Al Viro 5f60d5f6bb move asm/unaligned.h to linux/unaligned.h
asm/unaligned.h is always an include of asm-generic/unaligned.h;
might as well move that thing to linux/unaligned.h and include
that - there's nothing arch-specific in that header.

auto-generated by the following:

for i in `git grep -l -w asm/unaligned.h`; do
	sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i
done
for i in `git grep -l -w asm-generic/unaligned.h`; do
	sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i
done
git mv include/asm-generic/unaligned.h include/linux/unaligned.h
git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h
sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild
sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
2024-10-02 17:23:23 -04:00

1886 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the MaxLinear MxL5xx family of tuners/demods
*
* Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
* Marcus Metzler <mocm@metzlerbros.de>
* developed for Digital Devices GmbH
*
* based on code:
* Copyright (c) 2011-2013 MaxLinear, Inc. All rights reserved
* which was released under GPL V2
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/mutex.h>
#include <linux/vmalloc.h>
#include <asm/div64.h>
#include <linux/unaligned.h>
#include <media/dvb_frontend.h>
#include "mxl5xx.h"
#include "mxl5xx_regs.h"
#include "mxl5xx_defs.h"
#define BYTE0(v) ((v >> 0) & 0xff)
#define BYTE1(v) ((v >> 8) & 0xff)
#define BYTE2(v) ((v >> 16) & 0xff)
#define BYTE3(v) ((v >> 24) & 0xff)
static LIST_HEAD(mxllist);
struct mxl_base {
struct list_head mxllist;
struct list_head mxls;
u8 adr;
struct i2c_adapter *i2c;
u32 count;
u32 type;
u32 sku_type;
u32 chipversion;
u32 clock;
u32 fwversion;
u8 *ts_map;
u8 can_clkout;
u8 chan_bond;
u8 demod_num;
u8 tuner_num;
unsigned long next_tune;
struct mutex i2c_lock;
struct mutex status_lock;
struct mutex tune_lock;
u8 buf[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
u32 cmd_size;
u8 cmd_data[MAX_CMD_DATA];
};
struct mxl {
struct list_head mxl;
struct mxl_base *base;
struct dvb_frontend fe;
struct device *i2cdev;
u32 demod;
u32 tuner;
u32 tuner_in_use;
u8 xbar[3];
unsigned long tune_time;
};
static void convert_endian(u8 flag, u32 size, u8 *d)
{
u32 i;
if (!flag)
return;
for (i = 0; i < (size & ~3); i += 4) {
d[i + 0] ^= d[i + 3];
d[i + 3] ^= d[i + 0];
d[i + 0] ^= d[i + 3];
d[i + 1] ^= d[i + 2];
d[i + 2] ^= d[i + 1];
d[i + 1] ^= d[i + 2];
}
switch (size & 3) {
case 0:
case 1:
/* do nothing */
break;
case 2:
d[i + 0] ^= d[i + 1];
d[i + 1] ^= d[i + 0];
d[i + 0] ^= d[i + 1];
break;
case 3:
d[i + 0] ^= d[i + 2];
d[i + 2] ^= d[i + 0];
d[i + 0] ^= d[i + 2];
break;
}
}
static int i2c_write(struct i2c_adapter *adap, u8 adr,
u8 *data, u32 len)
{
struct i2c_msg msg = {.addr = adr, .flags = 0,
.buf = data, .len = len};
return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
}
static int i2c_read(struct i2c_adapter *adap, u8 adr,
u8 *data, u32 len)
{
struct i2c_msg msg = {.addr = adr, .flags = I2C_M_RD,
.buf = data, .len = len};
return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
}
static int i2cread(struct mxl *state, u8 *data, int len)
{
return i2c_read(state->base->i2c, state->base->adr, data, len);
}
static int i2cwrite(struct mxl *state, u8 *data, int len)
{
return i2c_write(state->base->i2c, state->base->adr, data, len);
}
static int read_register_unlocked(struct mxl *state, u32 reg, u32 *val)
{
int stat;
u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
MXL_HYDRA_PLID_REG_READ, 0x04,
GET_BYTE(reg, 0), GET_BYTE(reg, 1),
GET_BYTE(reg, 2), GET_BYTE(reg, 3),
};
stat = i2cwrite(state, data,
MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
if (stat)
dev_err(state->i2cdev, "i2c read error 1\n");
if (!stat)
stat = i2cread(state, (u8 *) val,
MXL_HYDRA_REG_SIZE_IN_BYTES);
le32_to_cpus(val);
if (stat)
dev_err(state->i2cdev, "i2c read error 2\n");
return stat;
}
#define DMA_I2C_INTERRUPT_ADDR 0x8000011C
#define DMA_INTR_PROT_WR_CMP 0x08
static int send_command(struct mxl *state, u32 size, u8 *buf)
{
int stat;
u32 val, count = 10;
mutex_lock(&state->base->i2c_lock);
if (state->base->fwversion > 0x02010109) {
read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR, &val);
if (DMA_INTR_PROT_WR_CMP & val)
dev_info(state->i2cdev, "%s busy\n", __func__);
while ((DMA_INTR_PROT_WR_CMP & val) && --count) {
mutex_unlock(&state->base->i2c_lock);
usleep_range(1000, 2000);
mutex_lock(&state->base->i2c_lock);
read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR,
&val);
}
if (!count) {
dev_info(state->i2cdev, "%s busy\n", __func__);
mutex_unlock(&state->base->i2c_lock);
return -EBUSY;
}
}
stat = i2cwrite(state, buf, size);
mutex_unlock(&state->base->i2c_lock);
return stat;
}
static int write_register(struct mxl *state, u32 reg, u32 val)
{
int stat;
u8 data[MXL_HYDRA_REG_WRITE_LEN] = {
MXL_HYDRA_PLID_REG_WRITE, 0x08,
BYTE0(reg), BYTE1(reg), BYTE2(reg), BYTE3(reg),
BYTE0(val), BYTE1(val), BYTE2(val), BYTE3(val),
};
mutex_lock(&state->base->i2c_lock);
stat = i2cwrite(state, data, sizeof(data));
mutex_unlock(&state->base->i2c_lock);
if (stat)
dev_err(state->i2cdev, "i2c write error\n");
return stat;
}
static int write_firmware_block(struct mxl *state,
u32 reg, u32 size, u8 *reg_data_ptr)
{
int stat;
u8 *buf = state->base->buf;
mutex_lock(&state->base->i2c_lock);
buf[0] = MXL_HYDRA_PLID_REG_WRITE;
buf[1] = size + 4;
buf[2] = GET_BYTE(reg, 0);
buf[3] = GET_BYTE(reg, 1);
buf[4] = GET_BYTE(reg, 2);
buf[5] = GET_BYTE(reg, 3);
memcpy(&buf[6], reg_data_ptr, size);
stat = i2cwrite(state, buf,
MXL_HYDRA_I2C_HDR_SIZE +
MXL_HYDRA_REG_SIZE_IN_BYTES + size);
mutex_unlock(&state->base->i2c_lock);
if (stat)
dev_err(state->i2cdev, "fw block write failed\n");
return stat;
}
static int read_register(struct mxl *state, u32 reg, u32 *val)
{
int stat;
u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
MXL_HYDRA_PLID_REG_READ, 0x04,
GET_BYTE(reg, 0), GET_BYTE(reg, 1),
GET_BYTE(reg, 2), GET_BYTE(reg, 3),
};
mutex_lock(&state->base->i2c_lock);
stat = i2cwrite(state, data,
MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
if (stat)
dev_err(state->i2cdev, "i2c read error 1\n");
if (!stat)
stat = i2cread(state, (u8 *) val,
MXL_HYDRA_REG_SIZE_IN_BYTES);
mutex_unlock(&state->base->i2c_lock);
le32_to_cpus(val);
if (stat)
dev_err(state->i2cdev, "i2c read error 2\n");
return stat;
}
static int read_register_block(struct mxl *state, u32 reg, u32 size, u8 *data)
{
int stat;
u8 *buf = state->base->buf;
mutex_lock(&state->base->i2c_lock);
buf[0] = MXL_HYDRA_PLID_REG_READ;
buf[1] = size + 4;
buf[2] = GET_BYTE(reg, 0);
buf[3] = GET_BYTE(reg, 1);
buf[4] = GET_BYTE(reg, 2);
buf[5] = GET_BYTE(reg, 3);
stat = i2cwrite(state, buf,
MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES);
if (!stat) {
stat = i2cread(state, data, size);
convert_endian(MXL_ENABLE_BIG_ENDIAN, size, data);
}
mutex_unlock(&state->base->i2c_lock);
return stat;
