linux-next/include/linux/page-flags.h
Usama Arif 8422acdc97 mm: introduce a pageflag for partially mapped folios
Currently folio->_deferred_list is used to keep track of partially_mapped
folios that are going to be split under memory pressure.  In the next
patch, all THPs that are faulted in and collapsed by khugepaged are also
going to be tracked using _deferred_list.

This patch introduces a pageflag to be able to distinguish between
partially mapped folios and others in the deferred_list at split time in
deferred_split_scan.  Its needed as __folio_remove_rmap decrements
_mapcount, _large_mapcount and _entire_mapcount, hence it won't be
possible to distinguish between partially mapped folios and others in
deferred_split_scan.

Eventhough it introduces an extra flag to track if the folio is partially
mapped, there is no functional change intended with this patch and the
flag is not useful in this patch itself, it will become useful in the next
patch when _deferred_list has non partially mapped folios.

Link: https://lkml.kernel.org/r/20240830100438.3623486-5-usamaarif642@gmail.com
Signed-off-by: Usama Arif <usamaarif642@gmail.com>
Cc: Alexander Zhu <alexlzhu@fb.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nico Pache <npache@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shuang Zhai <zhais@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Shuang Zhai <szhai2@cs.rochester.edu>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-09 16:39:04 -07:00

1209 lines
39 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Macros for manipulating and testing page->flags
*/
#ifndef PAGE_FLAGS_H
#define PAGE_FLAGS_H
#include <linux/types.h>
#include <linux/bug.h>
#include <linux/mmdebug.h>
#ifndef __GENERATING_BOUNDS_H
#include <linux/mm_types.h>
#include <generated/bounds.h>
#endif /* !__GENERATING_BOUNDS_H */
/*
* Various page->flags bits:
*
* PG_reserved is set for special pages. The "struct page" of such a page
* should in general not be touched (e.g. set dirty) except by its owner.
* Pages marked as PG_reserved include:
* - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
* initrd, HW tables)
* - Pages reserved or allocated early during boot (before the page allocator
* was initialized). This includes (depending on the architecture) the
* initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
* much more. Once (if ever) freed, PG_reserved is cleared and they will
* be given to the page allocator.
* - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
* to read/write these pages might end badly. Don't touch!
* - The zero page(s)
* - Pages allocated in the context of kexec/kdump (loaded kernel image,
* control pages, vmcoreinfo)
* - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
* not marked PG_reserved (as they might be in use by somebody else who does
* not respect the caching strategy).
* - MCA pages on ia64
* - Pages holding CPU notes for POWER Firmware Assisted Dump
* - Device memory (e.g. PMEM, DAX, HMM)
* Some PG_reserved pages will be excluded from the hibernation image.
* PG_reserved does in general not hinder anybody from dumping or swapping
* and is no longer required for remap_pfn_range(). ioremap might require it.
* Consequently, PG_reserved for a page mapped into user space can indicate
* the zero page, the vDSO, MMIO pages or device memory.
*
* The PG_private bitflag is set on pagecache pages if they contain filesystem
* specific data (which is normally at page->private). It can be used by
* private allocations for its own usage.
*
* During initiation of disk I/O, PG_locked is set. This bit is set before I/O
* and cleared when writeback _starts_ or when read _completes_. PG_writeback
* is set before writeback starts and cleared when it finishes.
*
* PG_locked also pins a page in pagecache, and blocks truncation of the file
* while it is held.
*
* page_waitqueue(page) is a wait queue of all tasks waiting for the page
* to become unlocked.
*
* PG_swapbacked is set when a page uses swap as a backing storage. This are
* usually PageAnon or shmem pages but please note that even anonymous pages
* might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
* a result of MADV_FREE).
*
* PG_referenced, PG_reclaim are used for page reclaim for anonymous and
* file-backed pagecache (see mm/vmscan.c).
*
* PG_arch_1 is an architecture specific page state bit. The generic code
* guarantees that this bit is cleared for a page when it first is entered into
* the page cache.
*
* PG_hwpoison indicates that a page got corrupted in hardware and contains
* data with incorrect ECC bits that triggered a machine check. Accessing is
* not safe since it may cause another machine check. Don't touch!
*/
/*
* Don't use the pageflags directly. Use the PageFoo macros.
*
* The page flags field is split into two parts, the main flags area
* which extends from the low bits upwards, and the fields area which
* extends from the high bits downwards.
