mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git
synced 2025-01-07 14:32:23 +00:00
64cb6aad12
It makes no sense to keep randomly large max_sdu values, especially if larger than the device's max_mtu. These are visible in "tc qdisc show". Such a max_sdu is practically unlimited and will cause no packets for that traffic class to be dropped on enqueue. Just set max_sdu_dynamic to U32_MAX, which in the logic below causes taprio to save a max_frm_len of U32_MAX and a max_sdu presented to user space of 0 (unlimited). Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2422 lines
62 KiB
C
2422 lines
62 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/* net/sched/sch_taprio.c Time Aware Priority Scheduler
|
|
*
|
|
* Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/ethtool.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/list.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/module.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/time.h>
|
|
#include <net/netlink.h>
|
|
#include <net/pkt_sched.h>
|
|
#include <net/pkt_cls.h>
|
|
#include <net/sch_generic.h>
|
|
#include <net/sock.h>
|
|
#include <net/tcp.h>
|
|
|
|
#include "sch_mqprio_lib.h"
|
|
|
|
static LIST_HEAD(taprio_list);
|
|
static struct static_key_false taprio_have_broken_mqprio;
|
|
static struct static_key_false taprio_have_working_mqprio;
|
|
|
|
#define TAPRIO_ALL_GATES_OPEN -1
|
|
|
|
#define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
|
|
#define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
|
|
#define TAPRIO_FLAGS_INVALID U32_MAX
|
|
|
|
struct sched_entry {
|
|
/* Durations between this GCL entry and the GCL entry where the
|
|
* respective traffic class gate closes
|
|
*/
|
|
u64 gate_duration[TC_MAX_QUEUE];
|
|
atomic_t budget[TC_MAX_QUEUE];
|
|
/* The qdisc makes some effort so that no packet leaves
|
|
* after this time
|
|
*/
|
|
ktime_t gate_close_time[TC_MAX_QUEUE];
|
|
struct list_head list;
|
|
/* Used to calculate when to advance the schedule */
|
|
ktime_t end_time;
|
|
ktime_t next_txtime;
|
|
int index;
|
|
u32 gate_mask;
|
|
u32 interval;
|
|
u8 command;
|
|
};
|
|
|
|
struct sched_gate_list {
|
|
/* Longest non-zero contiguous gate durations per traffic class,
|
|
* or 0 if a traffic class gate never opens during the schedule.
|
|
*/
|
|
u64 max_open_gate_duration[TC_MAX_QUEUE];
|
|
u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
|
|
u32 max_sdu[TC_MAX_QUEUE]; /* for dump */
|
|
struct rcu_head rcu;
|
|
struct list_head entries;
|
|
size_t num_entries;
|
|
ktime_t cycle_end_time;
|
|
s64 cycle_time;
|
|
s64 cycle_time_extension;
|
|
s64 base_time;
|
|
};
|
|
|
|
struct taprio_sched {
|
|
struct Qdisc **qdiscs;
|
|
struct Qdisc *root;
|
|
u32 flags;
|
|
enum tk_offsets tk_offset;
|
|
int clockid;
|
|
bool offloaded;
|
|
bool detected_mqprio;
|
|
bool broken_mqprio;
|
|
atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
|
|
* speeds it's sub-nanoseconds per byte
|
|
*/
|
|
|
|
/* Protects the update side of the RCU protected current_entry */
|
|
spinlock_t current_entry_lock;
|
|
struct sched_entry __rcu *current_entry;
|
|
struct sched_gate_list __rcu *oper_sched;
|
|
struct sched_gate_list __rcu *admin_sched;
|
|
struct hrtimer advance_timer;
|
|
struct list_head taprio_list;
|
|
int cur_txq[TC_MAX_QUEUE];
|
|
u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */
|
|
u32 txtime_delay;
|
|
};
|
|
|
|
struct __tc_taprio_qopt_offload {
|
|
refcount_t users;
|
|
struct tc_taprio_qopt_offload offload;
|
|
};
|
|
|
|
static void taprio_calculate_gate_durations(struct taprio_sched *q,
|
|
struct sched_gate_list *sched)
|
|
{
|
|
struct net_device *dev = qdisc_dev(q->root);
|
|
int num_tc = netdev_get_num_tc(dev);
|
|
struct sched_entry *entry, *cur;
|
|
int tc;
|
|
|
|
list_for_each_entry(entry, &sched->entries, list) {
|
|
u32 gates_still_open = entry->gate_mask;
|
|
|
|
/* For each traffic class, calculate each open gate duration,
|
|
* starting at this schedule entry and ending at the schedule
|
|
* entry containing a gate close event for that TC.
|
|
*/
|
|
cur = entry;
|
|
|
|
do {
|
|
if (!gates_still_open)
|
|
break;
|
|
|
|
for (tc = 0; tc < num_tc; tc++) {
|
|
if (!(gates_still_open & BIT(tc)))
|
|
continue;
|
|
|
|
if (cur->gate_mask & BIT(tc))
|
|
entry->gate_duration[tc] += cur->interval;
|
|
else
|
|
gates_still_open &= ~BIT(tc);
|
|
}
|
|
|
|
cur = list_next_entry_circular(cur, &sched->entries, list);
|
|
} while (cur != entry);
|
|
|
|
/* Keep track of the maximum gate duration for each traffic
|
|
* class, taking care to not confuse a traffic class which is
|
|
* temporarily closed with one that is always closed.
|
|
*/
|
|
for (tc = 0; tc < num_tc; tc++)
|
|
if (entry->gate_duration[tc] &&
|
|
sched->max_open_gate_duration[tc] < entry->gate_duration[tc])
|
|
sched->max_open_gate_duration[tc] = entry->gate_duration[tc];
|
|
}
|
|
}
|
|
|
|
static bool taprio_entry_allows_tx(ktime_t skb_end_time,
|
|
struct sched_entry *entry, int tc)
|
|
{
|
|
return ktime_before(skb_end_time, entry->gate_close_time[tc]);
|
|
}
|
|
|
|
static ktime_t sched_base_time(const struct sched_gate_list *sched)
|
|
{
|
|
if (!sched)
|
|
return KTIME_MAX;
|
|
|
|
return ns_to_ktime(sched->base_time);
|
|
}
|
|
|
|
static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
|
|
{
|
|
/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
|
|
enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
|
|
|
|
switch (tk_offset) {
|
|
case TK_OFFS_MAX:
|
|
return mono;
|
|
default:
|
|
return ktime_mono_to_any(mono, tk_offset);
|
|
}
|
|
}
|
|
|
|
static ktime_t taprio_get_time(const struct taprio_sched *q)
|
|
{
|
|
return taprio_mono_to_any(q, ktime_get());
|
|
}
|
|
|
|
static void taprio_free_sched_cb(struct rcu_head *head)
|
|
{
|
|
struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
|
|
struct sched_entry *entry, *n;
|
|
|
|
list_for_each_entry_safe(entry, n, &sched->entries, list) {
|
|
list_del(&entry->list);
|
|
kfree(entry);
|
|
}
|
|
|
|
kfree(sched);
|
|
}
|
|
|
|
static void switch_schedules(struct taprio_sched *q,
|
|
struct sched_gate_list **admin,
|
|
struct sched_gate_list **oper)
|
|
{
|
|
rcu_assign_pointer(q->oper_sched, *admin);
|
|
rcu_assign_pointer(q->admin_sched, NULL);
|
|
|
|
if (*oper)
|
|
call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
|
|
|
|
*oper = *admin;
|
|
*admin = NULL;
|
|
}
|
|
|
|
/* Get how much time has been already elapsed in the current cycle. */
|
|
static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
|
|
{
|
|
ktime_t time_since_sched_start;
|
|
s32 time_elapsed;
|
|
|
|
time_since_sched_start = ktime_sub(time, sched->base_time);
|
|
div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
|
|
|
|
return time_elapsed;
|
|
}
|
|
|
|
static ktime_t get_interval_end_time(struct sched_gate_list *sched,
|
|
struct sched_gate_list *admin,
|
|
struct sched_entry *entry,
|
|
ktime_t intv_start)
|
|
{
|
|
s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
|
|
ktime_t intv_end, cycle_ext_end, cycle_end;
|
|
|
|
cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
|
|
intv_end = ktime_add_ns(intv_start, entry->interval);
|
|
cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
|
|
|
|
if (ktime_before(intv_end, cycle_end))
|
|
return intv_end;
|
|
else if (admin && admin != sched &&
|
|
ktime_after(admin->base_time, cycle_end) &&
|
|
ktime_before(admin->base_time, cycle_ext_end))
|
|
return admin->base_time;
|
|
else
|
|
return cycle_end;
|
|
}
|
|
|
|
static int length_to_duration(struct taprio_sched *q, int len)
|
|
{
|
|
return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
|
|
}
|
|
|
|
static int duration_to_length(struct taprio_sched *q, u64 duration)
|
|
{
|
|
return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte));
|
|
}
|
|
|
|
/* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the
|
|
* q->max_sdu[] requested by the user and the max_sdu dynamically determined by
|
|
* the maximum open gate durations at the given link speed.