}
static int read_by_mnemonic(struct mxl *state,
u32 reg, u8 lsbloc, u8 numofbits, u32 *val)
{
u32 data = 0, mask = 0;
int stat;
stat = read_register(state, reg, &data);
if (stat)
return stat;
mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
data &= mask;
data >>= lsbloc;
*val = data;
return 0;
}
static int update_by_mnemonic(struct mxl *state,
u32 reg, u8 lsbloc, u8 numofbits, u32 val)
{
u32 data, mask;
int stat;
stat = read_register(state, reg, &data);
if (stat)
return stat;
mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
data = (data & ~mask) | ((val << lsbloc) & mask);
stat = write_register(state, reg, data);
return stat;
}
static int firmware_is_alive(struct mxl *state)
{
u32 hb0, hb1;
if (read_register(state, HYDRA_HEAR_BEAT, &hb0))
return 0;
msleep(20);
if (read_register(state, HYDRA_HEAR_BEAT, &hb1))
return 0;
if (hb1 == hb0)
return 0;
return 1;
}
static int init(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
/* init fe stats */
p->strength.len = 1;
p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->cnr.len = 1;
p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_error.len = 1;
p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_count.len = 1;
p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->post_bit_error.len = 1;
p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->post_bit_count.len = 1;
p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
return 0;
}
static void release(struct dvb_frontend *fe)
{
struct mxl *state = fe->demodulator_priv;
list_del(&state->mxl);
/* Release one frontend, two more shall take its place! */
state->base->count--;
if (state->base->count == 0) {
list_del(&state->base->mxllist);
kfree(state->base);
}
kfree(state);
}
static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
{
return DVBFE_ALGO_HW;
}
static u32 gold2root(u32 gold)
{
u32 x, g, tmp = gold;
if (tmp >= 0x3ffff)
tmp = 0;
for (g = 0, x = 1; g < tmp; g++)
x = (((x ^ (x >> 7)) & 1) << 17) | (x >> 1);
return x;
}
static int cfg_scrambler(struct mxl *state, u32 gold)
{
u32 root;
u8 buf[26] = {
MXL_HYDRA_PLID_CMD_WRITE, 24,
0, MXL_HYDRA_DEMOD_SCRAMBLE_CODE_CMD, 0, 0,
state->demod, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0,
};
root = gold2root(gold);
buf[25] = (root >> 24) & 0xff;
buf[24] = (root >> 16) & 0xff;
buf[23] = (root >> 8) & 0xff;
buf[22] = root & 0xff;
return send_command(state, sizeof(buf), buf);
}
static int cfg_demod_abort_tune(struct mxl *state)
{
struct MXL_HYDRA_DEMOD_ABORT_TUNE_T abort_tune_cmd;
u8 cmd_size = sizeof(abort_tune_cmd);
u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
abort_tune_cmd.demod_id = state->demod;
BUILD_HYDRA_CMD(MXL_HYDRA_ABORT_TUNE_CMD, MXL_CMD_WRITE,
cmd_size, &abort_tune_cmd, cmd_buff);
return send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
&cmd_buff[0]);
}
static int send_master_cmd(struct dvb_frontend *fe,
struct dvb_diseqc_master_cmd *cmd)
{
/*struct mxl *state = fe->demodulator_priv;*/
return 0; /*CfgDemodAbortTune(state);*/
}
static int set_parameters(struct dvb_frontend *fe)
{
struct mxl *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct MXL_HYDRA_DEMOD_PARAM_T demod_chan_cfg;
u8 cmd_size = sizeof(demod_chan_cfg);
u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
u32 srange = 10;
int stat;
if (p->frequency < 950000 || p->frequency > 2150000)
return -EINVAL;
if (p->symbol_rate < 1000000 || p->symbol_rate > 45000000)
return -EINVAL;
/* CfgDemodAbortTune(state); */
switch (p->delivery_system) {
case SYS_DSS:
demod_chan_cfg.standard = MXL_HYDRA_DSS;
demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
break;
case SYS_DVBS:
srange = p->symbol_rate / 1000000;
if (srange > 10)
srange = 10;
demod_chan_cfg.standard = MXL_HYDRA_DVBS;
demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_0_35;
demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_QPSK;
demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_OFF;
break;
case SYS_DVBS2:
demod_chan_cfg.standard = MXL_HYDRA_DVBS2;
demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_AUTO;
demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_AUTO;
cfg_scrambler(state, p->scrambling_sequence_index);
break;
default:
return -EINVAL;
}
demod_chan_cfg.tuner_index = state->tuner;
demod_chan_cfg.demod_index = state->demod;
demod_chan_cfg.frequency_in_hz = p->frequency * 1000;
demod_chan_cfg.symbol_rate_in_hz = p->symbol_rate;
demod_chan_cfg.max_carrier_offset_in_mhz = srange;
demod_chan_cfg.spectrum_inversion = MXL_HYDRA_SPECTRUM_AUTO;
demod_chan_cfg.fec_code_rate = MXL_HYDRA_FEC_AUTO;
mutex_lock(&state->base->tune_lock);
if (time_after(jiffies + msecs_to_jiffies(200),
state->base->next_tune))
while (time_before(jiffies, state->base->next_tune))
usleep_range(10000, 11000);
state->base->next_tune = jiffies + msecs_to_jiffies(100);
state->tuner_in_use = state->tuner;
BUILD_HYDRA_CMD(MXL_HYDRA_DEMOD_SET_PARAM_CMD, MXL_CMD_WRITE,
cmd_size, &demod_chan_cfg, cmd_buff);
stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
&cmd_buff[0]);
mutex_unlock(&state->base->tune_lock);
return stat;
}
static int enable_tuner(struct mxl *state, u32 tuner, u32 enable);
static int sleep(struct dvb_frontend *fe)
{
struct mxl *state = fe->demodulator_priv;
struct mxl *p;
cfg_demod_abort_tune(state);
if (state->tuner_in_use != 0xffffffff) {
mutex_lock(&state->base->tune_lock);
state->tuner_in_use = 0xffffffff;
list_for_each_entry(p, &state->base->mxls, mxl) {
if (p->tuner_in_use == state->tuner)
break;
}
if (&p->mxl == &state->base->mxls)
enable_tuner(state, state->tuner, 0);
mutex_unlock(&state->base->tune_lock);
}
return 0;
}
static int read_snr(struct dvb_frontend *fe)
{
struct mxl *state = fe->demodulator_priv;
int stat;
u32 reg_data = 0;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
mutex_lock(&state->base->status_lock);
HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
stat = read_register(state, (HYDRA_DMD_SNR_ADDR_OFFSET +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
&reg_data);
HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
mutex_unlock(&state->base->status_lock);
p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
p->cnr.stat[0].svalue = (s16)reg_data * 10;
return stat;
}
static int read_ber(struct dvb_frontend *fe)
{
struct mxl *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u32 reg[8];
mutex_lock(&state->base->status_lock);
HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
read_register_block(state,
(HYDRA_DMD_DVBS_1ST_CORR_RS_ERRORS_ADDR_OFFSET +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
(4 * sizeof(u32)),
(u8 *) &reg[0]);
HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
switch (p->delivery_system) {
case SYS_DSS:
case SYS_DVBS:
p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
p->pre_bit_error.stat[0].uvalue = reg[2];
p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
p->pre_bit_count.stat[0].uvalue = reg[3];