*
* | FIELD | ... | FLAGS |
* N-1 ^ 0
* (NR_PAGEFLAGS)
*
* The fields area is reserved for fields mapping zone, node (for NUMA) and
* SPARSEMEM section (for variants of SPARSEMEM that require section ids like
* SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
*/
enum pageflags {
PG_locked, /* Page is locked. Don't touch. */
PG_writeback, /* Page is under writeback */
PG_referenced,
PG_uptodate,
PG_dirty,
PG_lru,
PG_head, /* Must be in bit 6 */
PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
PG_active,
PG_workingset,
PG_owner_priv_1, /* Owner use. If pagecache, fs may use */
PG_owner_2, /* Owner use. If pagecache, fs may use */
PG_arch_1,
PG_reserved,
PG_private, /* If pagecache, has fs-private data */
PG_private_2, /* If pagecache, has fs aux data */
PG_reclaim, /* To be reclaimed asap */
PG_swapbacked, /* Page is backed by RAM/swap */
PG_unevictable, /* Page is "unevictable" */
#ifdef CONFIG_MMU
PG_mlocked, /* Page is vma mlocked */
#endif
#ifdef CONFIG_MEMORY_FAILURE
PG_hwpoison, /* hardware poisoned page. Don't touch */
#endif
#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
PG_young,
PG_idle,
#endif
#ifdef CONFIG_ARCH_USES_PG_ARCH_2
PG_arch_2,
#endif
#ifdef CONFIG_ARCH_USES_PG_ARCH_3
PG_arch_3,
#endif
__NR_PAGEFLAGS,
PG_readahead = PG_reclaim,
/* Anonymous memory (and shmem) */
PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
/* Some filesystems */
PG_checked = PG_owner_priv_1,
/*
* Depending on the way an anonymous folio can be mapped into a page
* table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
* THP), PG_anon_exclusive may be set only for the head page or for
* tail pages of an anonymous folio. For now, we only expect it to be
* set on tail pages for PTE-mapped THP.
*/
PG_anon_exclusive = PG_owner_2,
/*
* Set if all buffer heads in the folio are mapped.
* Filesystems which do not use BHs can use it for their own purpose.
*/
PG_mappedtodisk = PG_owner_2,
/* Two page bits are conscripted by FS-Cache to maintain local caching
* state. These bits are set on pages belonging to the netfs's inodes
* when those inodes are being locally cached.
*/
PG_fscache = PG_private_2, /* page backed by cache */
/* XEN */
/* Pinned in Xen as a read-only pagetable page. */
PG_pinned = PG_owner_priv_1,
/* Pinned as part of domain save (see xen_mm_pin_all()). */
PG_savepinned = PG_dirty,
/* Has a grant mapping of another (foreign) domain's page. */
PG_foreign = PG_owner_priv_1,
/* Remapped by swiotlb-xen. */
PG_xen_remapped = PG_owner_priv_1,
/* non-lru isolated movable page */
PG_isolated = PG_reclaim,
/* Only valid for buddy pages. Used to track pages that are reported */
PG_reported = PG_uptodate,
#ifdef CONFIG_MEMORY_HOTPLUG
/* For self-hosted memmap pages */
PG_vmemmap_self_hosted = PG_owner_priv_1,
#endif
/*
* Flags only valid for compound pages. Stored in first tail page's
* flags word. Cannot use the first 8 flags or any flag marked as
* PF_ANY.
*/
/* At least one page in this folio has the hwpoison flag set */
PG_has_hwpoisoned = PG_active,
PG_large_rmappable = PG_workingset, /* anon or file-backed */
PG_partially_mapped = PG_reclaim, /* was identified to be partially mapped */
};
#define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1)
#ifndef __GENERATING_BOUNDS_H
#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
/*
* Return the real head page struct iff the @page is a fake head page, otherwise
* return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
*/
static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
{
if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
return page;
/*
* Only addresses aligned with PAGE_SIZE of struct page may be fake head
* struct page. The alignment check aims to avoid access the fields (
* e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
* cold cacheline in some cases.
*/
if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
test_bit(PG_head, &page->flags)) {
/*
* We can safely access the field of the @page[1] with PG_head
* because the @page is a compound page composed with at least
* two contiguous pages.
*/
unsigned long head = READ_ONCE(page[1].compound_head);
if (likely(head & 1))
return (const struct page *)(head - 1);
}
return page;
}
#else
static inline const struct page *page_fixed_fake_head(const struct page *page)
{
return page;
}
#endif
static __always_inline int page_is_fake_head(const struct page *page)
{
return page_fixed_fake_head(page) != page;
}
static __always_inline unsigned long _compound_head(const struct page *page)
{
unsigned long head = READ_ONCE(page->compound_head);
if (unlikely(head & 1))
return head - 1;
return (unsigned long)page_fixed_fake_head(page);
}
#define compound_head(page) ((typeof(page))_compound_head(page))
/**
* page_folio - Converts from page to folio.
* @p: The page.
*
* Every page is part of a folio. This function cannot be called on a
* NULL pointer.