|
|
*/
|
|
static void taprio_update_queue_max_sdu(struct taprio_sched *q,
|
|
struct sched_gate_list *sched,
|
|
struct qdisc_size_table *stab)
|
|
{
|
|
struct net_device *dev = qdisc_dev(q->root);
|
|
int num_tc = netdev_get_num_tc(dev);
|
|
u32 max_sdu_from_user;
|
|
u32 max_sdu_dynamic;
|
|
u32 max_sdu;
|
|
int tc;
|
|
|
|
for (tc = 0; tc < num_tc; tc++) {
|
|
max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX;
|
|
|
|
/* TC gate never closes => keep the queueMaxSDU
|
|
* selected by the user
|
|
*/
|
|
if (sched->max_open_gate_duration[tc] == sched->cycle_time) {
|
|
max_sdu_dynamic = U32_MAX;
|
|
} else {
|
|
u32 max_frm_len;
|
|
|
|
max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]);
|
|
/* Compensate for L1 overhead from size table,
|
|
* but don't let the frame size go negative
|
|
*/
|
|
if (stab) {
|
|
max_frm_len -= stab->szopts.overhead;
|
|
max_frm_len = max_t(int, max_frm_len,
|
|
dev->hard_header_len + 1);
|
|
}
|
|
max_sdu_dynamic = max_frm_len - dev->hard_header_len;
|
|
if (max_sdu_dynamic > dev->max_mtu)
|
|
max_sdu_dynamic = U32_MAX;
|
|
}
|
|
|
|
max_sdu = min(max_sdu_dynamic, max_sdu_from_user);
|
|
|
|
if (max_sdu != U32_MAX) {
|
|
sched->max_frm_len[tc] = max_sdu + dev->hard_header_len;
|
|
sched->max_sdu[tc] = max_sdu;
|
|
} else {
|
|
sched->max_frm_len[tc] = U32_MAX; /* never oversized */
|
|
sched->max_sdu[tc] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Returns the entry corresponding to next available interval. If
|
|
* validate_interval is set, it only validates whether the timestamp occurs
|
|
* when the gate corresponding to the skb's traffic class is open.
|
|
*/
|
|
static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
|
|
struct Qdisc *sch,
|
|
struct sched_gate_list *sched,
|
|
struct sched_gate_list *admin,
|
|
ktime_t time,
|
|
ktime_t *interval_start,
|
|
ktime_t *interval_end,
|
|
bool validate_interval)
|
|
{
|
|
ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
|
|
ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
|
|
struct sched_entry *entry = NULL, *entry_found = NULL;
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
bool entry_available = false;
|
|
s32 cycle_elapsed;
|
|
int tc, n;
|
|
|
|
tc = netdev_get_prio_tc_map(dev, skb->priority);
|
|
packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
|
|
|
|
*interval_start = 0;
|
|
*interval_end = 0;
|
|
|
|
if (!sched)
|
|
return NULL;
|
|
|
|
cycle = sched->cycle_time;
|
|
cycle_elapsed = get_cycle_time_elapsed(sched, time);
|
|
curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
|
|
cycle_end = ktime_add_ns(curr_intv_end, cycle);
|
|
|
|
list_for_each_entry(entry, &sched->entries, list) {
|
|
curr_intv_start = curr_intv_end;
|
|
curr_intv_end = get_interval_end_time(sched, admin, entry,
|
|
curr_intv_start);
|
|
|
|
if (ktime_after(curr_intv_start, cycle_end))
|
|
break;
|
|
|
|
if (!(entry->gate_mask & BIT(tc)) ||
|
|
packet_transmit_time > entry->interval)
|
|
continue;
|
|
|
|
txtime = entry->next_txtime;
|
|
|
|
if (ktime_before(txtime, time) || validate_interval) {
|
|
transmit_end_time = ktime_add_ns(time, packet_transmit_time);
|
|
if ((ktime_before(curr_intv_start, time) &&
|
|
ktime_before(transmit_end_time, curr_intv_end)) ||
|
|
(ktime_after(curr_intv_start, time) && !validate_interval)) {
|
|
entry_found = entry;
|
|
*interval_start = curr_intv_start;
|
|
*interval_end = curr_intv_end;
|
|
break;
|
|
} else if (!entry_available && !validate_interval) {
|
|
/* Here, we are just trying to find out the
|
|
* first available interval in the next cycle.
|
|
*/
|
|
entry_available = true;
|
|
entry_found = entry;
|
|
*interval_start = ktime_add_ns(curr_intv_start, cycle);
|
|
*interval_end = ktime_add_ns(curr_intv_end, cycle);
|
|
}
|
|
} else if (ktime_before(txtime, earliest_txtime) &&
|
|
!entry_available) {
|
|
earliest_txtime = txtime;
|
|
entry_found = entry;
|
|
n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
|
|
*interval_start = ktime_add(curr_intv_start, n * cycle);
|
|
*interval_end = ktime_add(curr_intv_end, n * cycle);
|
|
}
|
|
}
|
|
|
|
return entry_found;
|
|
}
|
|
|
|
static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct sched_gate_list *sched, *admin;
|
|
ktime_t interval_start, interval_end;
|
|
struct sched_entry *entry;
|
|
|
|
rcu_read_lock();
|
|
sched = rcu_dereference(q->oper_sched);
|
|
admin = rcu_dereference(q->admin_sched);
|
|
|
|
entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
|
|
&interval_start, &interval_end, true);
|
|
rcu_read_unlock();
|
|
|
|
return entry;
|
|
}
|
|
|
|
static bool taprio_flags_valid(u32 flags)
|
|
{
|
|
/* Make sure no other flag bits are set. */
|
|
if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
|
|
TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
|
|
return false;
|
|
/* txtime-assist and full offload are mutually exclusive */
|
|
if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
|
|
(flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* This returns the tstamp value set by TCP in terms of the set clock. */
|
|
static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
|
|
{
|
|
unsigned int offset = skb_network_offset(skb);
|
|
const struct ipv6hdr *ipv6h;
|
|
const struct iphdr *iph;
|
|
struct ipv6hdr _ipv6h;
|
|
|
|
ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
|
|
if (!ipv6h)
|
|
return 0;
|
|
|
|
if (ipv6h->version == 4) {
|
|
iph = (struct iphdr *)ipv6h;
|
|
offset += iph->ihl * 4;
|
|
|
|
/* special-case 6in4 tunnelling, as that is a common way to get
|
|
* v6 connectivity in the home
|
|
*/
|
|
if (iph->protocol == IPPROTO_IPV6) {
|
|
ipv6h = skb_header_pointer(skb, offset,
|
|
sizeof(_ipv6h), &_ipv6h);
|
|
|
|
if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
|
|
return 0;
|
|
} else if (iph->protocol != IPPROTO_TCP) {
|
|
return 0;
|
|
}
|
|
} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
|
|
return 0;
|
|
}
|
|
|
|
return taprio_mono_to_any(q, skb->skb_mstamp_ns);
|
|
}
|
|
|
|
/* There are a few scenarios where we will have to modify the txtime from
|
|
* what is read from next_txtime in sched_entry. They are:
|
|
* 1. If txtime is in the past,
|
|
* a. The gate for the traffic class is currently open and packet can be
|
|
* transmitted before it closes, schedule the packet right away.
|
|
* b. If the gate corresponding to the traffic class is going to open later
|
|
* in the cycle, set the txtime of packet to the interval start.
|
|
* 2. If txtime is in the future, there are packets corresponding to the
|
|
* current traffic class waiting to be transmitted. So, the following
|
|
* possibilities exist:
|
|
* a. We can transmit the packet before the window containing the txtime
|
|
* closes.
|
|
* b. The window might close before the transmission can be completed
|
|
* successfully. So, schedule the packet in the next open window.
|
|
*/
|
|
static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
|
|
{
|
|
ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct sched_gate_list *sched, *admin;
|
|
ktime_t minimum_time, now, txtime;
|
|
int len, packet_transmit_time;
|
|
struct sched_entry *entry;
|
|
bool sched_changed;
|
|
|
|
now = taprio_get_time(q);
|
|
minimum_time = ktime_add_ns(now, q->txtime_delay);
|
|
|
|
tcp_tstamp = get_tcp_tstamp(q, skb);
|
|
minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
|
|
|
|
rcu_read_lock();
|
|
admin = rcu_dereference(q->admin_sched);
|
|
sched = rcu_dereference(q->oper_sched);
|
|
if (admin && ktime_after(minimum_time, admin->base_time))
|
|
switch_schedules(q, &admin, &sched);
|
|
|
|
/* Until the schedule starts, all the queues are open */
|
|
if (!sched || ktime_before(minimum_time, sched->base_time)) {
|
|
txtime = minimum_time;
|
|
goto done;
|
|
}
|
|
|
|
len = qdisc_pkt_len(skb);
|
|
packet_transmit_time = length_to_duration(q, len);
|
|
|
|
do {
|
|
sched_changed = false;
|
|
|
|
entry = find_entry_to_transmit(skb, sch, sched, admin,
|
|
minimum_time,
|
|
&interval_start, &interval_end,
|
|
false);
|
|
if (!entry) {
|
|
txtime = 0;
|
|
goto done;
|
|
}
|
|
|
|
txtime = entry->next_txtime;
|
|
txtime = max_t(ktime_t, txtime, minimum_time);
|
|
txtime = max_t(ktime_t, txtime, interval_start);
|
|
|
|
if (admin && admin != sched &&
|
|
ktime_after(txtime, admin->base_time)) {
|
|
sched = admin;
|
|
sched_changed = true;
|
|
continue;
|
|
}
|
|
|
|
transmit_end_time = ktime_add(txtime, packet_transmit_time);
|
|
minimum_time = transmit_end_time;
|
|
|
|
/* Update the txtime of current entry to the next time it's
|
|
* interval starts.