break;
default:
break;
}
read_register_block(state,
(HYDRA_DMD_DVBS2_CRC_ERRORS_ADDR_OFFSET +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
(7 * sizeof(u32)),
(u8 *) &reg[0]);
switch (p->delivery_system) {
case SYS_DSS:
case SYS_DVBS:
p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
p->post_bit_error.stat[0].uvalue = reg[5];
p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
p->post_bit_count.stat[0].uvalue = reg[6];
break;
case SYS_DVBS2:
p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
p->post_bit_error.stat[0].uvalue = reg[1];
p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
p->post_bit_count.stat[0].uvalue = reg[2];
break;
default:
break;
}
mutex_unlock(&state->base->status_lock);
return 0;
}
static int read_signal_strength(struct dvb_frontend *fe)
{
struct mxl *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
int stat;
u32 reg_data = 0;
mutex_lock(&state->base->status_lock);
HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
stat = read_register(state, (HYDRA_DMD_STATUS_INPUT_POWER_ADDR +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
&reg_data);
HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
mutex_unlock(&state->base->status_lock);
p->strength.stat[0].scale = FE_SCALE_DECIBEL;
p->strength.stat[0].svalue = (s16) reg_data * 10; /* fix scale */
return stat;
}
static int read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct mxl *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u32 reg_data = 0;
mutex_lock(&state->base->status_lock);
HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
read_register(state, (HYDRA_DMD_LOCK_STATUS_ADDR_OFFSET +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
&reg_data);
HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
mutex_unlock(&state->base->status_lock);
*status = (reg_data == 1) ? 0x1f : 0;
/* signal statistics */
/* signal strength is always available */
read_signal_strength(fe);
if (*status & FE_HAS_CARRIER)
read_snr(fe);
else
p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
if (*status & FE_HAS_SYNC)
read_ber(fe);
else {
p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
}
return 0;
}
static int tune(struct dvb_frontend *fe, bool re_tune,
unsigned int mode_flags,
unsigned int *delay, enum fe_status *status)
{
struct mxl *state = fe->demodulator_priv;
int r = 0;
*delay = HZ / 2;
if (re_tune) {
r = set_parameters(fe);
if (r)
return r;
state->tune_time = jiffies;
}
return read_status(fe, status);
}
static enum fe_code_rate conv_fec(enum MXL_HYDRA_FEC_E fec)
{
enum fe_code_rate fec2fec[11] = {
FEC_NONE, FEC_1_2, FEC_3_5, FEC_2_3,
FEC_3_4, FEC_4_5, FEC_5_6, FEC_6_7,
FEC_7_8, FEC_8_9, FEC_9_10
};
if (fec > MXL_HYDRA_FEC_9_10)
return FEC_NONE;
return fec2fec[fec];
}
static int get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *p)
{
struct mxl *state = fe->demodulator_priv;
u32 reg_data[MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE];
u32 freq;
mutex_lock(&state->base->status_lock);
HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
read_register_block(state,
(HYDRA_DMD_STANDARD_ADDR_OFFSET +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
(MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE * 4), /* 25 * 4 bytes */
(u8 *) &reg_data[0]);
/* read demod channel parameters */
read_register_block(state,
(HYDRA_DMD_STATUS_CENTER_FREQ_IN_KHZ_ADDR +
HYDRA_DMD_STATUS_OFFSET(state->demod)),
(4), /* 4 bytes */
(u8 *) &freq);
HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
mutex_unlock(&state->base->status_lock);
dev_dbg(state->i2cdev, "freq=%u delsys=%u srate=%u\n",
freq * 1000, reg_data[DMD_STANDARD_ADDR],
reg_data[DMD_SYMBOL_RATE_ADDR]);
p->symbol_rate = reg_data[DMD_SYMBOL_RATE_ADDR];
p->frequency = freq;
/*
* p->delivery_system =
* (MXL_HYDRA_BCAST_STD_E) regData[DMD_STANDARD_ADDR];
* p->inversion =
* (MXL_HYDRA_SPECTRUM_E) regData[DMD_SPECTRUM_INVERSION_ADDR];
* freqSearchRangeKHz =
* (regData[DMD_FREQ_SEARCH_RANGE_IN_KHZ_ADDR]);
*/
p->fec_inner = conv_fec(reg_data[DMD_FEC_CODE_RATE_ADDR]);
switch (p->delivery_system) {
case SYS_DSS:
break;
case SYS_DVBS2:
switch ((enum MXL_HYDRA_PILOTS_E)
reg_data[DMD_DVBS2_PILOT_ON_OFF_ADDR]) {
case MXL_HYDRA_PILOTS_OFF:
p->pilot = PILOT_OFF;
break;
case MXL_HYDRA_PILOTS_ON:
p->pilot = PILOT_ON;
break;
default:
break;
}
fallthrough;
case SYS_DVBS:
switch ((enum MXL_HYDRA_MODULATION_E)
reg_data[DMD_MODULATION_SCHEME_ADDR]) {
case MXL_HYDRA_MOD_QPSK:
p->modulation = QPSK;
break;
case MXL_HYDRA_MOD_8PSK:
p->modulation = PSK_8;
break;
default:
break;
}
switch ((enum MXL_HYDRA_ROLLOFF_E)
reg_data[DMD_SPECTRUM_ROLL_OFF_ADDR]) {
case MXL_HYDRA_ROLLOFF_0_20:
p->rolloff = ROLLOFF_20;
break;
case MXL_HYDRA_ROLLOFF_0_35:
p->rolloff = ROLLOFF_35;
break;
case MXL_HYDRA_ROLLOFF_0_25:
p->rolloff = ROLLOFF_25;
break;
default:
break;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int set_input(struct dvb_frontend *fe, int input)
{
struct mxl *state = fe->demodulator_priv;
state->tuner = input;
return 0;
}
static const struct dvb_frontend_ops mxl_ops = {
.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
.info = {
.name = "MaxLinear MxL5xx DVB-S/S2 tuner-demodulator",
.frequency_min_hz = 300 * MHz,
.frequency_max_hz = 2350 * MHz,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_2G_MODULATION
},
.init = init,
.release = release,
.get_frontend_algo = get_algo,
.tune = tune,
.read_status = read_status,
.sleep = sleep,
.get_frontend = get_frontend,
.diseqc_send_master_cmd = send_master_cmd,
};
static struct mxl_base *match_base(struct i2c_adapter *i2c, u8 adr)
{
struct mxl_base *p;
list_for_each_entry(p, &mxllist, mxllist)
if (p->i2c == i2c && p->adr == adr)
return p;
return NULL;
}
static void cfg_dev_xtal(struct mxl *state, u32 freq, u32 cap, u32 enable)
{
if (state->base->can_clkout || !enable)
update_by_mnemonic(state, 0x90200054, 23, 1, enable);
if (freq == 24000000)
write_register(state, HYDRA_CRYSTAL_SETTING, 0);
else
write_register(state, HYDRA_CRYSTAL_SETTING, 1);
write_register(state, HYDRA_CRYSTAL_CAP, cap);
}
static u32 get_big_endian(u8 num_of_bits, const u8 buf[])
{
u32 ret_value = 0;
switch (num_of_bits) {
case 24:
ret_value = (((u32) buf[0]) << 16) |
(((u32) buf[1]) << 8) | buf[2];
break;
case 32:
ret_value = (((u32) buf[0]) << 24) |
(((u32) buf[1]) << 16) |
(((u32) buf[2]) << 8) | buf[3];
break;
default:
break;
}
return ret_value;
}
static int write_fw_segment(struct mxl *state,
u32 mem_addr, u32 total_size, u8 *data_ptr)
{
int status;
u32 data_count = 0;
u32 size = 0;
u32 orig_size = 0;
u8 *w_buf_ptr = NULL;
u32 block_size = ((MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
(MXL_HYDRA_I2C_HDR_SIZE +
MXL_HYDRA_REG_SIZE_IN_BYTES)) / 4) * 4;
u8 w_msg_buffer[MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
(MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES)];
do {
size = orig_size = (((u32)(data_count + block_size)) > total_size) ?