*
* Context: No reference, nor lock is required on @page. If the caller
* does not hold a reference, this call may race with a folio split, so
* it should re-check the folio still contains this page after gaining
* a reference on the folio.
* Return: The folio which contains this page.
*/
#define page_folio(p) (_Generic((p), \
const struct page *: (const struct folio *)_compound_head(p), \
struct page *: (struct folio *)_compound_head(p)))
/**
* folio_page - Return a page from a folio.
* @folio: The folio.
* @n: The page number to return.
*
* @n is relative to the start of the folio. This function does not
* check that the page number lies within @folio; the caller is presumed
* to have a reference to the page.
*/
#define folio_page(folio, n) nth_page(&(folio)->page, n)
static __always_inline int PageTail(const struct page *page)
{
return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
}
static __always_inline int PageCompound(const struct page *page)
{
return test_bit(PG_head, &page->flags) ||
READ_ONCE(page->compound_head) & 1;
}
#define PAGE_POISON_PATTERN -1l
static inline int PagePoisoned(const struct page *page)
{
return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
}
#ifdef CONFIG_DEBUG_VM
void page_init_poison(struct page *page, size_t size);
#else
static inline void page_init_poison(struct page *page, size_t size)
{
}
#endif
static const unsigned long *const_folio_flags(const struct folio *folio,
unsigned n)
{
const struct page *page = &folio->page;
VM_BUG_ON_PGFLAGS(PageTail(page), page);
VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
return &page[n].flags;
}
static unsigned long *folio_flags(struct folio *folio, unsigned n)
{
struct page *page = &folio->page;
VM_BUG_ON_PGFLAGS(PageTail(page), page);
VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
return &page[n].flags;
}
/*
* Page flags policies wrt compound pages
*
* PF_POISONED_CHECK
* check if this struct page poisoned/uninitialized
*
* PF_ANY:
* the page flag is relevant for small, head and tail pages.
*
* PF_HEAD:
* for compound page all operations related to the page flag applied to
* head page.
*
* PF_NO_TAIL:
* modifications of the page flag must be done on small or head pages,
* checks can be done on tail pages too.
*
* PF_NO_COMPOUND:
* the page flag is not relevant for compound pages.
*
* PF_SECOND:
* the page flag is stored in the first tail page.
*/
#define PF_POISONED_CHECK(page) ({ \
VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
page; })
#define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
#define PF_NO_TAIL(page, enforce) ({ \
VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
PF_POISONED_CHECK(compound_head(page)); })
#define PF_NO_COMPOUND(page, enforce) ({ \
VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
PF_POISONED_CHECK(page); })
#define PF_SECOND(page, enforce) ({ \
VM_BUG_ON_PGFLAGS(!PageHead(page), page); \
PF_POISONED_CHECK(&page[1]); })
/* Which page is the flag stored in */
#define FOLIO_PF_ANY 0
#define FOLIO_PF_HEAD 0
#define FOLIO_PF_NO_TAIL 0
#define FOLIO_PF_NO_COMPOUND 0
#define FOLIO_PF_SECOND 1
#define FOLIO_HEAD_PAGE 0
#define FOLIO_SECOND_PAGE 1
/*
* Macros to create function definitions for page flags
*/
#define FOLIO_TEST_FLAG(name, page) \
static __always_inline bool folio_test_##name(const struct folio *folio) \
{ return test_bit(PG_##name, const_folio_flags(folio, page)); }
#define FOLIO_SET_FLAG(name, page) \
static __always_inline void folio_set_##name(struct folio *folio) \
{ set_bit(PG_##name, folio_flags(folio, page)); }
#define FOLIO_CLEAR_FLAG(name, page) \
static __always_inline void folio_clear_##name(struct folio *folio) \
{ clear_bit(PG_##name, folio_flags(folio, page)); }
#define __FOLIO_SET_FLAG(name, page) \
static __always_inline void __folio_set_##name(struct folio *folio) \
{ __set_bit(PG_##name, folio_flags(folio, page)); }
#define __FOLIO_CLEAR_FLAG(name, page) \
static __always_inline void __folio_clear_##name(struct folio *folio) \
{ __clear_bit(PG_##name, folio_flags(folio, page)); }
#define FOLIO_TEST_SET_FLAG(name, page) \
static __always_inline bool folio_test_set_##name(struct folio *folio) \
{ return test_and_set_bit(PG_##name, folio_flags(folio, page)); }
#define FOLIO_TEST_CLEAR_FLAG(name, page) \
static __always_inline bool folio_test_clear_##name(struct folio *folio) \
{ return test_and_clear_bit(PG_##name, folio_flags(folio, page)); }
#define FOLIO_FLAG(name, page) \
FOLIO_TEST_FLAG(name, page) \
FOLIO_SET_FLAG(name, page) \
FOLIO_CLEAR_FLAG(name, page)
#define TESTPAGEFLAG(uname, lname, policy) \
FOLIO_TEST_FLAG(lname, FOLIO_##policy) \