|
|
*/
|
|
if (ktime_after(transmit_end_time, interval_end))
|
|
entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
|
|
} while (sched_changed || ktime_after(transmit_end_time, interval_end));
|
|
|
|
entry->next_txtime = transmit_end_time;
|
|
|
|
done:
|
|
rcu_read_unlock();
|
|
return txtime;
|
|
}
|
|
|
|
/* Devices with full offload are expected to honor this in hardware */
|
|
static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
struct sched_gate_list *sched;
|
|
int prio = skb->priority;
|
|
bool exceeds = false;
|
|
u8 tc;
|
|
|
|
tc = netdev_get_prio_tc_map(dev, prio);
|
|
|
|
rcu_read_lock();
|
|
sched = rcu_dereference(q->oper_sched);
|
|
if (sched && skb->len > sched->max_frm_len[tc])
|
|
exceeds = true;
|
|
rcu_read_unlock();
|
|
|
|
return exceeds;
|
|
}
|
|
|
|
static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
|
|
struct Qdisc *child, struct sk_buff **to_free)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
|
|
/* sk_flags are only safe to use on full sockets. */
|
|
if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
|
|
if (!is_valid_interval(skb, sch))
|
|
return qdisc_drop(skb, sch, to_free);
|
|
} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
|
|
skb->tstamp = get_packet_txtime(skb, sch);
|
|
if (!skb->tstamp)
|
|
return qdisc_drop(skb, sch, to_free);
|
|
}
|
|
|
|
qdisc_qstats_backlog_inc(sch, skb);
|
|
sch->q.qlen++;
|
|
|
|
return qdisc_enqueue(skb, child, to_free);
|
|
}
|
|
|
|
static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch,
|
|
struct Qdisc *child,
|
|
struct sk_buff **to_free)
|
|
{
|
|
unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
|
|
netdev_features_t features = netif_skb_features(skb);
|
|
struct sk_buff *segs, *nskb;
|
|
int ret;
|
|
|
|
segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
|
|
if (IS_ERR_OR_NULL(segs))
|
|
return qdisc_drop(skb, sch, to_free);
|
|
|
|
skb_list_walk_safe(segs, segs, nskb) {
|
|
skb_mark_not_on_list(segs);
|
|
qdisc_skb_cb(segs)->pkt_len = segs->len;
|
|
slen += segs->len;
|
|
|
|
/* FIXME: we should be segmenting to a smaller size
|
|
* rather than dropping these
|
|
*/
|
|
if (taprio_skb_exceeds_queue_max_sdu(sch, segs))
|
|
ret = qdisc_drop(segs, sch, to_free);
|
|
else
|
|
ret = taprio_enqueue_one(segs, sch, child, to_free);
|
|
|
|
if (ret != NET_XMIT_SUCCESS) {
|
|
if (net_xmit_drop_count(ret))
|
|
qdisc_qstats_drop(sch);
|
|
} else {
|
|
numsegs++;
|
|
}
|
|
}
|
|
|
|
if (numsegs > 1)
|
|
qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
|
|
consume_skb(skb);
|
|
|
|
return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
|
|
}
|
|
|
|
/* Will not be called in the full offload case, since the TX queues are
|
|
* attached to the Qdisc created using qdisc_create_dflt()
|
|
*/
|
|
static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
|
|
struct sk_buff **to_free)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct Qdisc *child;
|
|
int queue;
|
|
|
|
queue = skb_get_queue_mapping(skb);
|
|
|
|
child = q->qdiscs[queue];
|
|
if (unlikely(!child))
|
|
return qdisc_drop(skb, sch, to_free);
|
|
|
|
if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) {
|
|
/* Large packets might not be transmitted when the transmission
|
|
* duration exceeds any configured interval. Therefore, segment
|
|
* the skb into smaller chunks. Drivers with full offload are
|
|
* expected to handle this in hardware.
|
|
*/
|
|
if (skb_is_gso(skb))
|
|
return taprio_enqueue_segmented(skb, sch, child,
|
|
to_free);
|
|
|
|
return qdisc_drop(skb, sch, to_free);
|
|
}
|
|
|
|
return taprio_enqueue_one(skb, sch, child, to_free);
|
|
}
|
|
|
|
static struct sk_buff *taprio_peek(struct Qdisc *sch)
|
|
{
|
|
WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented");
|
|
return NULL;
|
|
}
|
|
|
|
static void taprio_set_budgets(struct taprio_sched *q,
|
|
struct sched_gate_list *sched,
|
|
struct sched_entry *entry)
|
|
{
|
|
struct net_device *dev = qdisc_dev(q->root);
|
|
int num_tc = netdev_get_num_tc(dev);
|
|
int tc, budget;
|
|
|
|
for (tc = 0; tc < num_tc; tc++) {
|
|
/* Traffic classes which never close have infinite budget */
|
|
if (entry->gate_duration[tc] == sched->cycle_time)
|
|
budget = INT_MAX;
|
|
else
|
|
budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC,
|
|
atomic64_read(&q->picos_per_byte));
|
|
|
|
atomic_set(&entry->budget[tc], budget);
|
|
}
|
|
}
|
|
|
|
/* When an skb is sent, it consumes from the budget of all traffic classes */
|
|
static int taprio_update_budgets(struct sched_entry *entry, size_t len,
|
|
int tc_consumed, int num_tc)
|
|
{
|
|
int tc, budget, new_budget = 0;
|
|
|
|
for (tc = 0; tc < num_tc; tc++) {
|
|
budget = atomic_read(&entry->budget[tc]);
|
|
/* Don't consume from infinite budget */
|
|
if (budget == INT_MAX) {
|
|
if (tc == tc_consumed)
|
|
new_budget = budget;
|
|
continue;
|
|
}
|
|
|
|
if (tc == tc_consumed)
|
|
new_budget = atomic_sub_return(len, &entry->budget[tc]);
|
|
else
|
|
atomic_sub(len, &entry->budget[tc]);
|
|
}
|
|
|
|
return new_budget;
|
|
}
|
|
|
|
static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq,
|
|
struct sched_entry *entry,
|
|
u32 gate_mask)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
struct Qdisc *child = q->qdiscs[txq];
|
|
int num_tc = netdev_get_num_tc(dev);
|
|
struct sk_buff *skb;
|
|
ktime_t guard;
|
|
int prio;
|
|
int len;
|
|
u8 tc;
|
|
|
|
if (unlikely(!child))
|
|
return NULL;
|
|
|
|
if (TXTIME_ASSIST_IS_ENABLED(q->flags))
|
|
goto skip_peek_checks;
|
|
|
|
skb = child->ops->peek(child);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
prio = skb->priority;
|
|
tc = netdev_get_prio_tc_map(dev, prio);
|
|
|
|
if (!(gate_mask & BIT(tc)))
|
|
return NULL;
|
|
|
|
len = qdisc_pkt_len(skb);
|
|
guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len));
|
|
|
|
/* In the case that there's no gate entry, there's no
|
|
* guard band ...