(total_size - data_count) : block_size;
if (orig_size & 3)
size = (orig_size + 4) & ~3;
w_buf_ptr = &w_msg_buffer[0];
memset((void *) w_buf_ptr, 0, size);
memcpy((void *) w_buf_ptr, (void *) data_ptr, orig_size);
convert_endian(1, size, w_buf_ptr);
status = write_firmware_block(state, mem_addr, size, w_buf_ptr);
if (status)
return status;
data_count += size;
mem_addr += size;
data_ptr += size;
} while (data_count < total_size);
return status;
}
static int do_firmware_download(struct mxl *state, u8 *mbin_buffer_ptr,
u32 mbin_buffer_size)
{
int status;
u32 index = 0;
u32 seg_length = 0;
u32 seg_address = 0;
struct MBIN_FILE_T *mbin_ptr = (struct MBIN_FILE_T *)mbin_buffer_ptr;
struct MBIN_SEGMENT_T *segment_ptr;
enum MXL_BOOL_E xcpu_fw_flag = MXL_FALSE;
if (mbin_ptr->header.id != MBIN_FILE_HEADER_ID) {
dev_err(state->i2cdev, "%s: Invalid file header ID (%c)\n",
__func__, mbin_ptr->header.id);
return -EINVAL;
}
status = write_register(state, FW_DL_SIGN_ADDR, 0);
if (status)
return status;
segment_ptr = (struct MBIN_SEGMENT_T *) (&mbin_ptr->data[0]);
for (index = 0; index < mbin_ptr->header.num_segments; index++) {
if (segment_ptr->header.id != MBIN_SEGMENT_HEADER_ID) {
dev_err(state->i2cdev, "%s: Invalid segment header ID (%c)\n",
__func__, segment_ptr->header.id);
return -EINVAL;
}
seg_length = get_big_endian(24,
&(segment_ptr->header.len24[0]));
seg_address = get_big_endian(32,
&(segment_ptr->header.address[0]));
if (state->base->type == MXL_HYDRA_DEVICE_568) {
if ((((seg_address & 0x90760000) == 0x90760000) ||
((seg_address & 0x90740000) == 0x90740000)) &&
(xcpu_fw_flag == MXL_FALSE)) {
update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
msleep(200);
write_register(state, 0x90720000, 0);
usleep_range(10000, 11000);
xcpu_fw_flag = MXL_TRUE;
}
status = write_fw_segment(state, seg_address,
seg_length,
(u8 *) segment_ptr->data);
} else {
if (((seg_address & 0x90760000) != 0x90760000) &&
((seg_address & 0x90740000) != 0x90740000))
status = write_fw_segment(state, seg_address,
seg_length, (u8 *) segment_ptr->data);
}
if (status)
return status;
segment_ptr = (struct MBIN_SEGMENT_T *)
&(segment_ptr->data[((seg_length + 3) / 4) * 4]);
}
return status;
}
static int check_fw(struct mxl *state, u8 *mbin, u32 mbin_len)
{
struct MBIN_FILE_HEADER_T *fh = (struct MBIN_FILE_HEADER_T *) mbin;
u32 flen = (fh->image_size24[0] << 16) |
(fh->image_size24[1] << 8) | fh->image_size24[2];
u8 *fw, cs = 0;
u32 i;
if (fh->id != 'M' || fh->fmt_version != '1' || flen > 0x3FFF0) {
dev_info(state->i2cdev, "Invalid FW Header\n");
return -1;
}
fw = mbin + sizeof(struct MBIN_FILE_HEADER_T);
for (i = 0; i < flen; i += 1)
cs += fw[i];
if (cs != fh->image_checksum) {
dev_info(state->i2cdev, "Invalid FW Checksum\n");
return -1;
}
return 0;
}
static int firmware_download(struct mxl *state, u8 *mbin, u32 mbin_len)
{
int status;
u32 reg_data = 0;
struct MXL_HYDRA_SKU_COMMAND_T dev_sku_cfg;
u8 cmd_size = sizeof(struct MXL_HYDRA_SKU_COMMAND_T);
u8 cmd_buff[sizeof(struct MXL_HYDRA_SKU_COMMAND_T) + 6];
if (check_fw(state, mbin, mbin_len))
return -1;
/* put CPU into reset */
status = update_by_mnemonic(state, 0x8003003C, 0, 1, 0);
if (status)
return status;
usleep_range(1000, 2000);
/* Reset TX FIFO's, BBAND, XBAR */
status = write_register(state, HYDRA_RESET_TRANSPORT_FIFO_REG,
HYDRA_RESET_TRANSPORT_FIFO_DATA);
if (status)
return status;
status = write_register(state, HYDRA_RESET_BBAND_REG,
HYDRA_RESET_BBAND_DATA);
if (status)
return status;
status = write_register(state, HYDRA_RESET_XBAR_REG,
HYDRA_RESET_XBAR_DATA);
if (status)
return status;
/* Disable clock to Baseband, Wideband, SerDes,
* Alias ext & Transport modules
*/
status = write_register(state, HYDRA_MODULES_CLK_2_REG,
HYDRA_DISABLE_CLK_2);
if (status)
return status;
/* Clear Software & Host interrupt status - (Clear on read) */
status = read_register(state, HYDRA_PRCM_ROOT_CLK_REG, &reg_data);
if (status)
return status;
status = do_firmware_download(state, mbin, mbin_len);
if (status)
return status;
if (state->base->type == MXL_HYDRA_DEVICE_568) {
usleep_range(10000, 11000);
/* bring XCPU out of reset */
status = write_register(state, 0x90720000, 1);
if (status)
return status;
msleep(500);
/* Enable XCPU UART message processing in MCPU */
status = write_register(state, 0x9076B510, 1);
if (status)
return status;
} else {
/* Bring CPU out of reset */
status = update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
if (status)
return status;
/* Wait until FW boots */
msleep(150);
}
/* Initialize XPT XBAR */
status = write_register(state, XPT_DMD0_BASEADDR, 0x76543210);
if (status)
return status;
if (!firmware_is_alive(state))
return -1;
dev_info(state->i2cdev, "Hydra FW alive. Hail!\n");
/* sometimes register values are wrong shortly
* after first heart beats
*/
msleep(50);
dev_sku_cfg.sku_type = state->base->sku_type;
BUILD_HYDRA_CMD(MXL_HYDRA_DEV_CFG_SKU_CMD, MXL_CMD_WRITE,
cmd_size, &dev_sku_cfg, cmd_buff);
status = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
&cmd_buff[0]);
return status;
}
static int cfg_ts_pad_mux(struct mxl *state, enum MXL_BOOL_E enable_serial_ts)
{
int status = 0;
u32 pad_mux_value = 0;
if (enable_serial_ts == MXL_TRUE) {
pad_mux_value = 0;
if ((state->base->type == MXL_HYDRA_DEVICE_541) ||
(state->base->type == MXL_HYDRA_DEVICE_541S))
pad_mux_value = 2;
} else {
if ((state->base->type == MXL_HYDRA_DEVICE_581) ||
(state->base->type == MXL_HYDRA_DEVICE_581S))
pad_mux_value = 2;
else
pad_mux_value = 3;
}
switch (state->base->type) {
case MXL_HYDRA_DEVICE_561:
case MXL_HYDRA_DEVICE_581:
case MXL_HYDRA_DEVICE_541:
case MXL_HYDRA_DEVICE_541S:
case MXL_HYDRA_DEVICE_561S:
case MXL_HYDRA_DEVICE_581S:
status |= update_by_mnemonic(state, 0x90000170, 24, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000170, 28, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000174, 0, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000174, 4, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000174, 8, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000174, 12, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000174, 16, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000174, 20, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000174, 24, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000174, 28, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000178, 0, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000178, 4, 3,
pad_mux_value);
status |= update_by_mnemonic(state, 0x90000178, 8, 3,
pad_mux_value);
break;
case MXL_HYDRA_DEVICE_544:
case MXL_HYDRA_DEVICE_542:
status |= update_by_mnemonic(state, 0x9000016C, 4, 3, 1);
status |= update_by_mnemonic(state, 0x9000016C, 8, 3, 0);
status |= update_by_mnemonic(state, 0x9000016C, 12, 3, 0);
status |= update_by_mnemonic(state, 0x9000016C, 16, 3, 0);
status |= update_by_mnemonic(state, 0x90000170, 0, 3, 0);
status |= update_by_mnemonic(state, 0x90000178, 12, 3, 1);
status |= update_by_mnemonic(state, 0x90000178, 16, 3, 1);
status |= update_by_mnemonic(state, 0x90000178, 20, 3, 1);
status |= update_by_mnemonic(state, 0x90000178, 24, 3, 1);
status |= update_by_mnemonic(state, 0x9000017C, 0, 3, 1);
status |= update_by_mnemonic(state, 0x9000017C, 4, 3, 1);
if (enable_serial_ts == MXL_ENABLE) {
status |= update_by_mnemonic(state,
0x90000170, 4, 3, 0);
status |= update_by_mnemonic(state,
0x90000170, 8, 3, 0);
status |= update_by_mnemonic(state,
0x90000170, 12, 3, 0);
status |= update_by_mnemonic(state,
0x90000170, 16, 3, 0);
status |= update_by_mnemonic(state,
0x90000170, 20, 3, 1);
status |= update_by_mnemonic(state,
0x90000170, 24, 3, 1);
status |= update_by_mnemonic(state,
0x90000170, 28, 3, 2);
status |= update_by_mnemonic(state,
0x90000174, 0, 3, 2);
status |= update_by_mnemonic(state,
0x90000174, 4, 3, 2);
status |= update_by_mnemonic(state,
0x90000174, 8, 3, 2);
status |= update_by_mnemonic(state,
0x90000174, 12, 3, 2);
status |= update_by_mnemonic(state,
0x90000174, 16, 3, 2);
status |= update_by_mnemonic(state,
0x90000174, 20, 3, 2);
status |= update_by_mnemonic(state,
0x90000174, 24, 3, 2);
status |= update_by_mnemonic(state,
0x90000174, 28, 3, 2);
status |= update_by_mnemonic(state,
0x90000178, 0, 3, 2);
status |= update_by_mnemonic(state,
0x90000178, 4, 3, 2);
status |= update_by_mnemonic(state,
0x90000178, 8, 3, 2);
} else {
status |= update_by_mnemonic(state,
0x90000170, 4, 3, 3);
status |= update_by_mnemonic(state,
0x90000170, 8, 3, 3);
status |= update_by_mnemonic(state,
0x90000170, 12, 3, 3);
status |= update_by_mnemonic(state,
0x90000170, 16, 3, 3);
status |= update_by_mnemonic(state,
0x90000170, 20, 3, 3);
status |= update_by_mnemonic(state,
0x90000170, 24, 3, 3);
status |= update_by_mnemonic(state,
0x90000170, 28, 3, 3);
status |= update_by_mnemonic(state,
0x90000174, 0, 3, 3);
status |= update_by_mnemonic(state,
0x90000174, 4, 3, 3);
status |= update_by_mnemonic(state,
0x90000174, 8, 3, 3);
status |= update_by_mnemonic(state,
0x90000174, 12, 3, 3);
status |= update_by_mnemonic(state,
0x90000174, 16, 3, 3);
status |= update_by_mnemonic(state,
0x90000174, 20, 3, 1);
status |= update_by_mnemonic(state,
0x90000174, 24, 3, 1);
status |= update_by_mnemonic(state,
0x90000174, 28, 3, 1);
status |= update_by_mnemonic(state,
0x90000178, 0, 3, 1);
status |= update_by_mnemonic(state,
0x90000178, 4, 3, 1);
status |= update_by_mnemonic(state,
0x90000178, 8, 3, 1);
}
break;
case MXL_HYDRA_DEVICE_568:
if (enable_serial_ts == MXL_FALSE) {
status |= update_by_mnemonic(state,
0x9000016C, 8, 3, 5);
status |= update_by_mnemonic(state,
0x9000016C, 12, 3, 5);
status |= update_by_mnemonic(state,
0x9000016C, 16, 3, 5);
status |= update_by_mnemonic(state,
0x9000016C, 20, 3, 5);
status |= update_by_mnemonic(state,
0x9000016C, 24, 3, 5);
status |= update_by_mnemonic(state,
0x9000016C, 28, 3, 5);
status |= update_by_mnemonic(state,
0x90000170, 0, 3, 5);
status |= update_by_mnemonic(state,
0x90000170, 4, 3, 5);
status |= update_by_mnemonic(state,
0x90000170, 8, 3, 5);
status |= update_by_mnemonic(state,
0x90000170, 12, 3, 5);
status |= update_by_mnemonic(state,
0x90000170, 16, 3, 5);
status |= update_by_mnemonic(state,
0x90000170, 20, 3, 5);
status |= update_by_mnemonic(state,
0x90000170, 24, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 0, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 4, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 8, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 12, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 16, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 20, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 24, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 28, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000178, 0, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000178, 4, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000178, 8, 3, 5);
status |= update_by_mnemonic(state,
0x90000178, 12, 3, 5);
status |= update_by_mnemonic(state,
0x90000178, 16, 3, 5);
status |= update_by_mnemonic(state,
0x90000178, 20, 3, 5);
status |= update_by_mnemonic(state,
0x90000178, 24, 3, 5);
status |= update_by_mnemonic(state,
0x90000178, 28, 3, 5);
status |= update_by_mnemonic(state,
0x9000017C, 0, 3, 5);
status |= update_by_mnemonic(state,
0x9000017C, 4, 3, 5);
} else {
status |= update_by_mnemonic(state,
0x90000170, 4, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 8, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 12, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 16, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 20, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 24, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 28, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 0, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 4, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 8, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 12, 3, pad_mux_value);