static __always_inline int Page##uname(const struct page *page) \
{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
#define SETPAGEFLAG(uname, lname, policy) \
FOLIO_SET_FLAG(lname, FOLIO_##policy) \
static __always_inline void SetPage##uname(struct page *page) \
{ set_bit(PG_##lname, &policy(page, 1)->flags); }
#define CLEARPAGEFLAG(uname, lname, policy) \
FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \
static __always_inline void ClearPage##uname(struct page *page) \
{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
#define __SETPAGEFLAG(uname, lname, policy) \
__FOLIO_SET_FLAG(lname, FOLIO_##policy) \
static __always_inline void __SetPage##uname(struct page *page) \
{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
#define __CLEARPAGEFLAG(uname, lname, policy) \
__FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \
static __always_inline void __ClearPage##uname(struct page *page) \
{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
#define TESTSETFLAG(uname, lname, policy) \
FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy) \
static __always_inline int TestSetPage##uname(struct page *page) \
{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
#define TESTCLEARFLAG(uname, lname, policy) \
FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy) \
static __always_inline int TestClearPage##uname(struct page *page) \
{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
#define PAGEFLAG(uname, lname, policy) \
TESTPAGEFLAG(uname, lname, policy) \
SETPAGEFLAG(uname, lname, policy) \
CLEARPAGEFLAG(uname, lname, policy)
#define __PAGEFLAG(uname, lname, policy) \
TESTPAGEFLAG(uname, lname, policy) \
__SETPAGEFLAG(uname, lname, policy) \
__CLEARPAGEFLAG(uname, lname, policy)
#define TESTSCFLAG(uname, lname, policy) \
TESTSETFLAG(uname, lname, policy) \
TESTCLEARFLAG(uname, lname, policy)
#define FOLIO_TEST_FLAG_FALSE(name) \
static inline bool folio_test_##name(const struct folio *folio) \
{ return false; }
#define FOLIO_SET_FLAG_NOOP(name) \
static inline void folio_set_##name(struct folio *folio) { }
#define FOLIO_CLEAR_FLAG_NOOP(name) \
static inline void folio_clear_##name(struct folio *folio) { }
#define __FOLIO_SET_FLAG_NOOP(name) \
static inline void __folio_set_##name(struct folio *folio) { }
#define __FOLIO_CLEAR_FLAG_NOOP(name) \
static inline void __folio_clear_##name(struct folio *folio) { }
#define FOLIO_TEST_SET_FLAG_FALSE(name) \
static inline bool folio_test_set_##name(struct folio *folio) \
{ return false; }
#define FOLIO_TEST_CLEAR_FLAG_FALSE(name) \
static inline bool folio_test_clear_##name(struct folio *folio) \
{ return false; }
#define FOLIO_FLAG_FALSE(name) \
FOLIO_TEST_FLAG_FALSE(name) \
FOLIO_SET_FLAG_NOOP(name) \
FOLIO_CLEAR_FLAG_NOOP(name)
#define TESTPAGEFLAG_FALSE(uname, lname) \
FOLIO_TEST_FLAG_FALSE(lname) \
static inline int Page##uname(const struct page *page) { return 0; }
#define SETPAGEFLAG_NOOP(uname, lname) \
FOLIO_SET_FLAG_NOOP(lname) \
static inline void SetPage##uname(struct page *page) { }
#define CLEARPAGEFLAG_NOOP(uname, lname) \
FOLIO_CLEAR_FLAG_NOOP(lname) \
static inline void ClearPage##uname(struct page *page) { }
#define __CLEARPAGEFLAG_NOOP(uname, lname) \
__FOLIO_CLEAR_FLAG_NOOP(lname) \
static inline void __ClearPage##uname(struct page *page) { }
#define TESTSETFLAG_FALSE(uname, lname) \
FOLIO_TEST_SET_FLAG_FALSE(lname) \
static inline int TestSetPage##uname(struct page *page) { return 0; }
#define TESTCLEARFLAG_FALSE(uname, lname) \
FOLIO_TEST_CLEAR_FLAG_FALSE(lname) \
static inline int TestClearPage##uname(struct page *page) { return 0; }
#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \
SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
#define TESTSCFLAG_FALSE(uname, lname) \
TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
__PAGEFLAG(Locked, locked, PF_NO_TAIL)
FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE)
FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE)
FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE)
__FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE)
PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
TESTCLEARFLAG(LRU, lru, PF_HEAD)
FOLIO_FLAG(active, FOLIO_HEAD_PAGE)
__FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
PAGEFLAG(Workingset, workingset, PF_HEAD)
TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
/* Xen */
PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE)
__FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE)
__FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE)
/*
* Private page markings that may be used by the filesystem that owns the page
* for its own purposes.
