|
if (status < 0)
|
|
goto out;
|
|
}
|
|
|
|
if (transfer->len)
|
|
status = bitbang->txrx_bufs(spi, transfer);
|
|
|
|
if (status == transfer->len)
|
|
status = 0;
|
|
else if (status >= 0)
|
|
status = -EREMOTEIO;
|
|
|
|
out:
|
|
spi_finalize_current_transfer(ctlr);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int spi_bitbang_unprepare_hardware(struct spi_controller *spi)
|
|
{
|
|
struct spi_bitbang *bitbang;
|
|
|
|
bitbang = spi_controller_get_devdata(spi);
|
|
|
|
mutex_lock(&bitbang->lock);
|
|
bitbang->busy = 0;
|
|
mutex_unlock(&bitbang->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
|
|
{
|
|
struct spi_bitbang *bitbang = spi_controller_get_devdata(spi->controller);
|
|
|
|
/* SPI core provides CS high / low, but bitbang driver
|
|
* expects CS active
|
|
* spi device driver takes care of handling SPI_CS_HIGH
|
|
*/
|
|
enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
|
|
|
|
ndelay(SPI_BITBANG_CS_DELAY);
|
|
bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
|
|
BITBANG_CS_INACTIVE);
|
|
ndelay(SPI_BITBANG_CS_DELAY);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
int spi_bitbang_init(struct spi_bitbang *bitbang)
|
|
{
|
|
struct spi_controller *ctlr = bitbang->ctlr;
|
|
bool custom_cs;
|
|
|
|
if (!ctlr)
|
|
return -EINVAL;
|
|
/*
|
|
* We only need the chipselect callback if we are actually using it.
|
|
* If we just use GPIO descriptors, it is surplus. If the
|
|
* SPI_CONTROLLER_GPIO_SS flag is set, we always need to call the
|
|
* driver-specific chipselect routine.
|
|
*/
|
|
custom_cs = (!ctlr->use_gpio_descriptors ||
|
|
(ctlr->flags & SPI_CONTROLLER_GPIO_SS));
|
|
|
|
if (custom_cs && !bitbang->chipselect)
|
|
return -EINVAL;
|
|
|
|
mutex_init(&bitbang->lock);
|
|
|
|
if (!ctlr->mode_bits)
|
|
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
|
|
|
|
if (ctlr->transfer || ctlr->transfer_one_message)
|
|
return -EINVAL;
|
|
|
|
ctlr->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
|
|
ctlr->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
|
|
ctlr->transfer_one = spi_bitbang_transfer_one;
|
|
/*
|
|
* When using GPIO descriptors, the ->set_cs() callback doesn't even
|
|
* get called unless SPI_CONTROLLER_GPIO_SS is set.
|
|
*/
|
|
if (custom_cs)
|
|
ctlr->set_cs = spi_bitbang_set_cs;
|
|
|
|
if (!bitbang->txrx_bufs) {
|
|
bitbang->use_dma = 0;
|
|
bitbang->txrx_bufs = spi_bitbang_bufs;
|
|
if (!ctlr->setup) {
|
|
if (!bitbang->setup_transfer)
|
|
bitbang->setup_transfer =
|
|
spi_bitbang_setup_transfer;
|
|
ctlr->setup = spi_bitbang_setup;
|
|
ctlr->cleanup = spi_bitbang_cleanup;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_init);
|
|
|
|
/**
|
|
* spi_bitbang_start - start up a polled/bitbanging SPI host controller driver
|
|
* @bitbang: driver handle
|
|
*
|
|
* Caller should have zero-initialized all parts of the structure, and then
|
|
* provided callbacks for chip selection and I/O loops. If the host controller has
|
|
* a transfer method, its final step should call spi_bitbang_transfer(); or,
|
|
* that's the default if the transfer routine is not initialized. It should
|
|
* also set up the bus number and number of chipselects.
|
|
*
|
|
* For i/o loops, provide callbacks either per-word (for bitbanging, or for
|
|
* hardware that basically exposes a shift register) or per-spi_transfer
|
|
* (which takes better advantage of hardware like fifos or DMA engines).
|
|
*
|
|
* Drivers using per-word I/O loops should use (or call) spi_bitbang_setup(),
|
|
* spi_bitbang_cleanup() and spi_bitbang_setup_transfer() to handle those SPI
|
|
* host controller methods. Those methods are the defaults if the bitbang->txrx_bufs
|
|
* routine isn't initialized.
|
|
*
|
|
* This routine registers the spi_controller, which will process requests in a
|
|
* dedicated task, keeping IRQs unblocked most of the time. To stop
|
|
* processing those requests, call spi_bitbang_stop().
|
|
*
|
|
* On success, this routine will take a reference to the controller. The caller
|
|
* is responsible for calling spi_bitbang_stop() to decrement the reference and
|
|
* spi_controller_put() as counterpart of spi_alloc_host() to prevent a memory
|
|
* leak.
|
|
*/
|
|
int spi_bitbang_start(struct spi_bitbang *bitbang)
|
|
{
|
|
struct spi_controller *ctlr = bitbang->ctlr;
|
|
int ret;
|
|
|
|
ret = spi_bitbang_init(bitbang);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* driver may get busy before register() returns, especially
|
|
* if someone registered boardinfo for devices
|
|
*/
|
|
ret = spi_register_controller(spi_controller_get(ctlr));
|
|
if (ret)
|
|
spi_controller_put(ctlr);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_start);
|
|
|
|
/*
|
|
* spi_bitbang_stop - stops the task providing spi communication
|
|
*/
|
|
void spi_bitbang_stop(struct spi_bitbang *bitbang)
|
|
{
|
|
spi_unregister_controller(bitbang->ctlr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_stop);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Utilities for Bitbanging SPI host controllers");
|