|
|
*/
|
|
if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
|
|
!taprio_entry_allows_tx(guard, entry, tc))
|
|
return NULL;
|
|
|
|
/* ... and no budget. */
|
|
if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
|
|
taprio_update_budgets(entry, len, tc, num_tc) < 0)
|
|
return NULL;
|
|
|
|
skip_peek_checks:
|
|
skb = child->ops->dequeue(child);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
qdisc_bstats_update(sch, skb);
|
|
qdisc_qstats_backlog_dec(sch, skb);
|
|
sch->q.qlen--;
|
|
|
|
return skb;
|
|
}
|
|
|
|
static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq)
|
|
{
|
|
int offset = dev->tc_to_txq[tc].offset;
|
|
int count = dev->tc_to_txq[tc].count;
|
|
|
|
(*txq)++;
|
|
if (*txq == offset + count)
|
|
*txq = offset;
|
|
}
|
|
|
|
/* Prioritize higher traffic classes, and select among TXQs belonging to the
|
|
* same TC using round robin
|
|
*/
|
|
static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch,
|
|
struct sched_entry *entry,
|
|
u32 gate_mask)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
int num_tc = netdev_get_num_tc(dev);
|
|
struct sk_buff *skb;
|
|
int tc;
|
|
|
|
for (tc = num_tc - 1; tc >= 0; tc--) {
|
|
int first_txq = q->cur_txq[tc];
|
|
|
|
if (!(gate_mask & BIT(tc)))
|
|
continue;
|
|
|
|
do {
|
|
skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc],
|
|
entry, gate_mask);
|
|
|
|
taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]);
|
|
|
|
if (skb)
|
|
return skb;
|
|
} while (q->cur_txq[tc] != first_txq);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Broken way of prioritizing smaller TXQ indices and ignoring the traffic
|
|
* class other than to determine whether the gate is open or not
|
|
*/
|
|
static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch,
|
|
struct sched_entry *entry,
|
|
u32 gate_mask)
|
|
{
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
struct sk_buff *skb;
|
|
int i;
|
|
|
|
for (i = 0; i < dev->num_tx_queues; i++) {
|
|
skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask);
|
|
if (skb)
|
|
return skb;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Will not be called in the full offload case, since the TX queues are
|
|
* attached to the Qdisc created using qdisc_create_dflt()
|
|
*/
|
|
static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct sk_buff *skb = NULL;
|
|
struct sched_entry *entry;
|
|
u32 gate_mask;
|
|
|
|
rcu_read_lock();
|
|
entry = rcu_dereference(q->current_entry);
|
|
/* if there's no entry, it means that the schedule didn't
|
|
* start yet, so force all gates to be open, this is in
|
|
* accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
|
|
* "AdminGateStates"
|
|
*/
|
|
gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
|
|
if (!gate_mask)
|
|
goto done;
|
|
|
|
if (static_branch_unlikely(&taprio_have_broken_mqprio) &&
|
|
!static_branch_likely(&taprio_have_working_mqprio)) {
|
|
/* Single NIC kind which is broken */
|
|
skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
|
|
} else if (static_branch_likely(&taprio_have_working_mqprio) &&
|
|
!static_branch_unlikely(&taprio_have_broken_mqprio)) {
|
|
/* Single NIC kind which prioritizes properly */
|
|
skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
|
|
} else {
|
|
/* Mixed NIC kinds present in system, need dynamic testing */
|
|
if (q->broken_mqprio)
|
|
skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
|
|
else
|
|
skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
|
|
}
|
|
|
|
done:
|
|
rcu_read_unlock();
|
|
|
|
return skb;
|
|
}
|
|
|
|
static bool should_restart_cycle(const struct sched_gate_list *oper,
|
|
const struct sched_entry *entry)
|
|
{
|
|
if (list_is_last(&entry->list, &oper->entries))
|
|
return true;
|
|
|
|
if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool should_change_schedules(const struct sched_gate_list *admin,
|
|
const struct sched_gate_list *oper,
|
|
ktime_t end_time)
|
|
{
|
|
ktime_t next_base_time, extension_time;
|
|
|
|
if (!admin)
|
|
return false;
|
|
|
|
next_base_time = sched_base_time(admin);
|
|
|
|
/* This is the simple case, the end_time would fall after
|
|
* the next schedule base_time.
|
|
*/
|
|
if (ktime_compare(next_base_time, end_time) <= 0)
|
|
return true;
|
|
|
|
/* This is the cycle_time_extension case, if the end_time
|
|
* plus the amount that can be extended would fall after the
|
|
* next schedule base_time, we can extend the current schedule
|
|
* for that amount.
|
|
*/
|
|
extension_time = ktime_add_ns(end_time, oper->cycle_time_extension);
|
|
|
|
/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
|
|
* how precisely the extension should be made. So after
|
|
* conformance testing, this logic may change.
|
|
*/
|
|
if (ktime_compare(next_base_time, extension_time) <= 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static enum hrtimer_restart advance_sched(struct hrtimer *timer)
|
|
{
|
|
struct taprio_sched *q = container_of(timer, struct taprio_sched,
|
|
advance_timer);
|
|
struct net_device *dev = qdisc_dev(q->root);
|
|
struct sched_gate_list *oper, *admin;
|
|
int num_tc = netdev_get_num_tc(dev);
|
|
struct sched_entry *entry, *next;
|
|
struct Qdisc *sch = q->root;
|
|
ktime_t end_time;
|
|
int tc;
|
|
|
|
spin_lock(&q->current_entry_lock);
|
|
entry = rcu_dereference_protected(q->current_entry,
|
|
lockdep_is_held(&q->current_entry_lock));
|
|
oper = rcu_dereference_protected(q->oper_sched,
|
|
lockdep_is_held(&q->current_entry_lock));
|
|
admin = rcu_dereference_protected(q->admin_sched,
|
|
lockdep_is_held(&q->current_entry_lock));
|
|
|
|
if (!oper)
|
|
switch_schedules(q, &admin, &oper);
|
|
|
|
/* This can happen in two cases: 1. this is the very first run
|
|
* of this function (i.e. we weren't running any schedule
|
|
* previously); 2. The previous schedule just ended. The first
|
|
* entry of all schedules are pre-calculated during the
|
|
* schedule initialization.
|
|
*/
|
|
if (unlikely(!entry || entry->end_time == oper->base_time)) {
|
|
next = list_first_entry(&oper->entries, struct sched_entry,
|
|
list);
|
|
end_time = next->end_time;
|
|
goto first_run;
|
|
}
|
|
|
|
if (should_restart_cycle(oper, entry)) {
|
|
next = list_first_entry(&oper->entries, struct sched_entry,
|
|
list);
|
|
oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time,
|
|
oper->cycle_time);
|
|
} else {
|
|
next = list_next_entry(entry, list);
|
|
}
|
|
|
|
end_time = ktime_add_ns(entry->end_time, next->interval);
|
|
end_time = min_t(ktime_t, end_time, oper->cycle_end_time);
|
|
|
|
for (tc = 0; tc < num_tc; tc++) {
|
|
if (next->gate_duration[tc] == oper->cycle_time)
|
|
next->gate_close_time[tc] = KTIME_MAX;
|
|
else
|
|
next->gate_close_time[tc] = ktime_add_ns(entry->end_time,
|
|
next->gate_duration[tc]);
|
|
}
|
|
|
|
if (should_change_schedules(admin, oper, end_time)) {
|
|
/* Set things so the next time this runs, the new
|
|
* schedule runs.
|
|
*/
|
|
end_time = sched_base_time(admin);
|
|
switch_schedules(q, &admin, &oper);
|
|
}
|
|
|
|
next->end_time = end_time;
|
|
taprio_set_budgets(q, oper, next);
|
|
|
|
first_run:
|
|
rcu_assign_pointer(q->current_entry, next);
|
|
spin_unlock(&q->current_entry_lock);
|
|
|
|
hrtimer_set_expires(&q->advance_timer, end_time);
|
|
|
|
rcu_read_lock();
|
|
__netif_schedule(sch);
|
|
rcu_read_unlock();
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
|
|
[TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 },
|
|
[TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 },
|
|
[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
|
|
[TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 },
|
|
};
|
|
|
|
static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
|
|
[TCA_TAPRIO_TC_ENTRY_INDEX] = { .type = NLA_U32 },
|
|
[TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 },
|
|
};
|
|
|
|
static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
|
|
[TCA_TAPRIO_ATTR_PRIOMAP] = {
|
|
.len = sizeof(struct tc_mqprio_qopt)
|
|
},
|
|
[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED },
|
|
[TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 },
|
|
[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED },
|
|
[TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 },
|
|
[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 },
|
|
[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
|
|
[TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 },
|
|
[TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 },
|
|
[TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED },
|
|
};
|
|
|
|
static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
|
|
struct sched_entry *entry,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
int min_duration = length_to_duration(q, ETH_ZLEN);
|
|
u32 interval = 0;
|
|
|
|
if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
|
|
entry->command = nla_get_u8(
|
|
tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
|
|
|
|
if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
|
|
entry->gate_mask = nla_get_u32(
|
|
tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
|
|
|
|
if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
|
|
interval = nla_get_u32(
|
|
tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
|
|
|
|
/* The interval should allow at least the minimum ethernet
|
|
* frame to go out.
|
|
*/
|
|
if (interval < min_duration) {
|
|
NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
|
|
return -EINVAL;
|
|
}
|
|
|
|
entry->interval = interval;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
|
|
struct sched_entry *entry, int index,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
|
|
int err;
|
|
|
|
err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
|
|
entry_policy, NULL);
|
|
if (err < 0) {
|
|
NL_SET_ERR_MSG(extack, "Could not parse nested entry");
|
|
return -EINVAL;
|
|
}
|
|
|
|
entry->index = index;
|
|
|
|
return fill_sched_entry(q, tb, entry, extack);
|
|
}
|
|
|
|
static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
|
|
struct sched_gate_list *sched,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct nlattr *n;
|
|
int err, rem;
|
|
int i = 0;
|
|
|
|
if (!list)
|
|
return -EINVAL;
|
|
|
|
nla_for_each_nested(n, list, rem) {
|
|
struct sched_entry *entry;
|
|
|
|
if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
|
|
NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
|
|
continue;
|
|
}
|
|
|
|
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
|
|
if (!entry) {
|
|
NL_SET_ERR_MSG(extack, "Not enough memory for entry");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = parse_sched_entry(q, n, entry, i, extack);
|
|
if (err < 0) {
|
|
kfree(entry);
|
|
return err;
|
|
}
|
|
|
|
list_add_tail(&entry->list, &sched->entries);
|
|
i++;
|
|
}
|
|
|
|
sched->num_entries = i;
|
|
|
|
return i;
|
|
}
|
|
|
|
static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
|
|
struct sched_gate_list *new,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
int err = 0;
|
|
|
|
if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
|
|
NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
|
|
new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
|
|
|
|
if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
|
|
new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
|
|
|
|
if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
|
|
new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
|
|
|
|
if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
|
|
err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
|
|
new, extack);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (!new->cycle_time) {
|
|
struct sched_entry *entry;
|
|
ktime_t cycle = 0;
|
|
|
|
list_for_each_entry(entry, &new->entries, list)
|
|
cycle = ktime_add_ns(cycle, entry->interval);
|
|
|
|
if (!cycle) {
|
|
NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
new->cycle_time = cycle;
|
|
}
|
|
|
|
taprio_calculate_gate_durations(q, new);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int taprio_parse_mqprio_opt(struct net_device *dev,
|
|
struct tc_mqprio_qopt *qopt,
|
|
struct netlink_ext_ack *extack,
|
|
u32 taprio_flags)
|
|
{
|
|
bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags);
|
|
|
|
if (!qopt && !dev->num_tc) {
|
|
NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If num_tc is already set, it means that the user already
|
|
* configured the mqprio part
|
|
*/
|
|
if (dev->num_tc)
|
|
return 0;
|
|
|
|
/* taprio imposes that traffic classes map 1:n to tx queues */
|
|
if (qopt->num_tc > dev->num_tx_queues) {
|
|
NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* For some reason, in txtime-assist mode, we allow TXQ ranges for
|
|
* different TCs to overlap, and just validate the TXQ ranges.