* - PG_private and PG_private_2 cause release_folio() and co to be invoked
*/
PAGEFLAG(Private, private, PF_ANY)
PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
/* owner_2 can be set on tail pages for anon memory */
FOLIO_FLAG(owner_2, FOLIO_HEAD_PAGE)
/*
* Only test-and-set exist for PG_writeback. The unconditional operators are
* risky: they bypass page accounting.
*/
TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
/* PG_readahead is only used for reads; PG_reclaim is only for writes */
PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE)
FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE)
#ifdef CONFIG_HIGHMEM
/*
* Must use a macro here due to header dependency issues. page_zone() is not
* available at this point.
*/
#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
#define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f))
#else
PAGEFLAG_FALSE(HighMem, highmem)
#endif
#ifdef CONFIG_SWAP
static __always_inline bool folio_test_swapcache(const struct folio *folio)
{
return folio_test_swapbacked(folio) &&
test_bit(PG_swapcache, const_folio_flags(folio, 0));
}
FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE)
FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE)
#else
FOLIO_FLAG_FALSE(swapcache)
#endif
FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE)
__FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
#ifdef CONFIG_MMU
FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE)
__FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE)
#else
FOLIO_FLAG_FALSE(mlocked)
__FOLIO_CLEAR_FLAG_NOOP(mlocked)
FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked)
FOLIO_TEST_SET_FLAG_FALSE(mlocked)
#endif
#ifdef CONFIG_MEMORY_FAILURE
PAGEFLAG(HWPoison, hwpoison, PF_ANY)
TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
#define __PG_HWPOISON (1UL << PG_hwpoison)
#else
PAGEFLAG_FALSE(HWPoison, hwpoison)
#define __PG_HWPOISON 0
#endif
#ifdef CONFIG_PAGE_IDLE_FLAG
#ifdef CONFIG_64BIT
FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE)
FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE)
FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE)
FOLIO_FLAG(idle, FOLIO_HEAD_PAGE)
#endif
/* See page_idle.h for !64BIT workaround */
#else /* !CONFIG_PAGE_IDLE_FLAG */
FOLIO_FLAG_FALSE(young)
FOLIO_TEST_CLEAR_FLAG_FALSE(young)
FOLIO_FLAG_FALSE(idle)
#endif
/*
* PageReported() is used to track reported free pages within the Buddy
* allocator. We can use the non-atomic version of the test and set
* operations as both should be shielded with the zone lock to prevent
* any possible races on the setting or clearing of the bit.
*/
__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
#ifdef CONFIG_MEMORY_HOTPLUG
PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
#else
PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
#endif
/*
* On an anonymous folio mapped into a user virtual memory area,
* folio->mapping points to its anon_vma, not to a struct address_space;
* with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
*
* On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
* the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
* bit; and then folio->mapping points, not to an anon_vma, but to a private
* structure which KSM associates with that merged page. See ksm.h.
*
* PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
* page and then folio->mapping points to a struct movable_operations.
*
* Please note that, confusingly, "folio_mapping" refers to the inode
* address_space which maps the folio from disk; whereas "folio_mapped"
* refers to user virtual address space into which the folio is mapped.
*
* For slab pages, since slab reuses the bits in struct page to store its
* internal states, the folio->mapping does not exist as such, nor do
* these flags below. So in order to avoid testing non-existent bits,
* please make sure that folio_test_slab(folio) actually evaluates to
* false before calling the following functions (e.g., folio_test_anon).
* See mm/slab.h.
*/
#define PAGE_MAPPING_ANON 0x1
#define PAGE_MAPPING_MOVABLE 0x2
#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
/*
* Different with flags above, this flag is used only for fsdax mode. It
* indicates that this page->mapping is now under reflink case.
*/
#define PAGE_MAPPING_DAX_SHARED ((void *)0x1)
static __always_inline bool folio_mapping_flags(const struct folio *folio)
{
return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
}
static __always_inline bool PageMappingFlags(const struct page *page)
{
return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
}
static __always_inline bool folio_test_anon(const struct folio *folio)
{
return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
}
static __always_inline bool PageAnon(const struct page *page)
{
return folio_test_anon(page_folio(page));
}
static __always_inline bool __folio_test_movable(const struct folio *folio)
{
return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
PAGE_MAPPING_MOVABLE;
}
static __always_inline bool __PageMovable(const struct page *page)
{
return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
PAGE_MAPPING_MOVABLE;
}
#ifdef CONFIG_KSM
/*
* A KSM page is one of those write-protected "shared pages" or "merged pages"
* which KSM maps into multiple mms, wherever identical anonymous page content
* is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
* anon_vma, but to that page's node of the stable tree.