}
break;
case MXL_HYDRA_DEVICE_584:
default:
status |= update_by_mnemonic(state,
0x90000170, 4, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 8, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 12, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 16, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 20, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 24, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000170, 28, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 0, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 4, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 8, 3, pad_mux_value);
status |= update_by_mnemonic(state,
0x90000174, 12, 3, pad_mux_value);
break;
}
return status;
}
static int set_drive_strength(struct mxl *state,
enum MXL_HYDRA_TS_DRIVE_STRENGTH_E ts_drive_strength)
{
int stat = 0;
u32 val;
read_register(state, 0x90000194, &val);
dev_info(state->i2cdev, "DIGIO = %08x\n", val);
dev_info(state->i2cdev, "set drive_strength = %u\n", ts_drive_strength);
stat |= update_by_mnemonic(state, 0x90000194, 0, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x90000194, 20, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x90000194, 24, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x90000198, 12, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x90000198, 16, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x90000198, 20, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x90000198, 24, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x9000019C, 0, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x9000019C, 4, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x9000019C, 8, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x9000019C, 24, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x9000019C, 28, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x900001A0, 0, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x900001A0, 4, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x900001A0, 20, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x900001A0, 24, 3, ts_drive_strength);
stat |= update_by_mnemonic(state, 0x900001A0, 28, 3, ts_drive_strength);
return stat;
}
static int enable_tuner(struct mxl *state, u32 tuner, u32 enable)
{
int stat = 0;
struct MXL_HYDRA_TUNER_CMD ctrl_tuner_cmd;
u8 cmd_size = sizeof(ctrl_tuner_cmd);
u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
u32 val, count = 10;
ctrl_tuner_cmd.tuner_id = tuner;
ctrl_tuner_cmd.enable = enable;
BUILD_HYDRA_CMD(MXL_HYDRA_TUNER_ACTIVATE_CMD, MXL_CMD_WRITE,
cmd_size, &ctrl_tuner_cmd, cmd_buff);
stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
&cmd_buff[0]);
if (stat)
return stat;
read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
while (--count && ((val >> tuner) & 1) != enable) {
msleep(20);
read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
}
if (!count)
return -1;
read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
dev_dbg(state->i2cdev, "tuner %u ready = %u\n",
tuner, (val >> tuner) & 1);
return 0;
}
static int config_ts(struct mxl *state, enum MXL_HYDRA_DEMOD_ID_E demod_id,
struct MXL_HYDRA_MPEGOUT_PARAM_T *mpeg_out_param_ptr)
{
int status = 0;
u32 nco_count_min = 0;
u32 clk_type = 0;
static const struct MXL_REG_FIELD_T xpt_sync_polarity[MXL_HYDRA_DEMOD_MAX] = {
{0x90700010, 8, 1}, {0x90700010, 9, 1},
{0x90700010, 10, 1}, {0x90700010, 11, 1},
{0x90700010, 12, 1}, {0x90700010, 13, 1},
{0x90700010, 14, 1}, {0x90700010, 15, 1} };
static const struct MXL_REG_FIELD_T xpt_clock_polarity[MXL_HYDRA_DEMOD_MAX] = {
{0x90700010, 16, 1}, {0x90700010, 17, 1},
{0x90700010, 18, 1}, {0x90700010, 19, 1},
{0x90700010, 20, 1}, {0x90700010, 21, 1},
{0x90700010, 22, 1}, {0x90700010, 23, 1} };
static const struct MXL_REG_FIELD_T xpt_valid_polarity[MXL_HYDRA_DEMOD_MAX] = {
{0x90700014, 0, 1}, {0x90700014, 1, 1},
{0x90700014, 2, 1}, {0x90700014, 3, 1},
{0x90700014, 4, 1}, {0x90700014, 5, 1},
{0x90700014, 6, 1}, {0x90700014, 7, 1} };
static const struct MXL_REG_FIELD_T xpt_ts_clock_phase[MXL_HYDRA_DEMOD_MAX] = {
{0x90700018, 0, 3}, {0x90700018, 4, 3},
{0x90700018, 8, 3}, {0x90700018, 12, 3},
{0x90700018, 16, 3}, {0x90700018, 20, 3},
{0x90700018, 24, 3}, {0x90700018, 28, 3} };
static const struct MXL_REG_FIELD_T xpt_lsb_first[MXL_HYDRA_DEMOD_MAX] = {
{0x9070000C, 16, 1}, {0x9070000C, 17, 1},
{0x9070000C, 18, 1}, {0x9070000C, 19, 1},
{0x9070000C, 20, 1}, {0x9070000C, 21, 1},
{0x9070000C, 22, 1}, {0x9070000C, 23, 1} };
static const struct MXL_REG_FIELD_T xpt_sync_byte[MXL_HYDRA_DEMOD_MAX] = {
{0x90700010, 0, 1}, {0x90700010, 1, 1},
{0x90700010, 2, 1}, {0x90700010, 3, 1},
{0x90700010, 4, 1}, {0x90700010, 5, 1},
{0x90700010, 6, 1}, {0x90700010, 7, 1} };
static const struct MXL_REG_FIELD_T xpt_enable_output[MXL_HYDRA_DEMOD_MAX] = {
{0x9070000C, 0, 1}, {0x9070000C, 1, 1},
{0x9070000C, 2, 1}, {0x9070000C, 3, 1},
{0x9070000C, 4, 1}, {0x9070000C, 5, 1},
{0x9070000C, 6, 1}, {0x9070000C, 7, 1} };
static const struct MXL_REG_FIELD_T xpt_err_replace_sync[MXL_HYDRA_DEMOD_MAX] = {
{0x9070000C, 24, 1}, {0x9070000C, 25, 1},
{0x9070000C, 26, 1}, {0x9070000C, 27, 1},
{0x9070000C, 28, 1}, {0x9070000C, 29, 1},
{0x9070000C, 30, 1}, {0x9070000C, 31, 1} };
static const struct MXL_REG_FIELD_T xpt_err_replace_valid[MXL_HYDRA_DEMOD_MAX] = {
{0x90700014, 8, 1}, {0x90700014, 9, 1},
{0x90700014, 10, 1}, {0x90700014, 11, 1},
{0x90700014, 12, 1}, {0x90700014, 13, 1},
{0x90700014, 14, 1}, {0x90700014, 15, 1} };
static const struct MXL_REG_FIELD_T xpt_continuous_clock[MXL_HYDRA_DEMOD_MAX] = {
{0x907001D4, 0, 1}, {0x907001D4, 1, 1},
{0x907001D4, 2, 1}, {0x907001D4, 3, 1},
{0x907001D4, 4, 1}, {0x907001D4, 5, 1},
{0x907001D4, 6, 1}, {0x907001D4, 7, 1} };
static const struct MXL_REG_FIELD_T xpt_nco_clock_rate[MXL_HYDRA_DEMOD_MAX] = {