|
|
*/
|
|
return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs,
|
|
extack);
|
|
}
|
|
|
|
static int taprio_get_start_time(struct Qdisc *sch,
|
|
struct sched_gate_list *sched,
|
|
ktime_t *start)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
ktime_t now, base, cycle;
|
|
s64 n;
|
|
|
|
base = sched_base_time(sched);
|
|
now = taprio_get_time(q);
|
|
|
|
if (ktime_after(base, now)) {
|
|
*start = base;
|
|
return 0;
|
|
}
|
|
|
|
cycle = sched->cycle_time;
|
|
|
|
/* The qdisc is expected to have at least one sched_entry. Moreover,
|
|
* any entry must have 'interval' > 0. Thus if the cycle time is zero,
|
|
* something went really wrong. In that case, we should warn about this
|
|
* inconsistent state and return error.
|
|
*/
|
|
if (WARN_ON(!cycle))
|
|
return -EFAULT;
|
|
|
|
/* Schedule the start time for the beginning of the next
|
|
* cycle.
|
|
*/
|
|
n = div64_s64(ktime_sub_ns(now, base), cycle);
|
|
*start = ktime_add_ns(base, (n + 1) * cycle);
|
|
return 0;
|
|
}
|
|
|
|
static void setup_first_end_time(struct taprio_sched *q,
|
|
struct sched_gate_list *sched, ktime_t base)
|
|
{
|
|
struct net_device *dev = qdisc_dev(q->root);
|
|
int num_tc = netdev_get_num_tc(dev);
|
|
struct sched_entry *first;
|
|
ktime_t cycle;
|
|
int tc;
|
|
|
|
first = list_first_entry(&sched->entries,
|
|
struct sched_entry, list);
|
|
|
|
cycle = sched->cycle_time;
|
|
|
|
/* FIXME: find a better place to do this */
|
|
sched->cycle_end_time = ktime_add_ns(base, cycle);
|
|
|
|
first->end_time = ktime_add_ns(base, first->interval);
|
|
taprio_set_budgets(q, sched, first);
|
|
|
|
for (tc = 0; tc < num_tc; tc++) {
|
|
if (first->gate_duration[tc] == sched->cycle_time)
|
|
first->gate_close_time[tc] = KTIME_MAX;
|
|
else
|
|
first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]);
|
|
}
|
|
|
|
rcu_assign_pointer(q->current_entry, NULL);
|
|
}
|
|
|
|
static void taprio_start_sched(struct Qdisc *sch,
|
|
ktime_t start, struct sched_gate_list *new)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
ktime_t expires;
|
|
|
|
if (FULL_OFFLOAD_IS_ENABLED(q->flags))
|
|
return;
|
|
|
|
expires = hrtimer_get_expires(&q->advance_timer);
|
|
if (expires == 0)
|
|
expires = KTIME_MAX;
|
|
|
|
/* If the new schedule starts before the next expiration, we
|
|
* reprogram it to the earliest one, so we change the admin
|
|
* schedule to the operational one at the right time.
|
|
*/
|
|
start = min_t(ktime_t, start, expires);
|
|
|
|
hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
static void taprio_set_picos_per_byte(struct net_device *dev,
|
|
struct taprio_sched *q)
|
|
{
|
|
struct ethtool_link_ksettings ecmd;
|
|
int speed = SPEED_10;
|
|
int picos_per_byte;
|
|
int err;
|
|
|
|
err = __ethtool_get_link_ksettings(dev, &ecmd);
|
|
if (err < 0)
|
|
goto skip;
|
|
|
|
if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
|
|
speed = ecmd.base.speed;
|
|
|
|
skip:
|
|
picos_per_byte = (USEC_PER_SEC * 8) / speed;
|
|
|
|
atomic64_set(&q->picos_per_byte, picos_per_byte);
|
|
netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
|
|
dev->name, (long long)atomic64_read(&q->picos_per_byte),
|
|
ecmd.base.speed);
|
|
}
|
|
|
|
static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
|
|
void *ptr)
|
|
{
|
|
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
|
|
struct sched_gate_list *oper, *admin;
|
|
struct qdisc_size_table *stab;
|
|
struct taprio_sched *q;
|
|
|
|
ASSERT_RTNL();
|
|
|
|
if (event != NETDEV_UP && event != NETDEV_CHANGE)
|
|
return NOTIFY_DONE;
|
|
|
|
list_for_each_entry(q, &taprio_list, taprio_list) {
|
|
if (dev != qdisc_dev(q->root))
|
|
continue;
|
|
|
|
taprio_set_picos_per_byte(dev, q);
|
|
|
|
stab = rtnl_dereference(q->root->stab);
|
|
|
|
oper = rtnl_dereference(q->oper_sched);
|
|
if (oper)
|
|
taprio_update_queue_max_sdu(q, oper, stab);
|
|
|
|
admin = rtnl_dereference(q->admin_sched);
|
|
if (admin)
|
|
taprio_update_queue_max_sdu(q, admin, stab);
|
|
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static void setup_txtime(struct taprio_sched *q,
|
|
struct sched_gate_list *sched, ktime_t base)
|
|
{
|
|
struct sched_entry *entry;
|
|
u32 interval = 0;
|
|
|
|
list_for_each_entry(entry, &sched->entries, list) {
|
|
entry->next_txtime = ktime_add_ns(base, interval);
|
|
interval += entry->interval;
|
|
}
|
|
}
|
|
|
|
static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
|
|
{
|
|
struct __tc_taprio_qopt_offload *__offload;
|
|
|
|
__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
|
|
GFP_KERNEL);
|
|
if (!__offload)
|
|
return NULL;
|
|
|
|
refcount_set(&__offload->users, 1);
|
|
|
|
return &__offload->offload;
|
|
}
|
|
|
|
struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
|
|
*offload)
|
|
{
|
|
struct __tc_taprio_qopt_offload *__offload;
|
|
|
|
__offload = container_of(offload, struct __tc_taprio_qopt_offload,
|
|
offload);
|
|
|
|
refcount_inc(&__offload->users);
|
|
|
|
return offload;
|
|
}
|
|
EXPORT_SYMBOL_GPL(taprio_offload_get);
|
|
|
|
void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
|
|
{
|
|
struct __tc_taprio_qopt_offload *__offload;
|
|
|
|
__offload = container_of(offload, struct __tc_taprio_qopt_offload,
|
|
offload);
|
|
|
|
if (!refcount_dec_and_test(&__offload->users))
|
|
return;
|
|
|
|
kfree(__offload);
|
|
}
|
|
EXPORT_SYMBOL_GPL(taprio_offload_free);
|
|
|
|
/* The function will only serve to keep the pointers to the "oper" and "admin"
|
|
* schedules valid in relation to their base times, so when calling dump() the
|
|
* users looks at the right schedules.
|
|
* When using full offload, the admin configuration is promoted to oper at the
|
|
* base_time in the PHC time domain. But because the system time is not
|
|
* necessarily in sync with that, we can't just trigger a hrtimer to call
|
|
* switch_schedules at the right hardware time.
|
|
* At the moment we call this by hand right away from taprio, but in the future
|
|
* it will be useful to create a mechanism for drivers to notify taprio of the
|
|
* offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
|
|
* This is left as TODO.