*/
static __always_inline bool folio_test_ksm(const struct folio *folio)
{
return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
PAGE_MAPPING_KSM;
}
static __always_inline bool PageKsm(const struct page *page)
{
return folio_test_ksm(page_folio(page));
}
#else
TESTPAGEFLAG_FALSE(Ksm, ksm)
#endif
u64 stable_page_flags(const struct page *page);
/**
* folio_xor_flags_has_waiters - Change some folio flags.
* @folio: The folio.
* @mask: Bits set in this word will be changed.
*
* This must only be used for flags which are changed with the folio
* lock held. For example, it is unsafe to use for PG_dirty as that
* can be set without the folio lock held. It can also only be used
* on flags which are in the range 0-6 as some of the implementations
* only affect those bits.
*
* Return: Whether there are tasks waiting on the folio.
*/
static inline bool folio_xor_flags_has_waiters(struct folio *folio,
unsigned long mask)
{
return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0));
}
/**
* folio_test_uptodate - Is this folio up to date?
* @folio: The folio.
*
* The uptodate flag is set on a folio when every byte in the folio is
* at least as new as the corresponding bytes on storage. Anonymous
* and CoW folios are always uptodate. If the folio is not uptodate,
* some of the bytes in it may be; see the is_partially_uptodate()
* address_space operation.
*/
static inline bool folio_test_uptodate(const struct folio *folio)
{
bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0));
/*
* Must ensure that the data we read out of the folio is loaded
* _after_ we've loaded folio->flags to check the uptodate bit.
* We can skip the barrier if the folio is not uptodate, because
* we wouldn't be reading anything from it.
*
* See folio_mark_uptodate() for the other side of the story.
*/
if (ret)
smp_rmb();
return ret;
}
static inline bool PageUptodate(const struct page *page)
{
return folio_test_uptodate(page_folio(page));
}
static __always_inline void __folio_mark_uptodate(struct folio *folio)
{
smp_wmb();
__set_bit(PG_uptodate, folio_flags(folio, 0));
}
static __always_inline void folio_mark_uptodate(struct folio *folio)
{
/*
* Memory barrier must be issued before setting the PG_uptodate bit,
* so that all previous stores issued in order to bring the folio
* uptodate are actually visible before folio_test_uptodate becomes true.
*/
smp_wmb();
set_bit(PG_uptodate, folio_flags(folio, 0));
}
static __always_inline void __SetPageUptodate(struct page *page)
{
__folio_mark_uptodate((struct folio *)page);
}
static __always_inline void SetPageUptodate(struct page *page)
{
folio_mark_uptodate((struct folio *)page);
}
CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
void __folio_start_writeback(struct folio *folio, bool keep_write);
void set_page_writeback(struct page *page);
#define folio_start_writeback(folio) \
__folio_start_writeback(folio, false)
#define folio_start_writeback_keepwrite(folio) \
__folio_start_writeback(folio, true)
static __always_inline bool folio_test_head(const struct folio *folio)
{
return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY));
}
static __always_inline int PageHead(const struct page *page)
{
PF_POISONED_CHECK(page);
return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
}
__SETPAGEFLAG(Head, head, PF_ANY)
__CLEARPAGEFLAG(Head, head, PF_ANY)
CLEARPAGEFLAG(Head, head, PF_ANY)
/**
* folio_test_large() - Does this folio contain more than one page?
* @folio: The folio to test.
*
* Return: True if the folio is larger than one page.
*/
static inline bool folio_test_large(const struct folio *folio)
{
return folio_test_head(folio);
}
static __always_inline void set_compound_head(struct page *page, struct page *head)
{
WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
}
static __always_inline void clear_compound_head(struct page *page)
{
WRITE_ONCE(page->compound_head, 0);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline void ClearPageCompound(struct page *page)
{
BUG_ON(!PageHead(page));
ClearPageHead(page);
}
FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE)
FOLIO_TEST_FLAG(partially_mapped, FOLIO_SECOND_PAGE)
/*
* PG_partially_mapped is protected by deferred_split split_queue_lock,
* so its safe to use non-atomic set/clear.
*/
__FOLIO_SET_FLAG(partially_mapped, FOLIO_SECOND_PAGE)
__FOLIO_CLEAR_FLAG(partially_mapped, FOLIO_SECOND_PAGE)
#else
FOLIO_FLAG_FALSE(large_rmappable)
FOLIO_TEST_FLAG_FALSE(partially_mapped)
__FOLIO_SET_FLAG_NOOP(partially_mapped)
__FOLIO_CLEAR_FLAG_NOOP(partially_mapped)
#endif
#define PG_head_mask ((1UL << PG_head))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
* PageHuge() only returns true for hugetlbfs pages, but not for
* normal or transparent huge pages.