{0x90700044, 16, 80}, {0x90700044, 16, 81},
{0x90700044, 16, 82}, {0x90700044, 16, 83},
{0x90700044, 16, 84}, {0x90700044, 16, 85},
{0x90700044, 16, 86}, {0x90700044, 16, 87} };
demod_id = state->base->ts_map[demod_id];
if (mpeg_out_param_ptr->enable == MXL_ENABLE) {
if (mpeg_out_param_ptr->mpeg_mode ==
MXL_HYDRA_MPEG_MODE_PARALLEL) {
} else {
cfg_ts_pad_mux(state, MXL_TRUE);
update_by_mnemonic(state,
0x90700010, 27, 1, MXL_FALSE);
}
}
nco_count_min =
(u32)(MXL_HYDRA_NCO_CLK / mpeg_out_param_ptr->max_mpeg_clk_rate);
if (state->base->chipversion >= 2) {
status |= update_by_mnemonic(state,
xpt_nco_clock_rate[demod_id].reg_addr, /* Reg Addr */
xpt_nco_clock_rate[demod_id].lsb_pos, /* LSB pos */
xpt_nco_clock_rate[demod_id].num_of_bits, /* Num of bits */
nco_count_min); /* Data */
} else
update_by_mnemonic(state, 0x90700044, 16, 8, nco_count_min);
if (mpeg_out_param_ptr->mpeg_clk_type == MXL_HYDRA_MPEG_CLK_CONTINUOUS)
clk_type = 1;
if (mpeg_out_param_ptr->mpeg_mode < MXL_HYDRA_MPEG_MODE_PARALLEL) {
status |= update_by_mnemonic(state,
xpt_continuous_clock[demod_id].reg_addr,
xpt_continuous_clock[demod_id].lsb_pos,
xpt_continuous_clock[demod_id].num_of_bits,
clk_type);
} else
update_by_mnemonic(state, 0x907001D4, 8, 1, clk_type);
status |= update_by_mnemonic(state,
xpt_sync_polarity[demod_id].reg_addr,
xpt_sync_polarity[demod_id].lsb_pos,
xpt_sync_polarity[demod_id].num_of_bits,
mpeg_out_param_ptr->mpeg_sync_pol);
status |= update_by_mnemonic(state,
xpt_valid_polarity[demod_id].reg_addr,
xpt_valid_polarity[demod_id].lsb_pos,
xpt_valid_polarity[demod_id].num_of_bits,
mpeg_out_param_ptr->mpeg_valid_pol);
status |= update_by_mnemonic(state,
xpt_clock_polarity[demod_id].reg_addr,
xpt_clock_polarity[demod_id].lsb_pos,
xpt_clock_polarity[demod_id].num_of_bits,
mpeg_out_param_ptr->mpeg_clk_pol);
status |= update_by_mnemonic(state,
xpt_sync_byte[demod_id].reg_addr,
xpt_sync_byte[demod_id].lsb_pos,
xpt_sync_byte[demod_id].num_of_bits,
mpeg_out_param_ptr->mpeg_sync_pulse_width);
status |= update_by_mnemonic(state,
xpt_ts_clock_phase[demod_id].reg_addr,
xpt_ts_clock_phase[demod_id].lsb_pos,
xpt_ts_clock_phase[demod_id].num_of_bits,
mpeg_out_param_ptr->mpeg_clk_phase);
status |= update_by_mnemonic(state,
xpt_lsb_first[demod_id].reg_addr,
xpt_lsb_first[demod_id].lsb_pos,
xpt_lsb_first[demod_id].num_of_bits,
mpeg_out_param_ptr->lsb_or_msb_first);
switch (mpeg_out_param_ptr->mpeg_error_indication) {
case MXL_HYDRA_MPEG_ERR_REPLACE_SYNC:
status |= update_by_mnemonic(state,
xpt_err_replace_sync[demod_id].reg_addr,
xpt_err_replace_sync[demod_id].lsb_pos,
xpt_err_replace_sync[demod_id].num_of_bits,
MXL_TRUE);
status |= update_by_mnemonic(state,
xpt_err_replace_valid[demod_id].reg_addr,
xpt_err_replace_valid[demod_id].lsb_pos,
xpt_err_replace_valid[demod_id].num_of_bits,
MXL_FALSE);
break;
case MXL_HYDRA_MPEG_ERR_REPLACE_VALID:
status |= update_by_mnemonic(state,
xpt_err_replace_sync[demod_id].reg_addr,
xpt_err_replace_sync[demod_id].lsb_pos,
xpt_err_replace_sync[demod_id].num_of_bits,
MXL_FALSE);
status |= update_by_mnemonic(state,
xpt_err_replace_valid[demod_id].reg_addr,
xpt_err_replace_valid[demod_id].lsb_pos,
xpt_err_replace_valid[demod_id].num_of_bits,
MXL_TRUE);
break;
case MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED:
default:
status |= update_by_mnemonic(state,
xpt_err_replace_sync[demod_id].reg_addr,
xpt_err_replace_sync[demod_id].lsb_pos,
xpt_err_replace_sync[demod_id].num_of_bits,
MXL_FALSE);
status |= update_by_mnemonic(state,
xpt_err_replace_valid[demod_id].reg_addr,
xpt_err_replace_valid[demod_id].lsb_pos,
xpt_err_replace_valid[demod_id].num_of_bits,
MXL_FALSE);
break;
}
if (mpeg_out_param_ptr->mpeg_mode != MXL_HYDRA_MPEG_MODE_PARALLEL) {
status |= update_by_mnemonic(state,
xpt_enable_output[demod_id].reg_addr,
xpt_enable_output[demod_id].lsb_pos,
xpt_enable_output[demod_id].num_of_bits,
mpeg_out_param_ptr->enable);
}
return status;
}
static int config_mux(struct mxl *state)
{
update_by_mnemonic(state, 0x9070000C, 0, 1, 0);
update_by_mnemonic(state, 0x9070000C, 1, 1, 0);
update_by_mnemonic(state, 0x9070000C, 2, 1, 0);
update_by_mnemonic(state, 0x9070000C, 3, 1, 0);
update_by_mnemonic(state, 0x9070000C, 4, 1, 0);
update_by_mnemonic(state, 0x9070000C, 5, 1, 0);
update_by_mnemonic(state, 0x9070000C, 6, 1, 0);
update_by_mnemonic(state, 0x9070000C, 7, 1, 0);
update_by_mnemonic(state, 0x90700008, 0, 2, 1);
update_by_mnemonic(state, 0x90700008, 2, 2, 1);
return 0;
}
static int load_fw(struct mxl *state, struct mxl5xx_cfg *cfg)
{
int stat = 0;
u8 *buf;
if (cfg->fw)
return firmware_download(state, cfg->fw, cfg->fw_len);
if (!cfg->fw_read)
return -1;
buf = vmalloc(0x40000);
if (!buf)
return -ENOMEM;
cfg->fw_read(cfg->fw_priv, buf, 0x40000);
stat = firmware_download(state, buf, 0x40000);
vfree(buf);
return stat;
}
static int validate_sku(struct mxl *state)
{
u32 pad_mux_bond = 0, prcm_chip_id = 0, prcm_so_cid = 0;
int status;
u32 type = state->base->type;
status = read_by_mnemonic(state, 0x90000190, 0, 3, &pad_mux_bond);
status |= read_by_mnemonic(state, 0x80030000, 0, 12, &prcm_chip_id);
status |= read_by_mnemonic(state, 0x80030004, 24, 8, &prcm_so_cid);
if (status)
return -1;
dev_info(state->i2cdev, "padMuxBond=%08x, prcmChipId=%08x, prcmSoCId=%08x\n",
pad_mux_bond, prcm_chip_id, prcm_so_cid);
if (prcm_chip_id != 0x560) {
switch (pad_mux_bond) {
case MXL_HYDRA_SKU_ID_581:
if (type == MXL_HYDRA_DEVICE_581)
return 0;
if (type == MXL_HYDRA_DEVICE_581S) {
state->base->type = MXL_HYDRA_DEVICE_581;
return 0;
}
break;
case MXL_HYDRA_SKU_ID_584:
if (type == MXL_HYDRA_DEVICE_584)
return 0;
break;
case MXL_HYDRA_SKU_ID_544:
if (type == MXL_HYDRA_DEVICE_544)
return 0;
if (type == MXL_HYDRA_DEVICE_542)
return 0;
break;
case MXL_HYDRA_SKU_ID_582:
if (type == MXL_HYDRA_DEVICE_582)
return 0;
break;
default:
return -1;
}
}
return -1;
}
static int get_fwinfo(struct mxl *state)
{
int status;