|
|
*/
|
|
static void taprio_offload_config_changed(struct taprio_sched *q)
|
|
{
|
|
struct sched_gate_list *oper, *admin;
|
|
|
|
oper = rtnl_dereference(q->oper_sched);
|
|
admin = rtnl_dereference(q->admin_sched);
|
|
|
|
switch_schedules(q, &admin, &oper);
|
|
}
|
|
|
|
static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
|
|
{
|
|
u32 i, queue_mask = 0;
|
|
|
|
for (i = 0; i < dev->num_tc; i++) {
|
|
u32 offset, count;
|
|
|
|
if (!(tc_mask & BIT(i)))
|
|
continue;
|
|
|
|
offset = dev->tc_to_txq[i].offset;
|
|
count = dev->tc_to_txq[i].count;
|
|
|
|
queue_mask |= GENMASK(offset + count - 1, offset);
|
|
}
|
|
|
|
return queue_mask;
|
|
}
|
|
|
|
static void taprio_sched_to_offload(struct net_device *dev,
|
|
struct sched_gate_list *sched,
|
|
struct tc_taprio_qopt_offload *offload,
|
|
const struct tc_taprio_caps *caps)
|
|
{
|
|
struct sched_entry *entry;
|
|
int i = 0;
|
|
|
|
offload->base_time = sched->base_time;
|
|
offload->cycle_time = sched->cycle_time;
|
|
offload->cycle_time_extension = sched->cycle_time_extension;
|
|
|
|
list_for_each_entry(entry, &sched->entries, list) {
|
|
struct tc_taprio_sched_entry *e = &offload->entries[i];
|
|
|
|
e->command = entry->command;
|
|
e->interval = entry->interval;
|
|
if (caps->gate_mask_per_txq)
|
|
e->gate_mask = tc_map_to_queue_mask(dev,
|
|
entry->gate_mask);
|
|
else
|
|
e->gate_mask = entry->gate_mask;
|
|
|
|
i++;
|
|
}
|
|
|
|
offload->num_entries = i;
|
|
}
|
|
|
|
static void taprio_detect_broken_mqprio(struct taprio_sched *q)
|
|
{
|
|
struct net_device *dev = qdisc_dev(q->root);
|
|
struct tc_taprio_caps caps;
|
|
|
|
qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
|
|
&caps, sizeof(caps));
|
|
|
|
q->broken_mqprio = caps.broken_mqprio;
|
|
if (q->broken_mqprio)
|
|
static_branch_inc(&taprio_have_broken_mqprio);
|
|
else
|
|
static_branch_inc(&taprio_have_working_mqprio);
|
|
|
|
q->detected_mqprio = true;
|
|
}
|
|
|
|
static void taprio_cleanup_broken_mqprio(struct taprio_sched *q)
|
|
{
|
|
if (!q->detected_mqprio)
|
|
return;
|
|
|
|
if (q->broken_mqprio)
|
|
static_branch_dec(&taprio_have_broken_mqprio);
|
|
else
|
|
static_branch_dec(&taprio_have_working_mqprio);
|
|
}
|
|
|
|
static int taprio_enable_offload(struct net_device *dev,
|
|
struct taprio_sched *q,
|
|
struct sched_gate_list *sched,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
const struct net_device_ops *ops = dev->netdev_ops;
|
|
struct tc_taprio_qopt_offload *offload;
|
|
struct tc_taprio_caps caps;
|
|
int tc, err = 0;
|
|
|
|
if (!ops->ndo_setup_tc) {
|
|
NL_SET_ERR_MSG(extack,
|
|
"Device does not support taprio offload");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
|
|
&caps, sizeof(caps));
|
|
|
|
if (!caps.supports_queue_max_sdu) {
|
|
for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
|
|
if (q->max_sdu[tc]) {
|
|
NL_SET_ERR_MSG_MOD(extack,
|
|
"Device does not handle queueMaxSDU");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
}
|
|
|
|
offload = taprio_offload_alloc(sched->num_entries);
|
|
if (!offload) {
|
|
NL_SET_ERR_MSG(extack,
|
|
"Not enough memory for enabling offload mode");
|
|
return -ENOMEM;
|
|
}
|
|
offload->enable = 1;
|
|
mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt);
|
|
taprio_sched_to_offload(dev, sched, offload, &caps);
|
|
|
|
for (tc = 0; tc < TC_MAX_QUEUE; tc++)
|
|
offload->max_sdu[tc] = q->max_sdu[tc];
|
|
|
|
err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
|
|
if (err < 0) {
|
|
NL_SET_ERR_MSG(extack,
|
|
"Device failed to setup taprio offload");
|
|
goto done;
|
|
}
|
|
|
|
q->offloaded = true;
|
|
|
|
done:
|
|
taprio_offload_free(offload);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int taprio_disable_offload(struct net_device *dev,
|
|
struct taprio_sched *q,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
const struct net_device_ops *ops = dev->netdev_ops;
|
|
struct tc_taprio_qopt_offload *offload;
|
|
int err;
|
|
|
|
if (!q->offloaded)
|
|
return 0;
|
|
|
|
offload = taprio_offload_alloc(0);
|
|
if (!offload) {
|
|
NL_SET_ERR_MSG(extack,
|
|
"Not enough memory to disable offload mode");
|
|
return -ENOMEM;
|
|
}
|
|
offload->enable = 0;
|
|
|
|
err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
|
|
if (err < 0) {
|
|
NL_SET_ERR_MSG(extack,
|
|
"Device failed to disable offload");
|
|
goto out;
|
|
}
|
|
|
|
q->offloaded = false;
|
|
|
|
out:
|
|
taprio_offload_free(offload);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* If full offload is enabled, the only possible clockid is the net device's
|
|
* PHC. For that reason, specifying a clockid through netlink is incorrect.
|
|
* For txtime-assist, it is implicitly assumed that the device's PHC is kept
|
|
* in sync with the specified clockid via a user space daemon such as phc2sys.
|
|
* For both software taprio and txtime-assist, the clockid is used for the
|
|
* hrtimer that advances the schedule and hence mandatory.
|
|
*/
|
|
static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
int err = -EINVAL;
|
|
|
|
if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
|
|
const struct ethtool_ops *ops = dev->ethtool_ops;
|
|
struct ethtool_ts_info info = {
|
|
.cmd = ETHTOOL_GET_TS_INFO,
|
|
.phc_index = -1,
|
|
};
|
|
|
|
if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
|
|
NL_SET_ERR_MSG(extack,
|
|
"The 'clockid' cannot be specified for full offload");
|
|
goto out;
|
|
}
|
|
|
|
if (ops && ops->get_ts_info)
|
|
err = ops->get_ts_info(dev, &info);
|
|
|
|
if (err || info.phc_index < 0) {
|
|
NL_SET_ERR_MSG(extack,
|
|
"Device does not have a PTP clock");
|
|
err = -ENOTSUPP;
|
|
goto out;
|
|
}
|
|
} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
|
|
int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
|
|
enum tk_offsets tk_offset;
|
|
|
|
/* We only support static clockids and we don't allow
|
|
* for it to be modified after the first init.
|
|
*/
|
|
if (clockid < 0 ||
|
|
(q->clockid != -1 && q->clockid != clockid)) {
|
|
NL_SET_ERR_MSG(extack,
|
|
"Changing the 'clockid' of a running schedule is not supported");
|
|
err = -ENOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
switch (clockid) {
|
|
case CLOCK_REALTIME:
|
|
tk_offset = TK_OFFS_REAL;
|
|
break;
|
|
case CLOCK_MONOTONIC:
|
|
tk_offset = TK_OFFS_MAX;
|
|
break;
|
|
case CLOCK_BOOTTIME:
|
|
tk_offset = TK_OFFS_BOOT;
|
|
break;
|
|
case CLOCK_TAI:
|
|
tk_offset = TK_OFFS_TAI;
|
|
break;
|
|
default:
|
|
NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
/* This pairs with READ_ONCE() in taprio_mono_to_any */
|
|
WRITE_ONCE(q->tk_offset, tk_offset);
|
|
|
|
q->clockid = clockid;
|
|
} else {
|
|
NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
|
|
goto out;
|
|
}
|
|
|
|
/* Everything went ok, return success. */
|
|
err = 0;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int taprio_parse_tc_entry(struct Qdisc *sch,
|
|
struct nlattr *opt,
|
|
u32 max_sdu[TC_QOPT_MAX_QUEUE],
|
|
unsigned long *seen_tcs,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
u32 val = 0;
|
|
int err, tc;
|
|
|
|
err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
|
|
taprio_tc_policy, extack);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) {
|
|
NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
|
|
return -EINVAL;
|
|
}
|
|
|
|
tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
|
|
if (tc >= TC_QOPT_MAX_QUEUE) {
|
|
NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range");
|
|
return -ERANGE;
|
|
}
|
|
|
|
if (*seen_tcs & BIT(tc)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry");
|
|
return -EINVAL;
|
|
}
|
|
|
|
*seen_tcs |= BIT(tc);
|
|
|
|
if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU])
|
|
val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
|
|
|
|
if (val > dev->max_mtu) {
|
|
NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
|
|
return -ERANGE;
|
|
}
|
|
|
|
max_sdu[tc] = val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int taprio_parse_tc_entries(struct Qdisc *sch,
|
|
struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
u32 max_sdu[TC_QOPT_MAX_QUEUE];
|
|
unsigned long seen_tcs = 0;
|
|
struct nlattr *n;
|
|
int tc, rem;
|
|
int err = 0;
|
|
|
|
for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
|
|
max_sdu[tc] = q->max_sdu[tc];
|
|
|
|
nla_for_each_nested(n, opt, rem) {
|
|
if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY)
|
|
continue;
|
|
|
|
err = taprio_parse_tc_entry(sch, n, max_sdu, &seen_tcs,
|
|
extack);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
|
|
q->max_sdu[tc] = max_sdu[tc];
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int taprio_mqprio_cmp(const struct net_device *dev,
|
|
const struct tc_mqprio_qopt *mqprio)
|
|
{
|
|
int i;
|
|
|
|
if (!mqprio || mqprio->num_tc != dev->num_tc)
|
|
return -1;
|
|
|
|
for (i = 0; i < mqprio->num_tc; i++)
|
|
if (dev->tc_to_txq[i].count != mqprio->count[i] ||
|
|
dev->tc_to_txq[i].offset != mqprio->offset[i])
|
|
return -1;
|
|
|
|
for (i = 0; i <= TC_BITMASK; i++)
|
|
if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The semantics of the 'flags' argument in relation to 'change()'
|
|
* requests, are interpreted following two rules (which are applied in
|
|
* this order): (1) an omitted 'flags' argument is interpreted as
|
|
* zero; (2) the 'flags' of a "running" taprio instance cannot be
|
|
* changed.