*
* PageTransHuge() returns true for both transparent huge and
* hugetlbfs pages, but not normal pages. PageTransHuge() can only be
* called only in the core VM paths where hugetlbfs pages can't exist.
*/
static inline int PageTransHuge(const struct page *page)
{
VM_BUG_ON_PAGE(PageTail(page), page);
return PageHead(page);
}
/*
* PageTransCompound returns true for both transparent huge pages
* and hugetlbfs pages, so it should only be called when it's known
* that hugetlbfs pages aren't involved.
*/
static inline int PageTransCompound(const struct page *page)
{
return PageCompound(page);
}
/*
* PageTransTail returns true for both transparent huge pages
* and hugetlbfs pages, so it should only be called when it's known
* that hugetlbfs pages aren't involved.
*/
static inline int PageTransTail(const struct page *page)
{
return PageTail(page);
}
#else
TESTPAGEFLAG_FALSE(TransHuge, transhuge)
TESTPAGEFLAG_FALSE(TransCompound, transcompound)
TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
TESTPAGEFLAG_FALSE(TransTail, transtail)
#endif
#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
/*
* PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
* compound page.
*
* This flag is set by hwpoison handler. Cleared by THP split or free page.
*/
PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
#else
PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
#endif
/*
* For pages that do not use mapcount, page_type may be used.
* The low 24 bits of pagetype may be used for your own purposes, as long
* as you are careful to not affect the top 8 bits. The low bits of
* pagetype will be overwritten when you clear the page_type from the page.
*/
enum pagetype {
/* 0x00-0x7f are positive numbers, ie mapcount */
/* Reserve 0x80-0xef for mapcount overflow. */
PGTY_buddy = 0xf0,
PGTY_offline = 0xf1,
PGTY_table = 0xf2,
PGTY_guard = 0xf3,
PGTY_hugetlb = 0xf4,
PGTY_slab = 0xf5,
PGTY_zsmalloc = 0xf6,
PGTY_unaccepted = 0xf7,
PGTY_mapcount_underflow = 0xff
};
static inline bool page_type_has_type(int page_type)
{
return page_type < (PGTY_mapcount_underflow << 24);
}
/* This takes a mapcount which is one more than page->_mapcount */
static inline bool page_mapcount_is_type(unsigned int mapcount)
{
return page_type_has_type(mapcount - 1);
}
static inline bool page_has_type(const struct page *page)
{
return page_mapcount_is_type(data_race(page->page_type));
}
#define FOLIO_TYPE_OPS(lname, fname) \
static __always_inline bool folio_test_##fname(const struct folio *folio) \
{ \
return data_race(folio->page.page_type >> 24) == PGTY_##lname; \
} \
static __always_inline void __folio_set_##fname(struct folio *folio) \
{ \
VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX, \
folio); \
folio->page.page_type = (unsigned int)PGTY_##lname << 24; \
} \
static __always_inline void __folio_clear_##fname(struct folio *folio) \
{ \
VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio); \
folio->page.page_type = UINT_MAX; \
}
#define PAGE_TYPE_OPS(uname, lname, fname) \
FOLIO_TYPE_OPS(lname, fname) \
static __always_inline int Page##uname(const struct page *page) \
{ \
return data_race(page->page_type >> 24) == PGTY_##lname; \
} \
static __always_inline void __SetPage##uname(struct page *page) \
{ \
VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page); \
page->page_type = (unsigned int)PGTY_##lname << 24; \
} \
static __always_inline void __ClearPage##uname(struct page *page) \
{ \
VM_BUG_ON_PAGE(!Page##uname(page), page); \
page->page_type = UINT_MAX; \
}
/*
* PageBuddy() indicates that the page is free and in the buddy system
* (see mm/page_alloc.c).
*/
PAGE_TYPE_OPS(Buddy, buddy, buddy)
/*
* PageOffline() indicates that the page is logically offline although the
* containing section is online. (e.g. inflated in a balloon driver or
* not onlined when onlining the section).
* The content of these pages is effectively stale. Such pages should not
* be touched (read/write/dump/save) except by their owner.
*
* When a memory block gets onlined, all pages are initialized with a
* refcount of 1 and PageOffline(). generic_online_page() will
* take care of clearing PageOffline().
*
* If a driver wants to allow to offline unmovable PageOffline() pages without
* putting them back to the buddy, it can do so via the memory notifier by
* decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
* reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
* pages (now with a reference count of zero) are treated like free (unmanaged)
* pages, allowing the containing memory block to get offlined. A driver that
* relies on this feature is aware that re-onlining the memory block will
* require not giving them to the buddy via generic_online_page().