u32 val = 0;
status = read_by_mnemonic(state, 0x90000190, 0, 3, &val);
if (status)
return status;
dev_info(state->i2cdev, "chipID=%08x\n", val);
status = read_by_mnemonic(state, 0x80030004, 8, 8, &val);
if (status)
return status;
dev_info(state->i2cdev, "chipVer=%08x\n", val);
status = read_register(state, HYDRA_FIRMWARE_VERSION, &val);
if (status)
return status;
dev_info(state->i2cdev, "FWVer=%08x\n", val);
state->base->fwversion = val;
return status;
}
static u8 ts_map1_to_1[MXL_HYDRA_DEMOD_MAX] = {
MXL_HYDRA_DEMOD_ID_0,
MXL_HYDRA_DEMOD_ID_1,
MXL_HYDRA_DEMOD_ID_2,
MXL_HYDRA_DEMOD_ID_3,
MXL_HYDRA_DEMOD_ID_4,
MXL_HYDRA_DEMOD_ID_5,
MXL_HYDRA_DEMOD_ID_6,
MXL_HYDRA_DEMOD_ID_7,
};
static u8 ts_map54x[MXL_HYDRA_DEMOD_MAX] = {
MXL_HYDRA_DEMOD_ID_2,
MXL_HYDRA_DEMOD_ID_3,
MXL_HYDRA_DEMOD_ID_4,
MXL_HYDRA_DEMOD_ID_5,
MXL_HYDRA_DEMOD_MAX,
MXL_HYDRA_DEMOD_MAX,
MXL_HYDRA_DEMOD_MAX,
MXL_HYDRA_DEMOD_MAX,
};
static int probe(struct mxl *state, struct mxl5xx_cfg *cfg)
{
u32 chipver;
int fw, status, j;
struct MXL_HYDRA_MPEGOUT_PARAM_T mpeg_interface_cfg;
state->base->ts_map = ts_map1_to_1;
switch (state->base->type) {
case MXL_HYDRA_DEVICE_581:
case MXL_HYDRA_DEVICE_581S:
state->base->can_clkout = 1;
state->base->demod_num = 8;
state->base->tuner_num = 1;
state->base->sku_type = MXL_HYDRA_SKU_TYPE_581;
break;
case MXL_HYDRA_DEVICE_582:
state->base->can_clkout = 1;
state->base->demod_num = 8;
state->base->tuner_num = 3;
state->base->sku_type = MXL_HYDRA_SKU_TYPE_582;
break;
case MXL_HYDRA_DEVICE_585:
state->base->can_clkout = 0;
state->base->demod_num = 8;
state->base->tuner_num = 4;
state->base->sku_type = MXL_HYDRA_SKU_TYPE_585;
break;
case MXL_HYDRA_DEVICE_544:
state->base->can_clkout = 0;
state->base->demod_num = 4;
state->base->tuner_num = 4;
state->base->sku_type = MXL_HYDRA_SKU_TYPE_544;
state->base->ts_map = ts_map54x;
break;
case MXL_HYDRA_DEVICE_541:
case MXL_HYDRA_DEVICE_541S:
state->base->can_clkout = 0;
state->base->demod_num = 4;
state->base->tuner_num = 1;
state->base->sku_type = MXL_HYDRA_SKU_TYPE_541;
state->base->ts_map = ts_map54x;
break;
case MXL_HYDRA_DEVICE_561:
case MXL_HYDRA_DEVICE_561S:
state->base->can_clkout = 0;
state->base->demod_num = 6;
state->base->tuner_num = 1;
state->base->sku_type = MXL_HYDRA_SKU_TYPE_561;
break;
case MXL_HYDRA_DEVICE_568:
state->base->can_clkout = 0;
state->base->demod_num = 8;
state->base->tuner_num = 1;
state->base->chan_bond = 1;
state->base->sku_type = MXL_HYDRA_SKU_TYPE_568;
break;
case MXL_HYDRA_DEVICE_542:
state->base->can_clkout = 1;
state->base->demod_num = 4;
state->base->tuner_num = 3;
state->base->sku_type = MXL_HYDRA_SKU_TYPE_542;
state->base->ts_map = ts_map54x;
break;
case MXL_HYDRA_DEVICE_TEST:
case MXL_HYDRA_DEVICE_584:
default:
state->base->can_clkout = 0;
state->base->demod_num = 8;
state->base->tuner_num = 4;
state->base->sku_type = MXL_HYDRA_SKU_TYPE_584;
break;
}
status = validate_sku(state);
if (status)
return status;
update_by_mnemonic(state, 0x80030014, 9, 1, 1);
update_by_mnemonic(state, 0x8003003C, 12, 1, 1);
status = read_by_mnemonic(state, 0x80030000, 12, 4, &chipver);
if (status)
state->base->chipversion = 0;
else
state->base->chipversion = (chipver == 2) ? 2 : 1;
dev_info(state->i2cdev, "Hydra chip version %u\n",
state->base->chipversion);
cfg_dev_xtal(state, cfg->clk, cfg->cap, 0);
fw = firmware_is_alive(state);
if (!fw) {
status = load_fw(state, cfg);
if (status)
return status;
}
get_fwinfo(state);
config_mux(state);
mpeg_interface_cfg.enable = MXL_ENABLE;
mpeg_interface_cfg.lsb_or_msb_first = MXL_HYDRA_MPEG_SERIAL_MSB_1ST;
/* supports only (0-104&139)MHz */
if (cfg->ts_clk)
mpeg_interface_cfg.max_mpeg_clk_rate = cfg->ts_clk;
else
mpeg_interface_cfg.max_mpeg_clk_rate = 69; /* 139; */
mpeg_interface_cfg.mpeg_clk_phase = MXL_HYDRA_MPEG_CLK_PHASE_SHIFT_0_DEG;
mpeg_interface_cfg.mpeg_clk_pol = MXL_HYDRA_MPEG_CLK_IN_PHASE;
/* MXL_HYDRA_MPEG_CLK_GAPPED; */
mpeg_interface_cfg.mpeg_clk_type = MXL_HYDRA_MPEG_CLK_CONTINUOUS;
mpeg_interface_cfg.mpeg_error_indication =
MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED;
mpeg_interface_cfg.mpeg_mode = MXL_HYDRA_MPEG_MODE_SERIAL_3_WIRE;
mpeg_interface_cfg.mpeg_sync_pol = MXL_HYDRA_MPEG_ACTIVE_HIGH;
mpeg_interface_cfg.mpeg_sync_pulse_width = MXL_HYDRA_MPEG_SYNC_WIDTH_BIT;
mpeg_interface_cfg.mpeg_valid_pol = MXL_HYDRA_MPEG_ACTIVE_HIGH;
for (j = 0; j < state->base->demod_num; j++) {
status = config_ts(state, (enum MXL_HYDRA_DEMOD_ID_E) j,
&mpeg_interface_cfg);
if (status)
return status;
}
set_drive_strength(state, 1);
return 0;
}
struct dvb_frontend *mxl5xx_attach(struct i2c_adapter *i2c,
struct mxl5xx_cfg *cfg, u32 demod, u32 tuner,
int (**fn_set_input)(struct dvb_frontend *, int))
{
struct mxl *state;
struct mxl_base *base;
state = kzalloc(sizeof(struct mxl), GFP_KERNEL);
if (!state)
return NULL;
state->demod = demod;
state->tuner = tuner;
state->tuner_in_use = 0xffffffff;
state->i2cdev = &i2c->dev;
base = match_base(i2c, cfg->adr);
if (base) {
base->count++;
if (base->count > base->demod_num)
goto fail;
state->base = base;
} else {
base = kzalloc(sizeof(struct mxl_base), GFP_KERNEL);
if (!base)
goto fail;
base->i2c = i2c;
base->adr = cfg->adr;
base->type = cfg->type;
base->count = 1;
mutex_init(&base->i2c_lock);
mutex_init(&base->status_lock);
mutex_init(&base->tune_lock);
INIT_LIST_HEAD(&base->mxls);
state->base = base;
if (probe(state, cfg) < 0) {
kfree(base);
goto fail;
}
list_add(&base->mxllist, &mxllist);
}
state->fe.ops = mxl_ops;
state->xbar[0] = 4;
state->xbar[1] = demod;
state->xbar[2] = 8;
state->fe.demodulator_priv = state;
*fn_set_input = set_input;
list_add(&state->mxl, &base->mxls);
return &state->fe;
fail:
kfree(state);
return NULL;
}
EXPORT_SYMBOL_GPL(mxl5xx_attach);
MODULE_DESCRIPTION("MaxLinear MxL5xx DVB-S/S2 tuner-demodulator driver");
MODULE_AUTHOR("Ralph and Marcus Metzler, Metzler Brothers Systementwicklung GbR");
MODULE_LICENSE("GPL v2");