|
|
*/
|
|
static int taprio_new_flags(const struct nlattr *attr, u32 old,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
u32 new = 0;
|
|
|
|
if (attr)
|
|
new = nla_get_u32(attr);
|
|
|
|
if (old != TAPRIO_FLAGS_INVALID && old != new) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (!taprio_flags_valid(new)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return new;
|
|
}
|
|
|
|
static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct qdisc_size_table *stab = rtnl_dereference(sch->stab);
|
|
struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
|
|
struct sched_gate_list *oper, *admin, *new_admin;
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
struct tc_mqprio_qopt *mqprio = NULL;
|
|
unsigned long flags;
|
|
ktime_t start;
|
|
int i, err;
|
|
|
|
err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
|
|
taprio_policy, extack);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
|
|
mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
|
|
|
|
err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
|
|
q->flags, extack);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
q->flags = err;
|
|
|
|
err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
err = taprio_parse_tc_entries(sch, opt, extack);
|
|
if (err)
|
|
return err;
|
|
|
|
new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
|
|
if (!new_admin) {
|
|
NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
|
|
return -ENOMEM;
|
|
}
|
|
INIT_LIST_HEAD(&new_admin->entries);
|
|
|
|
oper = rtnl_dereference(q->oper_sched);
|
|
admin = rtnl_dereference(q->admin_sched);
|
|
|
|
/* no changes - no new mqprio settings */
|
|
if (!taprio_mqprio_cmp(dev, mqprio))
|
|
mqprio = NULL;
|
|
|
|
if (mqprio && (oper || admin)) {
|
|
NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
|
|
err = -ENOTSUPP;
|
|
goto free_sched;
|
|
}
|
|
|
|
if (mqprio) {
|
|
err = netdev_set_num_tc(dev, mqprio->num_tc);
|
|
if (err)
|
|
goto free_sched;
|
|
for (i = 0; i < mqprio->num_tc; i++) {
|
|
netdev_set_tc_queue(dev, i,
|
|
mqprio->count[i],
|
|
mqprio->offset[i]);
|
|
q->cur_txq[i] = mqprio->offset[i];
|
|
}
|
|
|
|
/* Always use supplied priority mappings */
|
|
for (i = 0; i <= TC_BITMASK; i++)
|
|
netdev_set_prio_tc_map(dev, i,
|
|
mqprio->prio_tc_map[i]);
|
|
}
|
|
|
|
err = parse_taprio_schedule(q, tb, new_admin, extack);
|
|
if (err < 0)
|
|
goto free_sched;
|
|
|
|
if (new_admin->num_entries == 0) {
|
|
NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
|
|
err = -EINVAL;
|
|
goto free_sched;
|
|
}
|
|
|
|
err = taprio_parse_clockid(sch, tb, extack);
|
|
if (err < 0)
|
|
goto free_sched;
|
|
|
|
taprio_set_picos_per_byte(dev, q);
|
|
taprio_update_queue_max_sdu(q, new_admin, stab);
|
|
|
|
if (FULL_OFFLOAD_IS_ENABLED(q->flags))
|
|
err = taprio_enable_offload(dev, q, new_admin, extack);
|
|
else
|
|
err = taprio_disable_offload(dev, q, extack);
|
|
if (err)
|
|
goto free_sched;
|
|
|
|
/* Protects against enqueue()/dequeue() */
|
|
spin_lock_bh(qdisc_lock(sch));
|
|
|
|
if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
|
|
if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
|
|
err = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
|
|
}
|
|
|
|
if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
|
|
!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
|
|
!hrtimer_active(&q->advance_timer)) {
|
|
hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
|
|
q->advance_timer.function = advance_sched;
|
|
}
|
|
|
|
err = taprio_get_start_time(sch, new_admin, &start);
|
|
if (err < 0) {
|
|
NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
|
|
goto unlock;
|
|
}
|
|
|
|
setup_txtime(q, new_admin, start);
|
|
|
|
if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
|
|
if (!oper) {
|
|
rcu_assign_pointer(q->oper_sched, new_admin);
|
|
err = 0;
|
|
new_admin = NULL;
|
|
goto unlock;
|
|
}
|
|
|
|
rcu_assign_pointer(q->admin_sched, new_admin);
|
|
if (admin)
|
|
call_rcu(&admin->rcu, taprio_free_sched_cb);
|
|
} else {
|
|
setup_first_end_time(q, new_admin, start);
|
|
|
|
/* Protects against advance_sched() */
|
|
spin_lock_irqsave(&q->current_entry_lock, flags);
|
|
|
|
taprio_start_sched(sch, start, new_admin);
|
|
|
|
rcu_assign_pointer(q->admin_sched, new_admin);
|
|
if (admin)
|
|
call_rcu(&admin->rcu, taprio_free_sched_cb);
|
|
|
|
spin_unlock_irqrestore(&q->current_entry_lock, flags);
|
|
|
|
if (FULL_OFFLOAD_IS_ENABLED(q->flags))
|
|
taprio_offload_config_changed(q);
|
|
}
|
|
|
|
new_admin = NULL;
|
|
err = 0;
|
|
|
|
if (!stab)
|
|
NL_SET_ERR_MSG_MOD(extack,
|
|
"Size table not specified, frame length estimations may be inaccurate");
|
|
|
|
unlock:
|
|
spin_unlock_bh(qdisc_lock(sch));
|
|
|
|
free_sched:
|
|
if (new_admin)
|
|
call_rcu(&new_admin->rcu, taprio_free_sched_cb);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void taprio_reset(struct Qdisc *sch)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
int i;
|
|
|
|
hrtimer_cancel(&q->advance_timer);
|
|
|
|
if (q->qdiscs) {
|
|
for (i = 0; i < dev->num_tx_queues; i++)
|
|
if (q->qdiscs[i])
|
|
qdisc_reset(q->qdiscs[i]);
|
|
}
|
|
}
|
|
|
|
static void taprio_destroy(struct Qdisc *sch)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
struct sched_gate_list *oper, *admin;
|
|
unsigned int i;
|
|
|
|
list_del(&q->taprio_list);
|
|
|
|
/* Note that taprio_reset() might not be called if an error
|
|
* happens in qdisc_create(), after taprio_init() has been called.
|
|
*/
|
|
hrtimer_cancel(&q->advance_timer);
|
|
qdisc_synchronize(sch);
|
|
|
|
taprio_disable_offload(dev, q, NULL);
|
|
|
|
if (q->qdiscs) {
|
|
for (i = 0; i < dev->num_tx_queues; i++)
|
|
qdisc_put(q->qdiscs[i]);
|
|
|
|
kfree(q->qdiscs);
|
|
}
|
|
q->qdiscs = NULL;
|
|
|
|
netdev_reset_tc(dev);
|
|
|
|
oper = rtnl_dereference(q->oper_sched);
|
|
admin = rtnl_dereference(q->admin_sched);
|
|
|
|
if (oper)
|
|
call_rcu(&oper->rcu, taprio_free_sched_cb);
|
|
|
|
if (admin)
|
|
call_rcu(&admin->rcu, taprio_free_sched_cb);
|
|
|
|
taprio_cleanup_broken_mqprio(q);
|
|
}
|
|
|
|
static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
int i;
|
|
|
|
spin_lock_init(&q->current_entry_lock);
|
|
|
|
hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
|
|
q->advance_timer.function = advance_sched;
|
|
|
|
q->root = sch;
|
|
|
|
/* We only support static clockids. Use an invalid value as default
|
|
* and get the valid one on taprio_change().