*
* Memory offlining code will not adjust the managed page count for any
* PageOffline() pages, treating them like they were never exposed to the
* buddy using generic_online_page().
*
* There are drivers that mark a page PageOffline() and expect there won't be
* any further access to page content. PFN walkers that read content of random
* pages should check PageOffline() and synchronize with such drivers using
* page_offline_freeze()/page_offline_thaw().
*/
PAGE_TYPE_OPS(Offline, offline, offline)
extern void page_offline_freeze(void);
extern void page_offline_thaw(void);
extern void page_offline_begin(void);
extern void page_offline_end(void);
/*
* Marks pages in use as page tables.
*/
PAGE_TYPE_OPS(Table, table, pgtable)
/*
* Marks guardpages used with debug_pagealloc.
*/
PAGE_TYPE_OPS(Guard, guard, guard)
FOLIO_TYPE_OPS(slab, slab)
/**
* PageSlab - Determine if the page belongs to the slab allocator
* @page: The page to test.
*
* Context: Any context.
* Return: True for slab pages, false for any other kind of page.
*/
static inline bool PageSlab(const struct page *page)
{
return folio_test_slab(page_folio(page));
}
#ifdef CONFIG_HUGETLB_PAGE
FOLIO_TYPE_OPS(hugetlb, hugetlb)
#else
FOLIO_TEST_FLAG_FALSE(hugetlb)
#endif
PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc)
/*
* Mark pages that has to be accepted before touched for the first time.
*
* Serialized with zone lock.
*/
PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted)
/**
* PageHuge - Determine if the page belongs to hugetlbfs
* @page: The page to test.
*
* Context: Any context.
* Return: True for hugetlbfs pages, false for anon pages or pages
* belonging to other filesystems.
*/
static inline bool PageHuge(const struct page *page)
{
return folio_test_hugetlb(page_folio(page));
}
/*
* Check if a page is currently marked HWPoisoned. Note that this check is
* best effort only and inherently racy: there is no way to synchronize with
* failing hardware.
*/
static inline bool is_page_hwpoison(const struct page *page)
{
const struct folio *folio;
if (PageHWPoison(page))
return true;
folio = page_folio(page);
return folio_test_hugetlb(folio) && PageHWPoison(&folio->page);
}
bool is_free_buddy_page(const struct page *page);
PAGEFLAG(Isolated, isolated, PF_ANY);
static __always_inline int PageAnonExclusive(const struct page *page)
{
VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
/*
* HugeTLB stores this information on the head page; THP keeps it per
* page
*/
if (PageHuge(page))
page = compound_head(page);
return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
}
static __always_inline void SetPageAnonExclusive(struct page *page)
{
VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
}
static __always_inline void ClearPageAnonExclusive(struct page *page)
{
VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
}
static __always_inline void __ClearPageAnonExclusive(struct page *page)
{
VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
}
#ifdef CONFIG_MMU
#define __PG_MLOCKED (1UL << PG_mlocked)
#else
#define __PG_MLOCKED 0
#endif
/*
* Flags checked when a page is freed. Pages being freed should not have
* these flags set. If they are, there is a problem.
*/
#define PAGE_FLAGS_CHECK_AT_FREE \
(1UL << PG_lru | 1UL << PG_locked | \
1UL << PG_private | 1UL << PG_private_2 | \
1UL << PG_writeback | 1UL << PG_reserved | \
1UL << PG_active | \
1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK)
/*
* Flags checked when a page is prepped for return by the page allocator.
* Pages being prepped should not have these flags set. If they are set,
* there has been a kernel bug or struct page corruption.
*
* __PG_HWPOISON is exceptional because it needs to be kept beyond page's
* alloc-free cycle to prevent from reusing the page.
*/
#define PAGE_FLAGS_CHECK_AT_PREP \
((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
/*
* Flags stored in the second page of a compound page. They may overlap
* the CHECK_AT_FREE flags above, so need to be cleared.
*/
#define PAGE_FLAGS_SECOND \
(0xffUL /* order */ | 1UL << PG_has_hwpoisoned | \
1UL << PG_large_rmappable | 1UL << PG_partially_mapped)
#define PAGE_FLAGS_PRIVATE \
(1UL << PG_private | 1UL << PG_private_2)
/**
* folio_has_private - Determine if folio has private stuff
* @folio: The folio to be checked
*
* Determine if a folio has private stuff, indicating that release routines
* should be invoked upon it.
*/
static inline int folio_has_private(const struct folio *folio)
{
return !!(folio->flags & PAGE_FLAGS_PRIVATE);
}
#undef PF_ANY
#undef PF_HEAD
#undef PF_NO_TAIL
#undef PF_NO_COMPOUND
#undef PF_SECOND
#endif /* !__GENERATING_BOUNDS_H */
#endif /* PAGE_FLAGS_H */