|
|
*/
|
|
q->clockid = -1;
|
|
q->flags = TAPRIO_FLAGS_INVALID;
|
|
|
|
list_add(&q->taprio_list, &taprio_list);
|
|
|
|
if (sch->parent != TC_H_ROOT) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (!netif_is_multiqueue(dev)) {
|
|
NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* pre-allocate qdisc, attachment can't fail */
|
|
q->qdiscs = kcalloc(dev->num_tx_queues,
|
|
sizeof(q->qdiscs[0]),
|
|
GFP_KERNEL);
|
|
|
|
if (!q->qdiscs)
|
|
return -ENOMEM;
|
|
|
|
if (!opt)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < dev->num_tx_queues; i++) {
|
|
struct netdev_queue *dev_queue;
|
|
struct Qdisc *qdisc;
|
|
|
|
dev_queue = netdev_get_tx_queue(dev, i);
|
|
qdisc = qdisc_create_dflt(dev_queue,
|
|
&pfifo_qdisc_ops,
|
|
TC_H_MAKE(TC_H_MAJ(sch->handle),
|
|
TC_H_MIN(i + 1)),
|
|
extack);
|
|
if (!qdisc)
|
|
return -ENOMEM;
|
|
|
|
if (i < dev->real_num_tx_queues)
|
|
qdisc_hash_add(qdisc, false);
|
|
|
|
q->qdiscs[i] = qdisc;
|
|
}
|
|
|
|
taprio_detect_broken_mqprio(q);
|
|
|
|
return taprio_change(sch, opt, extack);
|
|
}
|
|
|
|
static void taprio_attach(struct Qdisc *sch)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
unsigned int ntx;
|
|
|
|
/* Attach underlying qdisc */
|
|
for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
|
|
struct Qdisc *qdisc = q->qdiscs[ntx];
|
|
struct Qdisc *old;
|
|
|
|
if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
|
|
qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
|
|
old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
|
|
} else {
|
|
old = dev_graft_qdisc(qdisc->dev_queue, sch);
|
|
qdisc_refcount_inc(sch);
|
|
}
|
|
if (old)
|
|
qdisc_put(old);
|
|
}
|
|
|
|
/* access to the child qdiscs is not needed in offload mode */
|
|
if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
|
|
kfree(q->qdiscs);
|
|
q->qdiscs = NULL;
|
|
}
|
|
}
|
|
|
|
static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
|
|
unsigned long cl)
|
|
{
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
unsigned long ntx = cl - 1;
|
|
|
|
if (ntx >= dev->num_tx_queues)
|
|
return NULL;
|
|
|
|
return netdev_get_tx_queue(dev, ntx);
|
|
}
|
|
|
|
static int taprio_graft(struct Qdisc *sch, unsigned long cl,
|
|
struct Qdisc *new, struct Qdisc **old,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
|
|
|
|
if (!dev_queue)
|
|
return -EINVAL;
|
|
|
|
if (dev->flags & IFF_UP)
|
|
dev_deactivate(dev);
|
|
|
|
if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
|
|
*old = dev_graft_qdisc(dev_queue, new);
|
|
} else {
|
|
*old = q->qdiscs[cl - 1];
|
|
q->qdiscs[cl - 1] = new;
|
|
}
|
|
|
|
if (new)
|
|
new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
|
|
|
|
if (dev->flags & IFF_UP)
|
|
dev_activate(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dump_entry(struct sk_buff *msg,
|
|
const struct sched_entry *entry)
|
|
{
|
|
struct nlattr *item;
|
|
|
|
item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
|
|
if (!item)
|
|
return -ENOSPC;
|
|
|
|
if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
|
|
entry->gate_mask))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
|
|
entry->interval))
|
|
goto nla_put_failure;
|
|
|
|
return nla_nest_end(msg, item);
|
|
|
|
nla_put_failure:
|
|
nla_nest_cancel(msg, item);
|
|
return -1;
|
|
}
|
|
|
|
static int dump_schedule(struct sk_buff *msg,
|
|
const struct sched_gate_list *root)
|
|
{
|
|
struct nlattr *entry_list;
|
|
struct sched_entry *entry;
|
|
|
|
if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
|
|
root->base_time, TCA_TAPRIO_PAD))
|
|
return -1;
|
|
|
|
if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
|
|
root->cycle_time, TCA_TAPRIO_PAD))
|
|
return -1;
|
|
|
|
if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
|
|
root->cycle_time_extension, TCA_TAPRIO_PAD))
|
|
return -1;
|
|
|
|
entry_list = nla_nest_start_noflag(msg,
|
|
TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
|
|
if (!entry_list)
|
|
goto error_nest;
|
|
|
|
list_for_each_entry(entry, &root->entries, list) {
|
|
if (dump_entry(msg, entry) < 0)
|
|
goto error_nest;
|
|
}
|
|
|
|
nla_nest_end(msg, entry_list);
|
|
return 0;
|
|
|
|
error_nest:
|
|
nla_nest_cancel(msg, entry_list);
|
|
return -1;
|
|
}
|
|
|
|
static int taprio_dump_tc_entries(struct sk_buff *skb,
|
|
struct sched_gate_list *sched)
|
|
{
|
|
struct nlattr *n;
|
|
int tc;
|
|
|
|
for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
|
|
n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
|
|
if (!n)
|
|
return -EMSGSIZE;
|
|
|
|
if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
|
|
sched->max_sdu[tc]))
|
|
goto nla_put_failure;
|
|
|
|
nla_nest_end(skb, n);
|
|
}
|
|
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
nla_nest_cancel(skb, n);
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
{
|
|
struct taprio_sched *q = qdisc_priv(sch);
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
struct sched_gate_list *oper, *admin;
|
|
struct tc_mqprio_qopt opt = { 0 };
|
|
struct nlattr *nest, *sched_nest;
|
|
|
|
oper = rtnl_dereference(q->oper_sched);
|
|
admin = rtnl_dereference(q->admin_sched);
|
|
|
|
mqprio_qopt_reconstruct(dev, &opt);
|
|
|
|
nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
|
|
if (!nest)
|
|
goto start_error;
|
|
|
|
if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
|
|
goto options_error;
|
|
|
|
if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
|
|
nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
|
|
goto options_error;
|
|
|
|
if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
|
|
goto options_error;
|
|
|
|
if (q->txtime_delay &&
|
|
nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
|
|
goto options_error;
|
|
|
|
if (oper && taprio_dump_tc_entries(skb, oper))
|
|
goto options_error;
|
|
|
|
if (oper && dump_schedule(skb, oper))
|
|
goto options_error;
|
|
|
|
if (!admin)
|
|
goto done;
|
|
|
|
sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
|
|
if (!sched_nest)
|
|
goto options_error;
|
|
|
|
if (dump_schedule(skb, admin))
|
|
goto admin_error;
|
|
|
|
nla_nest_end(skb, sched_nest);
|
|
|
|
done:
|
|
return nla_nest_end(skb, nest);
|
|
|
|
admin_error:
|
|
nla_nest_cancel(skb, sched_nest);
|
|
|
|
options_error:
|
|
nla_nest_cancel(skb, nest);
|
|
|
|
start_error:
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
|
|
{
|
|
struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
|
|
|
|
if (!dev_queue)
|
|
return NULL;
|
|
|
|
return dev_queue->qdisc_sleeping;
|
|
}
|
|
|
|
static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
|
|
{
|
|
unsigned int ntx = TC_H_MIN(classid);
|
|
|
|
if (!taprio_queue_get(sch, ntx))
|
|
return 0;
|
|
return ntx;
|
|
}
|
|
|
|
static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
|
|
struct sk_buff *skb, struct tcmsg *tcm)
|
|
{
|
|
struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
|
|
|
|
tcm->tcm_parent = TC_H_ROOT;
|
|
tcm->tcm_handle |= TC_H_MIN(cl);
|
|
tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
|
|
struct gnet_dump *d)
|
|
__releases(d->lock)
|
|
__acquires(d->lock)
|
|
{
|
|
struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
|
|
|
|
sch = dev_queue->qdisc_sleeping;
|
|
if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 ||
|
|
qdisc_qstats_copy(d, sch) < 0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
|
|
{
|
|
struct net_device *dev = qdisc_dev(sch);
|
|
unsigned long ntx;
|
|
|
|
if (arg->stop)
|
|
return;
|
|
|
|
arg->count = arg->skip;
|
|
for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
|
|
if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
|
|
break;
|
|
}
|
|
}
|
|
|
|
static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
|
|
struct tcmsg *tcm)
|
|
{
|
|
return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
|
|
}
|
|
|
|
static const struct Qdisc_class_ops taprio_class_ops = {
|
|
.graft = taprio_graft,
|
|
.leaf = taprio_leaf,
|
|
.find = taprio_find,
|
|
.walk = taprio_walk,
|
|
.dump = taprio_dump_class,
|
|
.dump_stats = taprio_dump_class_stats,
|
|
.select_queue = taprio_select_queue,
|
|
};
|
|
|
|
static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
|
|
.cl_ops = &taprio_class_ops,
|
|
.id = "taprio",
|
|
.priv_size = sizeof(struct taprio_sched),
|
|
.init = taprio_init,
|
|
.change = taprio_change,
|
|
.destroy = taprio_destroy,
|
|
.reset = taprio_reset,
|
|
.attach = taprio_attach,
|
|
.peek = taprio_peek,
|
|
.dequeue = taprio_dequeue,
|
|
.enqueue = taprio_enqueue,
|
|
.dump = taprio_dump,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static struct notifier_block taprio_device_notifier = {
|
|
.notifier_call = taprio_dev_notifier,
|
|
};
|
|
|
|
static int __init taprio_module_init(void)
|
|
{
|
|
int err = register_netdevice_notifier(&taprio_device_notifier);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
return register_qdisc(&taprio_qdisc_ops);
|
|
}
|
|
|
|
static void __exit taprio_module_exit(void)
|
|
{
|
|
unregister_qdisc(&taprio_qdisc_ops);
|
|
unregister_netdevice_notifier(&taprio_device_notifier);
|
|
}
|
|
|
|
module_init(taprio_module_init);
|
|
module_exit(taprio_module_exit);
|
|
MODULE_LICENSE("GPL");
|